
Harnessing Input-Adaptive Inference for Efficient VLN

Dongwoo Kang, Akhil Perincherry, Zachary Coalson, Aiden Gabriel, Stefan Lee, Sanghyun Hong
Oregon State University

{kangdo, perincha, coalsonz, gabrieai, leestef, sanghyun.hong}@oregonstate.edu

Abstract

An emerging paradigm in vision-and-language navigation
(VLN) is the use of history-aware multi-modal transformer
models. Given a language instruction, these models process
observation and navigation history to predict the most ap-
propriate action for an agent. While they have significantly
improved performance, the scale of these models can be a
bottleneck in practical settings with limited computational
resources. In this work, we propose a novel input-adaptive
navigation method to enhance VLN model efficiency. We
first show that existing input-adaptive mechanisms fail to
reduce computations without substantial performance degra-
dation. To address this, we introduce three adaptive algo-
rithms, each deployed at a different level: (1) To improve
spatial efficiency, we selectively process panoramic views at
each observation of an agent. (2) To improve intra-model
efficiency, we propose importance-based adaptive thresh-
olding for the early-exit methods. (3) To improve temporal
efficiency, we implement a caching mechanism that prevents
reprocessing of views previously seen by the agent. In evalu-
ations on seven VLN benchmarks, we demonstrate over a 2ˆ

reduction in computation across three off-the-shelf agents
in both standard and continuous environments. Our code is
publicly available at https://github.com/secure-ai-systems-
group/adaptive-vision-and-language-navigation.

1. Introduction
Progress in vision-and-language navigation (VLN) has been
enabled by larger models trained on increasingly large
datasets [10, 21, 25, 29, 43]. These models can process
and interpret complex data, enabling them to understand and
act upon natural language instructions within visual envi-
ronments. Despite the success, there is a growing concern
about their computational demands. The need for substantial
computational power poses a notable challenge for deploy-
ment in resource-constrained settings, such as robots, where
low-power consumption becomes increasingly critical.

A potential solution to addressing these computational
demands is input-adaptive inference. The main idea is to

reduce overthinking [34]: as shallow networks are suffi-
cient for the majority of samples to make decisions, e.g.,
class predictions, input-adaptive methods [31, 39, 51, 61]
stop forwarding preemptively during inference and return
intermediate outputs when the internal decisions of a model
converge. During inference, they demonstrate up to 50%
computational savings while preserving model performance.

In this work, we study the overthinking problem in a new
domain—VLN—and propose a novel input-adaptive method
to address it. Unlike prior studies on overthinking, which fo-
cus on tasks where inputs are processed independently (e.g.,
classification), VLN involves sequential decision-making,
introducing unique problems driven by spatio-temporal de-
pendencies in the inputs. Moreover, these models can be
deployed for real-world navigation; thus, it is important to
assess whether they are robust to common visual corruptions.
Contributions. We first characterize the overthinking prob-
lem in VLN by analyzing its computational bottlenecks. In
our evaluation with two standard VLN agents (HAMT [10]
and DUET [11]) and one continuous VLN agent (VLN-
CEœ BERT [35]), we find that „99.5% of computations
are spent in visual encoders. We also show that addressing
overthinking within these visual encoders is ineffective in
providing computational savings. Even with our best ef-
fort to apply the existing input-adaptive inference method,
MuE [51], we demonstrate that this approach results in inac-
curate navigation decisions. This increases both the time it
takes for an agent to reach the target location and the overall
computations while lowering the navigation success.

Second, to address this issue and achieve computational
efficiency, we propose a novel input-adaptive navigation
method (shown in Figure 1). We not only minimize over-
thinking within visual encoders, as in prior approaches, but
also reduce overthinking caused by cognitive overload dur-
ing navigation. Specifically, we focus on exploiting the
spatiotemporal localities unique to VLN tasks: (1) The spa-
tial locality: In a panorama, we find that navigable views
and a few neighboring views are critical for successful navi-
gation. We design a weighting mechanism that significantly
reduces the number of views the encoder should process. We
also develop an efficient subgoal module that predicts nav-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

8219

VLN

Go to the

bedroom

Our Efficient Input-Adaptive VLN

…

Similarity > 𝜃

…

ViT

Panorama view

t = n-1

t = n

Similarity > 𝜃

…

Embedding

Cached

embedding

Panorama view

Extended views

…

…

Similarity > 𝜃𝑖

𝜃1𝜃1
𝜃2 𝜃2

Navigable view

Zero-out

Early-Exit Encoders Harnessing Spatial locality Harnessing Temporal LocalityStart End

Figure 1. Our input-adaptive, efficient navigation method. We show on the left an agent navigating a visual environment upon a natural
language instruction. On the right, we provide a high-level overview of the three input-adaptive mechanisms we propose at different levels.
The shaded rectangles (embeddings) and squares (views) correspond to components that our method skips or zeroes out to improve efficiency.

igable views from laser scans, enabling compatibility with
continuous environments where such views are unknown to
the agent as priors. (2) The temporal locality: We find that
an agent encounters identical or nearly identical views in
consecutive navigation steps. We design a locality-sensitive
hashing algorithm to avoid computing these matching views
during navigation. (3) We lastly develop an algorithm for dy-
namically adapting the thresholds for an existing early-exit
method based on the locality to further reduce computations.

Third, we comprehensively evaluate our input-adaptive
navigation method on 7 VLN benchmarks across three pop-
ular agents. Our method reduces computations by up to 60%
with an average drop in SR of 11.7% in the standard set-
ting. In the more challenging continuous setting, it achieves
„86% savings with an even smaller 8% SR decrease. In con-
trast, baseline methods experience up to 33.6% performance
loss and fail to reduce computations. Our ablation study also
shows how a practitioner can configure our method for their
navigation environments and the factors we do not rely on.
Moreover, we examine the robustness of our method to natu-
ral visual corruptions that may occur during navigation (such
as lighting changes). We show that while both the baseline
and our method show a slight increase in the computations,
our approach loses 7–10% more performance.

2. Related Work
Vision-and-language navigation (VLN). Research in this
area has been supported by the development of high-quality
simulators such as Matterport3D [7] and Habitat [49], which
we leverage in our work. Agents developed towards this
challenging problem have ranged from earlier recurrent
models [1, 20] to more recent transformer-based mod-
els [10, 11, 29, 33, 37, 46, 58]. While recent agents achieve
superior performance, larger models combined with high-
fidelity panoramic observation and action spaces have led to
their increased complexity and higher computational costs

during inference. Our work is the first providing a tunable
trade-off between computational demands and accuracy.

VLN agents are studied in two environmental settings.
The first is discrete (standard) VLN, where agents teleport
between neighboring nodes in a known navigation graph
that provides candidate navigable views as an agent’s action
space. To circumvent the unrealistic assumptions of navi-
gation graphs, prior work [36] proposes continuous VLN,
where agents instead use low-level actions and estimate nav-
igable views using a sub-goal generation module. We empir-
ically achieve large computational savings in both settings.

Input-adaptive mechanisms for computational efficiency.
Prior work introduces two distinct mechanisms for input-
adaptive inference: adaptive neural networks (AdNNs) and
multi-exit architectures. AdNNs [19, 56] dynamically skip
certain blocks of the model to save computations during in-
ference. In contrast, multi-exit architectures [31, 34, 52, 61]
introduce an additional component to the model, such as
classifiers attached to each internal layer (early-exits), allow-
ing the model to preemptively stop running forwards once
stopping criteria are met. Both mechanisms demonstrate
computational savings while minimizing performance loss
in classification tasks (e.g., a 50% reduction in computation
at a utility loss of „10%). We use multi-exit architectures,
as AdNNs are limited to residual networks. Most multi-exit
architectures are developed for classification tasks and are
not compatible with VLN, where an agent utilizes visual
and/or language representations generated from encoders.
The closest work by Tang et al. [51] developed an adaptation
(MuE) to Transformer-based encoders, but despite our best
efforts, it does not provide any computational savings in
VLN tasks (shown in Sec 3.1). Similarly, Yue et al. [62] pro-
pose an early-exit strategy for MLLM-based embodied AI,
but do not address navigation tasks and focus on sequential
action predictions rather than spatio-temporal dependencies
in visual observations. A separate line of research explores

8220

methods for compressing models, such as quantization and
pruning. These methods are orthogonal to our study and can
be applied in conjunction with our method (see Appendix I).

3. Input-Adaptive Efficient VLN
3.1. Characterizing Overthinking in VLN
Computational bottleneck. The first step in designing an
efficient input-adaptive mechanism is to understand the com-
putational bottleneck of an agent during navigation. Because
no prior work has studied which component consumes the
most computational resources, we identify the bottleneck by
analyzing the GFLOPs of each component in HAMT using
the pre-trained agent on the R2R validation (unseen) set.

ViT BERT H-ViT CMT

GFLOPs (%) 99.50% 0.04% 0.07% 0.39%

Table 1. Component-wise computational demands. We run
HAMT on the validation (unseen) set of R2R.

Table 1 summarizes our result. BERT requires the least
computations (0.04%) as it is used only once at the beginning
of navigation to encode the human instruction. In contrast,
99.5% of the computations come from the ViT, which must
process 36 views per panorama at each navigation step. Con-
sidering that the remaining components, H-ViT and CMT,
only account for 0.46% of the total computations, we decide
to focus on the visual encoder. We note that while DUET
and VLN-CEœ BERT have different architectures, the image
encoder poses a similar bottleneck of at least 99.5%.
Existing mechanisms are ineffective for VLN. Next, we
examine whether existing input-adaptive inference methods
can provide computational savings in VLN. We find that
most approaches discussed in Sec 2 are incompatible with
VLN settings because they are designed for classification
tasks and not encoder models. Tang et al. [51] proposes an
input-adaptive strategy, MuE, tailored for encoder models.
MuE measures the cosine similarity between the output acti-
vations from two consecutive transformer layers to determine
when to stop a forward pass. If the cosine similarity becomes
greater than a predefined threshold, MuE stops forwarding
and skips subsequent layers. We test the MuE strategy on
the ViT model in HAMT and evaluate the performance and
GFLOPs of the agent on the validation (unseen) set of R2R.
Results. Table 2 shows our results for the original and MuE-
based HAMT agents. With an early-exit threshold of 0.998
(optimized for the best performance-efficiency trade-off, see
Appendix B), MuE reduces GFLOPs by 7% but significantly
degrades performance (up to 40%). The average GFLOPs
per step with MuE is 406.10, compared to 607.06 in the
baseline. However, despite the significant per step GFLOPs
savings, the total GFLOPs per trajectory increases because
the MuE agent takes more steps to complete each trajectory.

Method
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

Base 11.53 74.29 66.16 61.49 4763.24
MuE 17.37 62.20 43.93 36.92 4409.62

Table 2. Performance and computational savings in HAMT with
MuE. Our adaptation of MuE leads to only marginal computational
savings at the cost of significant performance degradation.

In Figure 2, we analyze the factors contributing to the
performance loss and the limited computational savings. The
left figure compares the trajectories of the original HAMT
agent and HAMT with MuE. Both agents navigate to the
same position until t = 2. At t = 3, the original HAMT agent
correctly identifies the bathroom (green circle, top-right) and
navigates to its front. However, the MuE agent only takes a
small step forward and then continues to make incorrect steps
until reaching the step limit. For MuE, processing fewer
transformer layers led to an inaccurate understanding of the
visual surroundings. As shown in the bottom-right figures,
the bathroom remains visible across steps (t P r2, 10s), yet
the MuE agent fails to recognize it and makes suboptimal
decisions. Appendix B provides a further discussion on why
MuE fails when applied directly to VLN.

3.2. Our Methodology
Prior work on input-adaptive inference treats each input
independently. As a result, existing methods inherit the
one-size-fits-all philosophy: a model adopts a single set of
configurations, such as the early-exit threshold, for all inputs.
However, in dynamic settings, such as an agent navigating
the physical world, inputs are not independent and depend
on each other both spatially and temporally.

We introduce a novel input-adaptive inference method
harnessing this unique property—spatial and temporal de-
pendencies in the input. We first leverage spatial locality
(Sec 3.2.1): among the 36 views observed by an agent at
each step, we find that those close to navigable views—views
the agent can navigate to—are important. We then propose a
novel approach to assign the exit thresholds of an existing
input-adaptive inference method (Sec 3.2.2) for the non-
masked views to provide further computational savings. In
Sec 3.2.3, we exploit temporal locality: between panorama
views observed across steps, most views overlap and do not
require their forward passes to be run again. Finally, while
our methods are directly applicable to standard VLN agents
that navigate predefined traversal graphs, we also extend
them to the more practical continuous setting in Sec 3.2.4.

3.2.1. Harnessing spatial locality
Each panorama has 36 views, and the agent computes vi-
sual embeddings for each view at every navigation step. We
hypothesize that only navigable views are crucial for naviga-
tion. Intuitively, these views form the agent’s decision space,

8221

Instruction: Go into the house and immediately go left, you should see a bathroom on your left. Go into the bathroom.

Start position

Navigable node

End position

MuE trajectory

Base trajectory

t = 2

t = 3

t = 4

Baseline MuE

t = 0

t = 1t = 2

t = 3

Figure 2. Problems in employing existing input-adaptive methods in VLN. We show that employing existing strategies leads to
performance loss and an increase in computations. (Left) The increase in computations stems from inappropriate navigation actions, and
(Right) such decisions come from the inaccurate understanding of the visual world, e.g., the agent confuses where to navigate.

so the information they contain should suffice for choosing
the proper action. To test this hypothesis, we retain all nav-
igable views and mask the remaining views (setting them
to zero). This prevents the ViT from processing masked
views, reducing computation. We evaluate the effectiveness
of this approach with the HAMT agent on the validation
(unseen) set of R2R. We find that it results in an 84% gain
in efficiency but at the cost of a 33% reduction in SR.

……

……

Adaptive thresholding

𝑘-extension navigable view

Masking

zero-out

1.0 0.997 0.9960.996 0.997

𝑘-extension

Figure 3. Our masking and thresholding. The top figure shows
how we mask non-navigable views, and the bottom figure shows
how we adaptively assign the exit thresholds of MuE.

To understand this issue, we analyze cases where masking
non-navigable views prevents the agent from reaching the
target. In Figure 3, processing only the navigable view
(4th from the left) may obscure whether the path leads to a
stairway. However, processing neighboring views increases
the likelihood of correctly recognizing the path.
k-extension. To address this, we extend the number of views
the agent processes near the navigable views by k. Let V
be the set of n navigable views, with each vi indexed by
t1, 2, . . . , nu. The k-extension V i

k for navigable view i is:

V i
k “ tvji |maxp1, i ´ kq ď j ď minpi ` k, 36q u,

where vji is a non-navigable view. The union of V i
k ’s gives

the views to process, leaving 36 ´ |Vk| masked. With a
careful calibration of k, we reduce the total computations by
2ˆ times while keeping the performance drop near 10%. In
our evaluation, setting k “ 4–6 offers the best trade-off.

3.2.2. Using adaptive thresholds as stopping criteria
On top of our k-extension, we design an adaptive mechanism
to early-exit extended views and further improve the speed-
up. As described in previous sections, we focus on MuE, the
only early-exit mechanism compatible with encoder models.
Using budgeted-batch inference. The current implemen-
tation of MuE processes each test sample with its input-
adaptive mechanism. However, this per-sample, anytime
strategy is incompatible with our scenario, where the agent
processes a batch of 36 views in a single panorama at once
with the ViT. While each view in the batch should ideally
exit at different layers, this per-sample approach forces all
the views to use the same exit layer. To address this issue,
we employ budgeted-batch inference [31]: each sample in a
batch uses “uneven” computations, meaning that processing
can stop at different layers for each sample, all within a set
computational budget. We assign a sufficiently large budget
so that the mechanism can handle the worst-case complexity,
where none of the samples utilize early stopping.
Our adaptive thresholding. In Sec 3.2.1, we find that nav-
igable views are most important, and a view’s importance
decreases with distance from navigable views. We thus de-
sign a mechanism to apply early-exit thresholds differently
based on the importance of each view. We propose a con-
cept, rank: low-rank views receive an aggressive (larger)
threshold, while high-ranked views receive a conservative
(smaller) threshold. Suppose we have a navigable view vi
at index i in a panorama and k is the number of extended
views near vi. We define the rank Ri,j of a non-navigable
view vj relative to vi as the difference between the indices
|j ´ i|. We do not process when Ri,j ě k, as views beyond
k are masked. We still fully process the navigable views to
retain performance. We then assign the exit threshold Ti,j

(the cosine similarity) for MuE as follows:

Ti,j “ T0 ¨ ep´A¨Ri,jq

where T0 is the initial threshold set to 1.0, A is the aggressive-
ness we set to 9ˆ10´4, and Ri,j is the rank computed above.
Note that the threshold decreases as the rank increases.

8222

3.2.3. Harnessing temporal locality
Our final insight is that during navigation, an agent will en-
counter similar views multiple times, leading to temporal
redundancy. For example, views at step i are similar to those
at step i ` 1. The agent may also revisit the same surround-
ings due to misleading navigation or encounter similar but
less important surroundings, such as ceilings or walls.

To reduce temporal redundancy, we employ locality-
sensitive hashing (LSH) to store and retrieve similar visual
representations, avoiding redundant processing. We use
SimHash [3, 8], which maps high-dimensional RGB views
to low-dimensional binary encodings via random projec-
tion. Given a view v and randomly initialized hyperplanes
thiuiPt1,...,nu, the algorithm determines which side of the
hyperplane v falls on via the dot-product of v and hi. If v is
on the top side of hi, SimHash assigns 1; otherwise, it is 0.
Similar views are then encoded as the same binary encoding
of length n, e.g., 010 . . . 1, which we use as a key to store
view-encoding pairs. Views mapped to the same key are
then reused if they are sufficiently similar, which we mea-
sure using their cosine similarity. To balance performance
and efficiency, we set n to 10 and the similarity threshold
to 0.85 and 0.95 for standard and continuous VLN, respec-
tively. Like early-exiting, we do not hash navigable views
and fully process them. Note that with our k-extension, we
limit the space complexity of caching by storing only a sub-
set of views. With this mechanism, we achieve an additional
2–4% computational savings with minimal utility loss. See
Appendix C for more details and storage overhead analysis.

3.2.4. Input-adaptive inference for continuous VLN
In continuous VLN [36], agents navigate 3D environments
without predefined traversal graphs, requiring them to pre-
dict navigable views. Existing agents [30, 35] address this
with subgoal generation modules (SGMs), which process
2D laser occupancy scans and encoded images to predict
navigable views. However, this conflicts with our input-
adaptive inference techniques, as the entire panorama must
be processed before identifying navigable views.

To solve this problem, we introduce a scan-only SGM
that predicts navigable views using only laser occupancy
scans. We use the U-Net SGM from Krantz et al. [35], but
remove image feature processing. Following their training
procedure, we minimize the Sinkhorn divergence [14] be-
tween predictions and ground-truth subgoals. Our scan-only
SGM achieves a validation loss of 0.63 on Matterport3D
scene data, the same as the original work. With the abil-
ity to predict navigable views prior to image encoding, our
methods become compatible with continuous VLN agents.

3.3. Putting All Together
Now, we describe how our three mechanisms are combined
to perform input-adaptive inference on a panorama. We show

Algorithm 1 Our Input-adaptive Navigation at Each Step
Input: a panorama P , navigable views V , visual encoder
fθ, hash table h, and the number of views to extend k
Output: a set of visual representations E for views in P

1: E Ð ∅
2: for i “ 1, 2, . . . , 36 do Ź Iterate over views in P
3: vi Ð P ris
4: if vi in V then
5: ei Ð fθpviq
6: E Ð E ` ei
7: else if i in k proximity of any views in V then
8: ei Ð hpviq
9: if ei does not exist then

10: j Ð the index of the closest navigable view
11: Ti Ð ComputeThreshold(Ri,j)
12: ei Ð RunMuEInference(vi, Ti)
13: h Ð AddToHashTable(h, vi, ei)
14: end if
15: E Ð E ` ei
16: else
17: E Ð E ` 0⃗

18: end if
19: end for
20: return E

the pseudo-code of our method in Algorithm 1:
(line 1-2) Initialize. It takes a panorama P and returns
the visual representations of its 36 component views. We
initialize the output E as empty and iterate over each view.
(line 4-6) Compute the representation of a navigable view.
If the currently chosen view vi is a navigable view, we fully
compute its visual representation ei and add it to the set E.
(line 7-15) Retrieve (or compute) the representation of
the extended views. In Sec 3.2.1, to improve the visual
understanding, we develop the k-extension. We process k
views on both sides (left/right) of a navigable view. If vi’s
representation is in the hash table h, we retrieve ei and add
it to E; otherwise, we compute ei. Note that the hash table
h is initialized at the first step of the navigation. To compute
ei, we determine vi’s rank Ri,j and decide the exit threshold
Ti. We run the inference with ViT, adapted for MuE, using
Ti and store the output ei into h and E.
(line 17) Skipping the masked view. If vi is neither a
navigable view nor in its k-extension, we store a zero-vector
and move on to the next view vi`1.

4. Evaluation

Datasets. Following prior work, we evaluate standard
VLN with six datasets: Room-to-Room (R2R) [1], R2R-
Back [10], R2R-Last [10], REVERIE [47], CVDN [53], and
SOON [66]. For REVERIE, we set k “ 6 for k-extensions
to minimize performance loss while ensuring a roughly 50%

8223

speed-up. For all other benchmarks, we achieve this using
k “ 4. To evaluate continuous VLN, we use R2R-CE [36].
VLN agents. We evaluate two off-the-shelf standard VLN
agents: HAMT [10] and DUET [11]. HAMT uses a ViT [16]
for vision, BERT [15] for language, and a hierarchical ViT
for temporal context, predicting actions via a cross-modal
Transformer. DUET also employs ViT and BERT but inte-
grates object features (e.g., bounding boxes) and separates
planning into global and local cross-modal encoders, fusing
their outputs for action prediction. For continuous VLN, we
use VLN-CEœ BERT [35], which uses ResNet-152 [26] for
visual encoding and BERT for recurrently processing visual
and language information and predicting actions.
Evaluation metrics. We evaluate navigation success using
four metrics from the prior work [10, 35]: (1) Trajectory
length (TL): path length of the agent in meters, (2) oracle
success rate (OSR): fraction of paths with at least one view-
point within 3 meters of the target, (3) success rate (SR):
fraction of final positions within 3 meters of the target and,
(4) success rate normalized by inverse path length (SPL): SR
normalized by the ratio between the shortest path length and
the predicted path length. For computational efficiency, we
measure the GFLOPs and wall time per navigation; however,
we prioritize GFLOPs as wall time depends on hardware and
software implementation (see Appendix D for details).

For REVERIE and SOON, additional object features are
used for navigation. We could not find the original feature
extraction implementations, so we use cached object features
and apply our strategy only to image feature extraction. We
then report the GFLOPs for image feature processing and
treat the cost of object feature extraction as a constant (C).
All other benchmarks do not use object features.

4.1. Effectiveness in the Standard VLN Setting
We evaluate our method in standard VLN with two agents,
six benchmarks, and five metrics described in Sec 4. We
compare with two baselines: no input-adaptive methods
(Base) and MuE, adapted for each agent to provide the opti-
mal performance-efficiency trade-off. For our method, we
present four variations: one with k-extension, two adding
mechanisms (`LSH, `thresholds), and one combining all.
Results. Table 3 summarizes our results for REVERIE,
which we prioritize because it is generally more challenging
than other benchmarks [10, 11]. Due to the page limit, we
show the full results for other benchmarks in Appendix D
and more combinations of mechanisms in Appendix E.

For REVERIE, applying all of our mechanisms saves 49–
62% computation (excluding object features) while maintain-
ing an SR loss between 16.4–22.6%; across all benchmarks
(see Appendix D), the average reduction in computations
is 56% with just a 11.7% drop in SR. We set the upper
limit for performance loss near 10–20% for most tasks, con-
sistent with prior work on input-adaptive inference meth-

Agent Method
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

HAMT

Base 14.07 35.73 31.81 29.17 5434.71+C

MuE 18.13 22.92 13.83 10.10 4098.77+C

Ours (k-extension) 13.85 26.53 24.96 22.97 3121.20+C
Ours (k-extension+LSH) 13.84 26.53 24.96 22.97 2359.72+C
Ours (k-extension+thresholds) 13.25 26.44 24.60 22.82 2723.01+C
Ours (All) 13.22 26.47 24.62 22.85 2073.69+C

DUET

Base 22.49 51.46 47.09 33.54 6185.15+C

MuE 32.65 33.23 27.35 15.93 4888.35+C

Ours (k-extension) 21.43 46.58 41.81 29.29 3674.29+C
Ours (k-extension+LSH) 21.44 46.75 41.95 29.48 3381.45+C
Ours (k-extension+thresholds) 22.79 44.96 39.28 27.00 3399.44+C
Ours (All) 22.81 45.07 39.36 27.14 3145.92+C

Table 3. Effectiveness of our input-adaptive inference method
for standard VLN. We show our results on REVERIE for the
HAMT and DUET agents. Each cell contains the averaged metric
over the trajectories in the validation (unseen) set. C is the constant
cost of object feature extraction. For each metric and model, the
best result across the input-adaptive methods is bolded.

ods [31, 34, 39, 51, 61]. The naive adaptations of MuE only
provide 21.0–24.6% computational savings and experience
a significant performance drop of 41.9–56.5% in SR, as
expected from our initial investigation in Sec 3.1. Our k-
extension alone provides a 40.6–42.6% reduction in GFLOPs
with only a 11.2–21.5% drop in SR. If we apply the adaptive
thresholding (`thresholds), we achieve an additional 7.5–
12.8% computational savings, with a marginal performance
loss of „1–6%. Separately, combining the LSH with the
k-extension results in additional computational savings up
to 24.4%, with no performance loss (the SR even increases).

Method Performance GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

Base 10.59 51.88 43.23 36.53 18074.05

SGM 9.79 46.82 39.86 34.76 2396.54
SGM+LSH 10.32 45.79 37.14 31.95 1741.33

Table 4. Continuous VLN results. The performance and computa-
tional savings for the baseline and our efficient VLN-CEœ BERT
agents on the R2R-CE validation (unseen) set.

4.2. Effectiveness in Continuous Environments
We now study the effectiveness of our method in continu-
ous VLN. Unlike standard agents, VLN-CEœ BERT deter-
mines actions using only navigable views. With our scan-
only SGM, this allows the agent to entirely disregard non-
navigable views, eliminating the need for k-extensions. Ad-
ditionally, ResNet is incompatible with MuE, preventing the
use of our early-exit strategy. Therefore, we evaluate two
input-adaptive variants alongside the base agent: one using
our scan-only SGM and the other combining it with LSH.
Results. Table 4 shows our results on R2R-CE. We first find
that the baseline agent requires substantially more computa-
tions than agents in the standard VLN setting. This is primar-

8224

ily because viewpoints are higher resolution (3 ˆ 480 ˆ 640
versus 3 ˆ 224 ˆ 224), therefore requiring more GFLOPs
to process through the visual encoder. Performance is also
lower, as R2R-CE is far more challenging than its discrete
counterpart [35]. Despite this, our proposed techniques of-
fer large computational savings with minimal performance
drop. When applying our scan-only SGM (SGM) to VLN-
CEœ BERT , we achieve an 87% reduction in GFLOPs while
SR only drops by 8%. By predicting the navigable view-
points before encoding them, our agent adaptively processes
only the navigable views instead of the entire panorama.
This results in just 5 out of 36 views being processed per
navigation step, on average. Computations are reduced by
„90% by incorporating LSH (+LSH); however, as we find
in Sec 3.2.1, navigable views are more critical to navigation,
so caching them leads to a larger SR drop of 14%.

4.3. Sensitivity to Our Method’s Configurations
Next, we assess the sensitivity of our method’s computa-
tional savings to its configurations. Our method’s effective-
ness depends on three key configurations: the number of
extended views (k), the adaptive thresholds set based on
the extension, and the similarity measure used in our LSH
mechanism. Here, we show our results for R2R.

k
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

- 11.53 74.29 66.16 61.49 4763.24

1 15.38 70.20 54.32 46.96 1250.65
2 13.67 70.84 58.19 51.99 1554.82
3 12.94 71.60 60.20 54.60 1793.76
4 12.52 71.90 61.17 55.63 2013.48
5 12.19 71.99 62.32 57.08 2216.34
6 11.89 71.99 62.84 57.94 2414.46

Table 5. Performance and computational savings across differ-
ent k values. We evaluate with the HAMT agent in R2R.

Number of extended views k. Table 5 shows performance
and GFLOPs across k P r1, 6s. As k decreases, the agent
processes fewer views in each panorama, yielding 49–74%
computational savings at a 5–18% performance cost. Sur-
prisingly, with k “ 1, we save 74% of GFLOPs while only
sacrificing 18% in performance (SR). We choose k such that
an agent processes approximately half of the total views in
each panorama; this results in k “ 4–6 for the benchmarks
we consider. Given that this strategy provides 50% computa-
tional savings across all benchmarks, even when the average
number of navigable views per panorama is not used to set
k, we believe the strategy is transferable to new settings.
Early-exit thresholds. We also analyze the impact of the
early-exit threshold T by varying the aggressiveness factor
A from 0.0 to 0.0022; the threshold decreases as a view
becomes farther from a navigable view. Table 6 shows that
increasing aggressiveness improves computational efficiency

Thresholds T Performance
A R1,j R2,j R3,j R4,j TL(Ó) OSR(Ò) SR(Ò) SPL(Ò) GFLOPs(Ó)

0 1.0 1.0 1.0 1.0 12.52 71.90 61.17 55.63 2013.48
0.007 1.0 1.0 1.0 0.997 12.57 71.60 60.96 55.32 1973.23
0.009 1.0 1.0 0.997 0.996 12.87 71.95 60.41 54.5 1917.61
0.015 1.0 0.997 0.996 0.993 13.44 70.67 57.98 52.09 1848.89
0.022 0.997 0.996 0.993 0.990 14.61 70.29 55.60 48.56 1768.85

Table 6. Performance and computational savings across dif-
ferent early-exit thresholds. We set the aggressiveness A within
[0.0, 0.022]. Note that we round the threshold to 3 decimal places
and set any thresholds greater than 0.998 to 1.0 as ViTs with these
thresholds will use full computations.

but reduces performance. Using A ą 0.009 causes an SR
drop of over 10%, so we set A “ 0.0009.
Using different similarity metrics. In Sec 3.2.3, our pri-
mary metric for computing similarity between views is co-
sine similarity. We explore whether employing different
similarity metrics can further enhance the effectiveness of
our method. To evaluate this, we test four additional met-
rics: visual features extracted from ViT’s first-layer activa-
tions, SSIM [57], FSIM [63], and LPIPS [65]. We also test
SURF [5] and SIFT [41] in Appendix G, but they fail to
match visually similar views in consecutive navigation steps.

Similarity Metrics
Performance

GFLOPs(Ó)
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò)

Cosine similarity (Ours) 12.87 71.95 60.41 54.50 1917.61

ViT (1st layer activation) 12.89 71.99 60.41 54.59 1966.95
SSIM [57] 12.87 71.95 60.41 54.57 1934.48
FSIM [63] 12.88 71.95 60.45 54.58 1937.73
LPIPS [65] 12.87 71.95 60.49 54.62 1925.15

Table 7. Impact of employing different similarity metrics in
LSH. We experiment with the HAMT model in R2R.

Table 7 shows our results. Across the board, we observe
only a marginal difference between the similarity metrics.
We see a performance increase of 0.16–0.22% at the cost of
a 2.6% increase in computation. The largest increase in com-
putation comes from obtaining the intermediate activation
from ViT. The results indicate that our method is not depen-
dent on the choice of similarity metrics, studied so far in
prior work. We also manually analyzed views deemed simi-
lar by these metrics, finding most to be identical or having
slight variations, e.g., plain walls with lighting differences.

4.4. Robustness to Natural Visual Corruptions
Following recent work [9], we evaluate the robustness of our
method’s efficiency to practical visual corruptions: Spatter,
Defocus Blur, Speckle Noise, Low Lighting, and Motion
Blur. Figure 5 shows an example of the most distinct ones.
We apply each corruption to the entire validation (unseen) set
of R2R, using the corruption framework by Chattopadhyay et
al. [9]. We set the severity to 3 out of 5, because setting it
above 3 causes excessive distortion to the views, which does
not reflect the realistic corruptions an agent would encounter.

8225

Baseline VLN

Instruction: Walk past the towel rack on the right. Exit the bathroom,

and walk through the closet. Make a left at the bed, and walk to the
open bedroom door. Wait at the top of the stairs.

t = 6

t = 7 (stop)

t = 6

t = 8

t = 7

…

Our VLN

Figure 4. Comparison of baseline and our agent trajectories under Spatter corruption. We demonstrate that our agent fails to stop at
the target location, resulting in incorrect navigation (Right), whereas the baseline agent successfully stops as instructed (Left).

Clean Motion Blur Speckle Noise Low Lighting

Figure 5. Examples of the visual corruptions we consider.

Agent Corruption Performance
TL(Ó) OSR(Ò) SR(Ò) SPL(Ò) GFLOPs(Ó)

HAMT

None 11.53 74.29 66.16 61.49 4763.24

Spatter 13.30 69.82 58.71 52.91 5227.36
Defocus Blur 13.87 66.50 55.21 49.32 5383.35
Speckle Noise 13.60 62.88 51.68 46.02 5345.07
Low Lighting 12.15 71.31 62.58 57.23 4903.06
Motion Blur 12.41 68.20 59.13 54.01 4996.64

Ours

None 12.87 71.95 60.41 54.50 1917.61

Spatter 16.09 67.01 49.04 41.53 2201.19
Defocus Blur 16.22 63.69 49.21 41.73 2082.57
Speckle Noise 18.11 61.43 40.87 33.60 2342.67
Low Lighting 15.27 69.90 52.58 45.33 1516.50
Motion Blur 14.47 65.47 52.96 46.52 1986.50

Table 8. Robustness evaluation of baseline HAMT and efficient
HAMT under visual corruptions. We evaluate both models on
R2R under clean conditions and five types of visual corruption.

Results. Table 8 summarizes our findings from evaluating
the HAMT agent on the R2R benchmark. We first observe
that applying our method to a VLN agent reduces its perfor-
mance and computational savings compared to the original
agent. Across the five corruptions, the HAMT agent shows
5.4–21.1% reductions in performance, while our agent un-
dergoes 12.3–31.3% reductions. GFLOPs increase by 2.9–
13.0% in HAMT, while we show an increase of 3.6–20.9%.
Per corruption, we find that both agents are most resilient to
Low Lighting and least robust to Speckle Noise. This aligns
with the findings of prior work [9]. HAMT and DUET use
visual encoders pre-trained on ImageNet-1K, meaning they
inherit the susceptibility of these ImageNet encoders to vi-
sual corruptions. This finding highlights the importance of
studies on enhancing the robustness of visual encoders to
natural corruptions [22, 27, 67], which could improve the
robustness across various VLN agents.

Interestingly, while our agent experiences a large drop
in SR, the impact on OSR is notably smaller. To uncover
why, we manually analyze R2R trajectories. Figure 4 shows
a representative path for both agents. Our agent consistently
overshoots the target, whereas the baseline stops correctly.
The agent should stop at the top of the stairs, but instead
moves past them into an adjacent room and continues turning
until reaching the step limit. This indicates that our agent can
navigate to the target, but struggles to stop in the presence
of visual corruption; thus, we hypothesize that our approach
mainly affects recognition rather than navigation itself.

To test improving the robustness, we apply a median fil-
ter (kernel size of 5) to denoise corrupted images. On the
most impactful corruption Speckle Noise, we recover SR by
17.9% and reduce GFLOPs by 6.1%. This indicates that de-
noising is a promising direction for enhancing performance
in corrupted environments; as robustness is a separate area
of research, we leave further investigation as future work.

5. Conclusion

We propose an input-adaptive inference method to mitigate
overthinking in vision-and-language navigation (VLN) and
achieve computational efficiency. Unlike the overthinking
problem in conventional domains, such as object recognition
or natural language comprehension, addressing overthinking
in VLN presents three unique challenges: (1) How can we
leverage spatial locality in views observed by an agent at
a navigation step? (2) How can we reduce temporal redun-
dancy across the agent’s navigation steps? (3) How can we
use the mechanisms designed to address the two challenges
to adaptively set early-exit thresholds of an existing method?
We present three novel techniques to address them individu-
ally. In our evaluation, we demonstrate a 2–7.5ˆ reduction
in computations while preserving performance across seven
VLN benchmarks. Moreover, we assess the robustness of our
approach under various visual corruptions that may occur in
practice, and identify challenges to address for future work.
We hope this work inspires future research on developing
efficient (and robust) VLN algorithms and promote their
widespread adoption in real-world settings.

8226

Acknowledgment
We thank the anonymous reviewers for their valuable feed-
back. This work is partially supported by the Samsung
Global Research Outreach 2024 program. The findings and
conclusions in this work are those of the author(s) and do
not necessarily represent the views of the funding agency.

References
[1] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and
Anton van den Hengel. Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions in real
environments. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018. 2,
5, 12, 14

[2] Peter Anderson, Ayush Shrivastava, Joanne Truong, Arjun
Majumdar, Devi Parikh, Dhruv Batra, and Stefan Lee. Sim-
to-real transfer for vision-and-language navigation. In Con-
ference on Robot Learning, pages 671–681. PMLR, 2021.
18

[3] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions.
Communications of the ACM, 51(1):117–122, 2008. 5, 13

[4] Ron Banner, Yury Nahshan, and Daniel Soudry. Post train-
ing 4-bit quantization of convolutional networks for rapid-
deployment. Advances in Neural Information Processing
Systems, 32, 2019. 17

[5] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:
Speeded up robust features. In Computer Vision–ECCV 2006:
9th European Conference on Computer Vision, Graz, Aus-
tria, May 7-13, 2006. Proceedings, Part I 9, pages 404–417.
Springer, 2006. 7, 16, 17

[6] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initialization.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 696–697,
2020. 17

[7] Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d
data in indoor environments. International Conference on 3D
Vision (3DV), 2017. 2, 12

[8] Moses S Charikar. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth an-
nual ACM symposium on Theory of computing, pages 380–
388, 2002. 5, 13

[9] Prithvijit Chattopadhyay, Judy Hoffman, Roozbeh Mottaghi,
and Aniruddha Kembhavi. Robustnav: Towards benchmark-
ing robustness in embodied navigation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 15691–15700, 2021. 7, 8

[10] Shizhe Chen, Pierre-Louis Guhur, Cordelia Schmid, and Ivan
Laptev. History aware multimodal transformer for vision-
and-language navigation. Advances in neural information
processing systems, 34:5834–5847, 2021. 1, 2, 5, 6, 12, 14

[11] Shizhe Chen, Pierre-Louis Guhur, Makarand Tapaswi,
Cordelia Schmid, and Ivan Laptev. Think global, act lo-
cal: Dual-scale graph transformer for vision-and-language
navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 16537–
16547, 2022. 1, 2, 6, 12

[12] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Pact: Parameterized clipping activation for
quantized neural networks. arXiv preprint arXiv:1805.06085,
2018. 17

[13] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev.
Low-bit quantization of neural networks for efficient infer-
ence. In 2019 IEEE/CVF International Conference on Com-
puter Vision Workshop (ICCVW), pages 3009–3018. IEEE,
2019. 17

[14] Marco Cuturi. Sinkhorn distances: Lightspeed computation of
optimal transport. Advances in neural information processing
systems, 26, 2013. 5

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota, 2019. Association for Com-
putational Linguistics. 6

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021. 6, 12

[17] Angela Fan, Edouard Grave, and Armand Joulin. Reducing
transformer depth on demand with structured dropout. arXiv
preprint arXiv:1909.11556, 2019. 17

[18] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and
Xinchao Wang. Depgraph: Towards any structural pruning.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 16091–16101, 2023. 17

[19] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang,
Jonathan Huang, Dmitry Vetrov, and Ruslan Salakhutdinov.
Spatially adaptive computation time for residual networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1039–1048, 2017. 2

[20] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,
Jacob Andreas, Louis-Philippe Morency, Taylor Berg-
Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.
Speaker-follower models for vision-and-language navigation.
Advances in neural information processing systems, 31, 2018.
2

[21] Pierre-Louis Guhur, Makarand Tapaswi, Shizhe Chen, Ivan
Laptev, and Cordelia Schmid. Airbert: In-domain pretraining
for vision-and-language navigation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 1634–1643, 2021. 1

8227

[22] Yong Guo, David Stutz, and Bernt Schiele. Improving robust-
ness of vision transformers by reducing sensitivity to patch
corruptions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4108–4118,
2023. 8

[23] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 17

[24] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network.
Advances in neural information processing systems, 28, 2015.
17

[25] Weituo Hao, Chunyuan Li, Xiujun Li, Lawrence Carin, and
Jianfeng Gao. Towards learning a generic agent for vision-
and-language navigation via pre-training. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 13137–13146, 2020. 1

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6, 12

[27] Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
In International Conference on Learning Representations,
2019. 8

[28] Duc NM Hoang and Shiwei Liu. Revisiting pruning at ini-
tialization through the lens of ramanujan graph. ICLR 2023,
2023. 17

[29] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo,
and Stephen Gould. A recurrent vision-and-language bert
for navigation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1643–1653, 2021. 1, 2

[30] Yicong Hong, Zun Wang, Qi Wu, and Stephen Gould. Bridg-
ing the gap between learning in discrete and continuous envi-
ronments for vision-and-language navigation. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, pages 15439–15449, 2022. 5

[31] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Weinberger. Multi-scale dense
networks for resource efficient image classification. In Inter-
national Conference on Learning Representations, 2018. 1,
2, 4, 6

[32] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018. 17

[33] Aishwarya Kamath, Peter Anderson, Su Wang, Jing Yu Koh,
Alexander Ku, Austin Waters, Yinfei Yang, Jason Baldridge,
and Zarana Parekh. A new path: Scaling vision-and-language
navigation with synthetic instructions and imitation learning,
2023. 2

[34] Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras.
Shallow-deep networks: Understanding and mitigating net-

work overthinking. In International conference on machine
learning, pages 3301–3310. PMLR, 2019. 1, 2, 6

[35] Jacob Krantz and Stefan Lee. Sim-2-sim transfer for vision-
and-language navigation in continuous environments. In
European Conference on Computer Vision, pages 588–603.
Springer, 2022. 1, 5, 6, 7, 12

[36] Jacob Krantz, Erik Wijmans, Arjun Majundar, Dhruv Batra,
and Stefan Lee. Beyond the nav-graph: Vision and language
navigation in continuous environments. In European Confer-
ence on Computer Vision (ECCV), 2020. 2, 5, 6, 12

[37] Jialu Li and Mohit Bansal. Improving vision-and-language
navigation by generating future-view image semantics. In
Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 10803–10812, 2023. 2

[38] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi
Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruction.
arXiv preprint arXiv:2102.05426, 2021. 17

[39] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Haotang
Deng, and Qi Ju. Fastbert: a self-distilling bert with adaptive
inference time. arXiv preprint arXiv:2004.02178, 2020. 1, 6

[40] Christos Louizos, Matthias Reisser, Tijmen Blankevoort,
Efstratios Gavves, and Max Welling. Relaxed quanti-
zation for discretized neural networks. arXiv preprint
arXiv:1810.01875, 2018. 17

[41] David G Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vision,
60:91–110, 2004. 7, 16, 17

[42] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,
and Jan Kautz. Pruning convolutional neural networks for
resource efficient inference. arXiv preprint arXiv:1611.06440,
2016. 17

[43] Abhinav Moudgil, Arjun Majumdar, Harsh Agrawal, Ste-
fan Lee, and Dhruv Batra. Soat: A scene-and object-aware
transformer for vision-and-language navigation. Advances in
Neural Information Processing Systems, 34:7357–7367, 2021.
1

[44] Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International
Conference on Machine Learning, pages 7197–7206. PMLR,
2020. 17

[45] Azade Nova, Hanjun Dai, and Dale Schuurmans. Gradient-
free structured pruning with unlabeled data. In Interna-
tional Conference on Machine Learning, pages 26326–26341.
PMLR, 2023. 17

[46] Akhil Perincherry, Jacob Krantz, and Stefan Lee. Do vi-
sual imaginations improve vision-and-language navigation
agents? In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 3846–3855, 2025. 2

[47] Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang
Wang, Chunhua Shen, and Anton van den Hengel. Reverie:
Remote embodied visual referring expression in real indoor
environments. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 9982–
9991, 2020. 5, 12

[48] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In 2011

8228

International conference on computer vision, pages 2564–
2571. Ieee, 2011. 16, 17

[49] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,
Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform
for embodied ai research. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 9339–
9347, 2019. 2

[50] Huixin Sun, Runqi Wang, Yanjing Li, Xianbin Cao, Xiaolong
Jiang, Yao Hu, and Baochang Zhang. P4q: Learning to
prompt for quantization in visual-language models. arXiv
preprint arXiv:2409.17634, 2024. 17

[51] S. Tang, Y. Wang, Z. Kong, T. Zhang, Y. Li, C. Ding, Y. Wang,
Y. Liang, and D. Xu. You need multiple exiting: Dynamic
early exiting for accelerating unified vision language model.
In 2023 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10781–10791, Los Alamitos,
CA, USA, 2023. IEEE Computer Society. 1, 2, 3, 6, 12

[52] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung
Kung. Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd international conference on
pattern recognition (ICPR), pages 2464–2469. IEEE, 2016. 2

[53] Jesse Thomason, Michael Murray, Maya Cakmak, and Luke
Zettlemoyer. Vision-and-dialog navigation. In Conference on
Robot Learning, pages 394–406. PMLR, 2020. 5, 12, 14

[54] Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki
Yoshiyama, Javier Alonso Garcia, Stephen Tiedemann,
Thomas Kemp, and Akira Nakamura. Mixed precision dnns:
All you need is a good parametrization. arXiv preprint
arXiv:1905.11452, 2019. 17

[55] Tiannan Wang, Wangchunshu Zhou, Yan Zeng, and Xinsong
Zhang. Efficientvlm: Fast and accurate vision-language mod-
els via knowledge distillation and modal-adaptive pruning.
arXiv preprint arXiv:2210.07795, 2022. 17

[56] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E
Gonzalez. Skipnet: Learning dynamic routing in convolu-
tional networks. In Proceedings of the European conference
on computer vision (ECCV), pages 409–424, 2018. 2

[57] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 7, 17

[58] Zun Wang, Jialu Li, Yicong Hong, Yi Wang, Qi Wu, Mohit
Bansal, Stephen Gould, Hao Tan, and Yu Qiao. Scaling data
generation in vision-and-language navigation. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision, pages 12009–12020, 2023. 2

[59] Z. Wang et al. Sim-to-real transfer via 3d feature fields for
vision-and-language navigation. CoRL, 2024. 18

[60] J. Wasserman et al. Last-mile embodied visual navigation.
CoRL, 2023. 18

[61] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy
Lin. Deebert: Dynamic early exiting for accelerating bert
inference. arXiv preprint arXiv:2004.12993, 2020. 1, 2, 6

[62] Yang Yue, Yulin Wang, Bingyi Kang, Yizeng Han, Shenzhi
Wang, Shiji Song, Jiashi Feng, and Gao Huang. Deer-vla:
Dynamic inference of multimodal large language models for

efficient robot execution. Advances in Neural Information
Processing Systems, 37:56619–56643, 2024. 2

[63] Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. Fsim:
A feature similarity index for image quality assessment. IEEE
transactions on Image Processing, 20(8):2378–2386, 2011.
7, 17

[64] Q. Zhang et al. Humanoidpano: Hybrid spherical panoramic-
lidar cross-modal perception for humanoid robots. arXiv,
2025. 18

[65] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
586–595, 2018. 7, 17

[66] Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun Chang,
and Xiaodan Liang. Soon: Scenario oriented object nav-
igation with graph-based exploration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 12689–12699, 2021. 5, 12, 14

[67] Sicheng Zhu, Bang An, Furong Huang, and Sanghyun Hong.
Learning unforeseen robustness from out-of-distribution data
using equivariant domain translator. In Proceedings of the
40th International Conference on Machine Learning, pages
42915–42937. PMLR, 2023. 8

[68] S. Zhu et al. Vigor: Cross-view image geo-localization be-
yond one-to-one retrieval. CVPR, 2021. 18

8229

