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Abstract

We introduce a novel generative framework that unifies ad-
versarial and diffusion-based training to overcome the limi-
tations of conventional models. Our approach, termed Gen-
erative Adversarial Diffusion (GAD), integrates an adver-
sarial loss directly into each denoising step of a latent dif-
fusion model. By employing a single U-Net as a unified
generator and discriminator, our framework eliminates the
need for a separate discriminator, thereby reducing memory
overhead and mitigating common GAN issues such as mode
collapse and training instability. This integrated adver-
sarial regularizer promotes semantic information exchange
across timesteps, enabling the model to better capture com-
plex data distributions even when training data is scarce or
biased. Extensive experiments on standard latent diffusion
benchmarks demonstrate that GAD significantly enhances
image quality and mode coverage in tasks including text-
to-image and image-to-3D generation. Our results suggest
that unifying adversarial and diffusion-based training in a
single network offers a promising new direction for high-
fidelity, stable image synthesis'.

1. Introduction

Text-to-image [36, 37] and image-to-3D [22, 26, 27] gener-
ation tasks have recently attracted significant attention in
computer vision, driven by rapid advances in model ar-
chitectures and training techniques. Consequently, gener-
ative models [36, 51, 58] have evolved to meet these re-
quirements of various generation tasks. Generative Adver-
sarial Networks (GANs) [16] are among the most promi-
nent frameworks, where a generator and discriminator en-
gage in an adversarial game to produce high-quality images.
GAN:Ss offer fast inference speeds and can be trained on rel-
atively small datasets while also demonstrating impressive
high-resolution image generation capabilities. However,
GANS are notoriously unstable during training because the
simultaneous update of the generator and discriminator can

*Corresponding author.
Iproject page: https://github.com/u-chae/gad/

rhwodms1223@sookmyung.ac.kr

jwkang@sookmyung.ac.kr

lead to issues such as mode collapse and non-convergence.
For instance, if the discriminator becomes too strong early
in the training, the generator may not receive meaningful
gradients, causing it to stagnate. Similarly, the generator
might converge to a limited subset of the data distribution
that consistently deceives the discriminator, further exac-
erbating mode collapse. Despite various improvements,
such as architecture modifications [3, 18, 30], revised ob-
jectives [4, 7, 61], and regularization strategies [13, 31],
completely resolving these issues within the standard GAN
framework remains challenging.

In contrast, diffusion models [36, 37, 58] have recently
shown great promise across a wide range of generative
tasks. In particular, latent diffusion models (LDMs) [36]
reduce computational complexity by performing denoising
in a low-dimensional latent space rather than directly in im-
age space, while still producing high-quality images. Dif-
fusion models also exhibit stable convergence and robust
distribution coverage when trained on large datasets, mak-
ing them well-suited for tasks such as text-to-image [36, 37]
and image-to-3D [22, 26, 27] generation. Although diffu-
sion models require an iterative denoising process, which
can be computationally expensive, the primary focus of our
work is not on accelerating inference but on enhancing gen-
eration quality and training stability. In practice, the con-
ventional diffusion process optimizes each timestep inde-
pendently under a Markov assumption, thereby limiting the
semantic information exchange between steps. This can re-
sult in suboptimal performance when training on complex
or limited datasets.

To overcome these limitations, researchers have ex-
plored combining the stability and diverse data coverage of
diffusion models with the high-fidelity image generation of
GANSs [2, 46, 49, 51, 53]. A common method employs a
diffusion model as the generator and a separate discrimina-
tor for adversarial feedback [2, 46, 49]. Although this can
improve the level of detail, it also increases memory and
computational costs and can reintroduce GAN-specific in-
stabilities such as mode collapse.

In this paper, we propose a novel generation framework
that adversarially optimizes each denoising step in the dif-
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fusion process without relying on a separate discrimina-
tor. Our approach integrates an adversarial loss directly into
each denoising stage of the diffusion model, effectively act-
ing as aregularizer. By using a single U-Net as both genera-
tor and discriminator, we eliminate memory overhead from
a separate discriminator and address common GAN issues.
Moreover, this integrated adversarial loss promotes seman-
tic information flow across timesteps, enabling the model to
better capture complex data distributions even when train-
ing data is limited or biased. Consequently, our method
synergistically combines the high-fidelity generation capa-
bilities of GANs with the robust, stable convergence of dif-
fusion models, resulting in high-quality and reliable image
synthesis without additional memory costs.

We validate our framework through extensive experi-
ments on standard latent diffusion baselines [36], demon-
strating that our adversarial training strategy significantly
improves image quality and mode coverage. Furthermore,
our approach outperforms existing methods in various tasks,
including conditional text-to-image generation [15, 24] and
2D-to-3D generation [22, 26]. These results highlight the
efficacy of unifying adversarial and diffusion-based train-
ing within a single network.

2. Related Work
2.1. Diffusion Models

Diffusion models, such as Denoising Diffusion Probabilis-
tic Models (DDPM) [19], are probabilistic generative mod-
els that learn the data distribution p(z) by reversing a
Markov noising process. DDPM achieves high general-
ization by leveraging large-scale training datasets and has
demonstrated state-of-the-art performance on various gen-
eration tasks. However, DDPM requires sampling at every
step along the Markov chain to generate high-quality im-
ages in image space, leading to slow generation speeds and
high computational cost.

To address these issues, several efficient sampling meth-
ods [28, 29, 45] have been proposed. For example,
Denoising Diffusion Implicit Models (DDIM) [45] sig-
nificantly improve sampling speed by adopting a non-
Markovian chain, thereby simplifying the computation be-
tween timesteps. Nonetheless, both DDPM and DDIM
generate the next sample solely based on the current one,
which introduces discretization errors and can destabilize
the denoising process [23]. To alleviate these problems, re-
searchers have explored high-order solvers [28, 29]. De-
spite these advances, diffusion models remain computation-
ally expensive and suffer from low inference speed due to
pixel-based learning in image space.

To overcome these limitations, the Latent Diffusion
Model (LDM) [36] was proposed. LDM maps the high-
dimensional image space to a low-dimensional latent space

using an autoencoder, extracting semantic information
while significantly reducing training cost. This approach
has enabled applications in various fields, including text-
to-image [32, 35, 58], text-to-3D [9, 33, 52], image-to-
3D [22, 26, 27], and more efficient generation models.

Our proposed method is applicable to both pixel-based
diffusion models (e.g., Imagen [37]) and latent-based diffu-
sion models (e.g., Stable diffusion [36]), independent of the
sampling method. In this paper, experiments are conducted
using Stable diffusion [36] to verify the general usability,
scalability, and memory efficiency of the proposed frame-
work.

2.2. Diffusion with GANs

With the emergence of latent diffusion models [36], which
enable efficient computational processing, various stud-
ies have focused on training diffusion models with large
datasets. However, diffusion models require an iterative
denoising process to generate the final sample, resulting
in slow generation speeds. Furthermore, diffusion models
typically need a large training dataset to learn the complex
data distribution for stable convergence. To mitigate these
issues, recent research [2, 46, 49, 51, 53] has focused on
combining the advantages of GANs and diffusion models
to overcome their individual shortcomings.

This research can be broadly divided into two ap-
proaches. The first approach leverages adversarial training
to improve the sampling speed of diffusion models while
maintaining high generation quality [20, 39, 51, 54]. Dif-
fusion models typically require several thousand iterative
sampling steps under the assumption that the reverse diffu-
sion distribution can be approximated by a Gaussian distri-
bution when the added noise is small. However, if the noise
is large, the reverse distribution becomes a non-Gaussian,
multimodal distribution [44], and reducing the number of
sampling steps degrades quality. Recent studies [51] ad-
dress this by modeling the denoising distribution with con-
ditional GANSs that can capture multimodal distributions,
thereby enabling faster sampling of high-quality images.
Yet, their effectiveness is limited in high-dimensional set-
tings, and finding an appropriate noise distribution remains
challenging. To overcome this, recent work [49] employs
a Gaussian mixture noise process on GANs to combine the
high-resolution capabilities of GANs with the fast sampling
speed and learning stability of diffusion models.

The second approach aims to improve the quality of dif-
fusion models by incorporating adversarial training into the
diffusion process itself. Although conventional diffusion
models converge stably and generate diverse images, they
often struggle to produce high-resolution images or capture
fine details compared to GANs. To address these limita-
tions, methods such as diffusion model distillation using
GANSs [10, 55] or adversarial learning with an independent
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discriminator [38, 40, 56] have been proposed. For ex-
ample, recent work [40] employs large-scale off-the-shelf
diffusion models as a teacher signal, combined with adver-
sarial loss to train on generating high-quality samples. Al-
though this approach can produce high-quality samples un-
der limited conditions, it requires the discriminator to oper-
ate in image space, resulting in high memory consumption
and computational cost. Other methods perform adversar-
ial training in latent space [38], yet scalability remains an
issue due to the difficulty in controlling discriminator feed-
back. An alternative is to improve the diffusion training
process by incorporating an independently trained discrim-
inator, such as a structure-guided discriminator [55], which
aligns the generated images with the intrinsic structure of
the training dataset. However, the simultaneous training of
the generator and discriminator inherent to GANs makes it
fundamentally challenging to resolve training instability is-
sues such as mode collapse.

In this paper, we propose a novel generation framework
that adversarially optimizes each learning step of the diffu-
sion model to address these issues. Our method leverages
the U-Net of the diffusion model to serve as both the gen-
erator and the discriminator simultaneously, thereby signif-
icantly reducing mode collapse probability and computa-
tional cost. This enhances stability and performance. Our
approach yields improved consistency and quality over re-
cent generation models [15, 22, 24, 26, 36], paving the way
for advancements in generative modeling.

3. Methods

3.1. Preliminaries

Energy-based Generative Adversarial Networks. The
energy-based Generative Adversarial Networks (GAN) [60]
conceptualize the discriminator as an energy function, al-
lowing for a variety of architectural designs and loss func-
tions. This approach facilitates the stabilization of image
generation network training by employing an auto-encoder
network as the discriminator, which discriminates between
real images from the training dataset and synthetic images
produced by the generator. This stabilization is achieved
by training the auto-encoder network to lower the error be-
tween input and output for the real data sample = while
maintaining a higher error for the generated samples G(z).
With a moderately small value m, the discriminator loss Lp
and generator loss L are formally defined as

Lp = D(z) + [m — D(G(2))], . (1

Le¢ = D(G(2)), )
where [-];+ = max(0, -) and m is a positive margin.
Latent Diffusion Models. In latent diffusion models, a

real image x is first encoded into a latent representation
z9 = &(x) via an encoder £. The diffusion process
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Figure 1. High-level overview of the proposed GAD framework.

gradually perturbs zp by mixing it with Gaussian noise
e ~ N(0,I) using a noise schedule defined by +/a; and
V1 —&;. A U-Net eg(-, ) is then employed to predict the
added noise, resulting in the training objective

lem = EE(m),t,e [Hﬁ - 69(\/ at Z0 + V 1-— O_Jt €, t)”] ) (3)

where & denotes the cumulative noise scaling factor at
time ¢. This formulation enables efficient training in the
latent space, reducing computational cost while preserving
essential image details [36].

3.2. Generative Adversarial Diffusion

In our proposed Generative Adversarial Diffusion (GAD)
model, we integrate the energy-based GAN framework with
latent diffusion models. The key observation is that both
methods rely on an auto-encoder-like network: energy-
based GANSs use an auto-encoder as the discriminator, and
latent diffusion models employ a U-Net for noise predic-
tion. However, while conventional autoencoders minimize
reconstruction loss, the U-Net in latent diffusion is specif-
ically trained to predict noise, a task that has been shown
to yield superior convergence and finer details in generated
images. Based on this insight, we replace the traditional
reconstruction error with a noise prediction loss and subse-
quently introduce an adversarial regularizer. This regular-
izer, which enforces a margin between the noise predictions
of real and generated latent representations, is designed un-
der the assumption that the generator and the discriminator
share the same network. By embedding the adversarial con-
straint directly into the latent diffusion loss, our approach
eliminates the need for alternating updates between sepa-
rate networks, thereby enhancing training stability and re-
ducing mode collapse. Fig. | shows an overview pipeline
of the proposed framework. In particular, we used a shared
network for the generator and discriminator. Thus, the net-
work simultaneously minimizes the noise prediction loss for
perturbed latent samples and enforces a margin-based sep-
aration between real and generated (i.e., denoised) latents,
mitigating instability issues such as mode collapse.

It is important to note that this definition is motivated
by the intrinsic nature of diffusion models. While diffu-
sion training operates on a single time step, the denoising
result from a subsequent time step (e.g., t + 1) can be math-
ematically related to that at time ¢ (as established in for-
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mulations like DDIM [36]). Practically, using the next step
to define the fake sample ensures the adversarial regularizer
enforces margin-based separation between the current noisy
latent (real) and the denoised latent (fake), enhancing both
fidelity and training stability.

We now define the generator and the discriminator in our
unified framework. Given a real image z, let zp = £(z) be
its latent representation. At diffusion step ¢, the latent is
perturbed as

2=V 20+ V1— e, “4)

with e ~ N(0, I). The shared U-Net ¢4(-, ¢) is employed in
two roles:

G(z0,t) = €g(v/ar 20 + V1 — Qi €, 1), 5)
D(th) = ||€9(Z,t) - 6”7 (6)

where G(zo,t) outputs the predicted (denoised) latent and
D(z,t) measures the discrepancy between the predicted
noise and the true noise.

Loss Function Definitions. By substituting the defini-
tions of the generator and discriminator functions in (5) and
(6) into the energy-based GAN loss expressions in (2) and
(1), we obtain the following forms:

LG = Ezo,t,6[||€9(\/67t20 + m@ t) - E”]a (7)
Lp = Eg)icllleo(z,t) — €]

+ Bz ellm = llea(vVar 20 + VI = are, t) — €] 4].
®)

From these expressions, we see that the generator’s loss
in (7) is identical to the latent diffusion loss L;4.,, as it
minimizes the error between the predicted noise and the
true noise. In contrast, the discriminator loss in (8) con-
tains an additional adversarial term that enforces a mar-
gin between the noise prediction for fake samples (i.e., the
denoised latent from a subsequent time step) and the true
noise. This adversarial term acts as a regularizer, ensur-
ing that the shared network not only achieves accurate noise
prediction but also maintains a clear separation between real
and fake latents.

For adversarial training, the two loss functions in (8)
and (7) are typically back-propagated alternately in con-
ventional GAN training—a procedure known to induce in-
stability and mode collapse [5, 16]. However, given that the
generator’s loss is inherently a subset of the discriminator’s
denoising loss, we incorporate the adversarial term directly
as a regularizer. Thus, the overall loss for our Generative
Adbversarial Diffusion model is defined as

Lgad = Lidm + Aado Lad'uv (9)

where Loy, = [m — |leg(\/ @ 20 + V1 — ace, t) — €ll]+,
and \,g, is the balancing weight. In our framework, the
latent diffusion loss L;4,, treats noisy latents at time step ¢
as real, while the adversarial loss L4, enforces a margin
on the denoised latents (from step ¢ + 1), thereby unifying
the training without the need for alternating updates. For a
more detailed theoretical analysis, please refer to Sec. ?? in
the supplemental material.

Overall, the proposed Generative Adversarial Diffu-
sion framework leverages the inherent similarity between
energy-based GANs and latent diffusion models. By replac-
ing the reconstruction error with a noise prediction error and
unifying the generator and discriminator into a single net-
work, our approach provides an effective adversarial regu-
larizer that not only prevents mode collapse, but also con-
tributes to faster convergence and enhanced detail in gener-
ated images.

4. Experiments

In this section, we present our experiments to validate the
flexibility and effectiveness of the proposed method. In
Sec. 4.2.1, we demonstrate the performance improvement
of the model utilizing GAD through a comparison experi-
ment with baseline methods [44]. In addition, in Sec. 4.2.2
and in Sec. 4.2.3, we apply the proposed method to state-
of-the-art methods of various generation tasks using dif-
fusion models, such as conditional text-to-image genera-
tion [15, 24] and 2D-to-3D generation tasks [22, 26], to
verify the significantly improved mode coverage ability.

4.1. Experimental Details

In all experiments, both the baseline methods and the com-
parative experiments for each generation task were trained
using the same number of steps and with the same number
of parameters to ensure a fair comparison. Specifically, we
used the publicly available Stable diffusion 2.1 [36] model
as the base diffusion architecture for all setups.

Also, we set the margin m by performing inference on
the training set every 5 epochs and computing the average
error. For detailed information on the rationale behind our
margin selection, please refer to Sec. ?? in the supplemen-
tal material. Furthermore, we set A\, g3, = 0.01 in all ex-
periments, which shows the best empirical performance. A
sensitivity analysis of the adversarial regularization weight
Aady 18 provided in Sec. ?? of the supplemental material.

4.2. Performance Comparisons

4.2.1. Text-to-image Generation

To validate the benefits through adversarial training of the
diffusion model, we compared the performance of Sta-
ble diffusion [36] with and without the proposed method.
Following related studies [6, 58], to compare the perfor-
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Figure 2. Qualitative comparisons with Stable diffusion.

Table 1. Quantitative comparisons with Stable diffusion.

Method FID () CLIP score (1)
Stable diffusion 13.52 0.3143
Stable diffusion + GAD (Ours) 9.68 0.3471

mance of image generation, we used Fréchet Inception Dis-
tance (FID) [17], which measures the distributional simi-
larity between real and generated images, and Contrastive
Language-Image Pre-training (CLIP) score [34], a normal-
ized metric for evaluating the similarity between CLIP text-
image embeddings. For a fair comparison of the experi-
ments, both Stable diffusion with and without GAD were
trained on the same LAION-5B [41] datasets. For evalua-
tion, we randomly selected COCO2014 validation set [57]
datasets.

Results with Stable Diffusion. The performance mea-
surements in terms of FID and CLIP score are summarized
in Table 1. It is shown that Stable diffusion combined with
our proposed method (GAD) outperforms the baseline. In
particular, the FID is significantly lower with GAD, indicat-
ing that the embedding of the generated images is more sim-
ilar to the real dataset. Therefore, these results demonstrate
that applying adversarial training in the training process of
the diffusion model enables more effective learning of the
data distribution and improves the quality of the generated
images.

Figure 2 presents qualitative comparisons. Stable dif-
fusion with GAD has been shown to generate images of
higher quality than the standard Stable diffusion [36]. When
the proposed method is applied, high-frequency details are
better preserved for realistic and complex captions. For in-
stance, in the second and fifth columns of Fig. 2, the images
generated by the proposed method appear sharper and de-

pict faces and body details more accurately than those pro-
duced by the baseline. In the fourth image, the proposed
method produces samples that better capture the ‘soft pas-
tel’ style. Furthermore, in the first and third images, the
background and objects described in the captions are inte-
grated more naturally. These observations confirm that the
incorporation of GAD into the diffusion model enables a
richer and more detailed representation of the generation.

4.2.2. Conditional Text-to-Image Generation

To validate the extensibility of GAD, we compared the per-
formance of recent conditional text-to-image methods [15,
24] with and without GAD. Here, we used the state-of-the-
art conditional diffusion models, GLIGEN [24] and Textual
Inversion [15], as baseline models.

GLIGEN generates images using additional conditions,
such as bounding boxes and key points, in addition to the
standard text caption. We employed GLIGEN with bound-
ing boxes to verify how effectively adversarial training can
learn these conditions. For a fair comparison, we used the
same COCO02014 [25] grounding dataset. For evaluation,
we randomly selected 2K image-text pairs from CC3M [8]
and obtained bounding boxes through Grounded Language-
Image Pre-training (GLIP) [21]. We then measured perfor-
mance using the FID [17] and CLIP score [34] score metrics
described in Sect. 4.2.1.

Textual Inversion is a technique for learning word em-
beddings that represent novel concepts in text-to-image
models. It leverages a small set of images to optimize a
diffusion model, thereby learning embedding vectors that
capture these new concepts. Once trained, the embedding
vectors can be inserted into new scenes or applied to tasks
such as style conversion. To verify the effectiveness of
our proposed method in converging on a small dataset, we
compared Textual Inversion [15] with and without GAD.
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Figure 3. Qualitative comparisons with GLIGEN.
Table 2. Comparisons with conditional text-to-image methods.

Method FID () CLIP score (1) CLIP similarity (1)

GLIGEN 12.26 0.292 -

GLIGEN + GAD (Ours) 9.12 0.311 -

Textual Inversion 13.74 - 0.712

Textual Inversion + GAD (Ours) 8.71 - 0.764

For a fair comparison, we used the same Google Scanned
Object (GSO) [12] multi-view image dataset, selecting six
512512 images as input. We then evaluated the methods
using random text that was not included in the training set.
Following previous work [1, 15], we employed FID and
CLIP similarity [14], the cosine similarity between CLIP
image embeddings, to measure how closely the generated
images resembled the input images.

Table 2 shows the performance of GLIGEN in terms of
FID [17] and CLIP score [34]. The results indicate that
adding GAD leads to notable improvements. In particular,
the FID significantly decreases when GAD is applied, in-
dicating that adversarially training the diffusion model in-
tegrates the text and bounding box conditions more effec-
tively, resulting in a distribution closer to that of the real
dataset. Following the previous studies [1, 15], we used
FID and CLIP-similarity [14], which is the cosine similar-
ity between CLIP image embeddings to measure similarity
with input images and generated images.

Results with GLIGEN. The comparison results are il-
lustrated in Fig. 3. By employing the proposed method,
bounding boxes and text captions are combined more nat-
urally, with bounding box positions maintained accurately
while generating high-resolution images. For example, in
the first sample of Fig. 3, our approach accurately reflects
the caption “lush green tree”” and produces a sharper image.
In the second sample, our method can capture the bound-

ing boxes for “the cabin” and “a mountain” more precisely,
representing details, such as the wooden cabin’s texture and
the mountain’s foliage, more faithfully than the baseline. In
the third sample, where multiple bounding boxes overlap,
GLIGEN struggles to depict “playground” correctly when
its bounding box overlaps with “trees,” whereas our ap-
proach properly arranges the foreground and background to
incorporate all given conditions with clarity. These findings
demonstrate that GAD contributes to the generation of bet-
ter images that effectively combine text and bounding-box
information in a conditional diffusion setting.

We observed that GAD’s benefits become more pro-
nounced as the number of bounding boxes or key points in-
creases. This suggests that adversarial regularization helps
the diffusion model manage multiple constraints while
maintaining object boundaries and distinct features. This
likely prevents the collapse of individual object represen-
tations. When evaluating more elaborate scenes involv-
ing three or more bounding boxes, our method consistently
maintained object boundaries and distinct features, whereas
the baseline often showed partial overlaps or blurred transi-
tions between adjacent objects.

Results with Textual Inversion. The comparison perfor-
mance results of Textual Inversion are also represented in
Table 2 in terms of FID and CLIP similarity. Textual Inver-
sion with the proposed method is shown to outperform the
baseline method, indicating that our method can be effec-
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Figure 4. Qualitative comparisons with Textual Inversion.

tively extended to conditional diffusion models to produce
more natural images through appropriate training of con-
ditions and text. Figure 4 illustrates the results. Textual
Inversion with GAD yields higher output diversity and bet-
ter image generation quality than the version without GAD.
For instance, in the first sample of Fig. 4, our approach
learns complex teddy bear patterns, such as ears and feet,
more efficiently, accurately reflecting them across various
generated styles. In the fifth column, the proposed method
balances the given caption with the input sample, demon-
strating that GAD stably learns the concept and generates
images consistently in different styles.

These observations suggest that adversarial training on a
small dataset is more effective than relying solely on tradi-
tional noise-based training. With limited data, the diffusion
model faces a higher risk of overfitting, which can reduce
the diversity of generated images. However, incorporating
GAD allows adversarial loss to act as a regularizer, stabi-
lizing model training while boosting output diversity. Ad-
ditionally, adversarial loss promotes information exchange
across time steps, enabling better convergence under data-
scarce conditions.

4.2.3. 2D-to-3D Generation

To validate the extensibility of the proposed method, we
compared the performance of recent 2D-to-3D methods [22,
26] with and without GAD. In these experiments, we used
SyncDreamer [26] and Era3D [22], as baseline methods,
which represent state-of-the-art 2D-to-3D diffusion models.

SyncDreamer employs a synchronized multi-view diffu-
sion model to ensure consistency across multiple views by

processing each view simultaneously through a shared noise
estimator and an attention mechanism. FEra3D addresses
camera prior mismatches and computational inefficiencies
found in existing multi-view diffusion methods [42, 43, 47]
by incorporating a diffusion-based camera prediction mod-
ule and row-wise attention, thereby producing consistent
multi-view images. For training all methods, we used a
subset of the Objaverse [11] dataset. SyncDreamer with
and without GAD was trained using 16 uniform views, each
with a fixed elevation of 30° and a randomly sampled eleva-
tion. Similarly, to compare Era3D with and without GAD,
we trained the model on 16 uniform views at a fixed ele-
vation of 30°, also incorporating normal and depth maps
from each view. For evaluation, we used 3D data from
the Google Scanned Object (GSO) [12] and OmniObject3D
(Omni3D) [50] datasets. To demonstrate the generalizabil-
ity of the model, we randomly selected 50 objects from
various categories, including everyday items and animals.
For the 2D-to-3D generation task, we adopted three stan-
dard metrics to assess novel view synthesis performance:
Peak Signal-to-Noise Ratio (PSNR) [48], Structural Simi-
larity Index Measure (SSIM) [48], and Learned Perceptual
Image Patch Similarity (LPIPS) [59].

Results with SyncDreamer. Table 3 summarizes the per-
formance of SyncDreamer and Era3D in terms of PSNR,
SSIM, and LPIPS. The results show that the use of the pro-
posed method leads to notable performance improvements.
In particular, when GAD is applied, the SSIM and LPIPS
scores outperform those of the baseline methods, indicating
that adversarial training enhances perceptual similarity in
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(a) Performance comparison with SyncDreamer.
Figure 5. Qualitative comparisons

Table 3. Comparison with 2D-to-3D state-of-the-art methods.

Method PSNR (1) SSIM (1) LPIPS (})
SyncDreamer 20.25 0.798 0.146
SyncDreamer + GAD (Ours) 22.81 0.858 0.119
Era3D 22.74 0.837 0.126
Era3D + GAD (Ours) 24.12 0.891 0.102

multi-view images beyond basic reconstruction capabilities
in 3D generation.

Figure 5 provides visual comparisons of the novel view
synthesis. As illustrated in Fig. 5a, SyncDreamer exhibits
insufficient view consistency and does not generate visually
detailed images. For instance, in the first row of Fig. 5a, the
novel views generated by our method appear sharper than
those produced by SyncDreamer, capturing high-frequency
details such as sword blades or clothing patterns more effec-
tively. In the second row, our method consistently renders
the character’s hair and outfit from the rear view, and in the
third row, it maintains coherent wheel shapes across differ-
ent viewpoints.

Results with Era3D. Likewise, Fig. 5b shows that our
method produces sharper and higher frequency details com-
pared to Era3D. For example, in the first row, the proposed
approach preserves fine details, such as handles or chains,
as well as the object’s color and overall geometric struc-
ture when generating novel views. In the second row, the
novel views produced by the proposed method exhibit more
consistent color representation of blocks and continuity in
wheel size and shape. These findings show that our method
captures fine details effectively and generalizes well to di-
verse generation tasks.

Additionally, we observed that GAD particularly bene-
fits object boundaries when transitioning between different
viewpoints. In several instances, such as the figure in the

Era3D + GAD

(b) Performance comparison with Era3D.

with 2D-to-3D state-of-the-art methods.

second row of Fig. 5a, our method maintained smoother ob-
ject contours and more coherent color transitions than the
baseline, indicating that adversarial regularization helps en-
force consistency across angles. This was especially evident
for objects with reflective or metallic textures, where slight
inconsistencies in the diffusion process can lead to visually
distracting artifacts in multi-view renderings.

5. Conclusion

Summary. In this work, we introduced Generative Ad-
versarial Diffusion (GAD), a novel framework that seam-
lessly integrates diffusion models with adversarial training
using a unified network for both generation and discrimina-
tion. Our approach leverages the inherent strengths of dif-
fusion models, such as stable convergence and robust data
coverage, while mitigating common GAN pitfalls like mode
collapse. As aresult, GAD achieves outstanding image syn-
thesis quality compared to baseline methods.

Limitation and Future Work. Our unified framework
offers significant benefits but has trade-offs. One limita-
tion is that coupling the generator and the discriminator
into a single network may restrict the flexibility to opti-
mize each component independently. Although this design
choice reduces memory overhead and simplifies training, it
might also constrain the fine-tuning of individual contribu-
tions from generation and discrimination. In future work,
we will refine the diffusion process by leveraging the in-
sights gained from our adversarial regularization approach.
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