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Abstract

Autonomous driving (AD) systems are becoming increasingly
capable of handling complex tasks, mainly due to recent
advances in deep learning and Al. As interactions between
autonomous systems and humans increase, the interpretability
of decision-making processes in driving systems becomes
increasingly crucial for ensuring safe driving operations.
Successful human-machine interaction requires understanding
the underlying representations of the environment and the
driving task, which remains a significant challenge in deep
learning-based systems. To address this, we introduce the task
of interpretability in maneuver prediction before they occur for
driver safety, i.e., driver intent prediction (DIP), which plays
a critical role in AD systems. To foster research in interpretable
DIP, we curate the eXplainable Driving Action Anticipation
Dataset (DAAD-X), a new multimodal, ego-centric video
dataset to provide hierarchical, high-level textual explanations
as causal reasoning for the driver’s decisions. These expla-
nations are derived from both the driver’s eye-gaze and the
ego-vehicle’s perspective. Next, we propose Video Concept
Bottleneck Model (VCBM), a framework that generates spatio-
temporally coherent explanations inherently, without relying on
post-hoc techniques. Finally, through extensive evaluations of
the proposed VCBM on the DAAD-X dataset, we demonstrate
that transformer-based models exhibit greater interpretability
than conventional CNN-based models. Additionally, we
introduce a multilabel t-SNE visualization technique to illustrate
the disentanglement and causal correlation among multiple
explanations. Our data, code and models are available at:
https://mukil07.github.io/VCBM.github.io/

1. Introduction

The increasing reliance on deep neural networks in safety-critical
applications [26] raises significant concerns due to their black-
box nature, resulting in a lack of interpretability. In autonomous
driving [16, 38], this lack of transparency makes it difficult
for users to trust Al-driven decisions, leading to safety and ac-
countability challenges, particularly in accidents. Ensuring safer
deployment requires models that predict driving actions and
provide human-understandable explanations for their decisions.

For instance, consider the scenario illustrated in Fig. 1. An
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Figure 1. Illustration of an AD scenario for the DIP task. An AD
system may intend to take a left turn while encountering a parked or
slow-moving vehicle at the turn. Existing DIP models, lacking HCI un-
derstanding, might fail to anticipate the obstacle, leading to a potential
collision. The proposed interpretable model, VCBM, enhances safety
by enabling the ego-vehicle to explain its intended actions, anticipate
obstacles more effectively, and adjust maneuvers accordingly. This
results in safer and more transparent decision-making.

autonomous car is traveling at high speed and attempts to take
a left turn at a road intersection. While turning, a parked vehicle
is in the blind spot and left undetected by the autonomous car
sensors. In such situations, existing driver intention prediction
(DIP) methods [ 18, 37] may fail to recognize the parked vehicle,
increasing the risk of a near-miss or collision. Hence, inter-
pretability in DIP models becomes crucial in the aforementioned
cases. Interpretable DIP models can reveal why the system
overlooked such situations, which can help diagnose failures and
improve model learning. An interpretable model can provide
high-level explanations that enhance decision-making, fostering
greater trust and confidence in autonomous driving technology.
Trust is not solely about performance but also the ability to
scrutinize, explain, and refine the model’s decisions over time,
ultimately ensuring safer and more reliable deployment.

Traditional DIP datasets such as Brain4Cars [10], Viena2 [2],
HDD [23], AIDE [39], and DAAD [37] primarily focus on
predicting maneuvers or agent trajectories without providing
contextual explanations. This limitation affects the ability to
train and evaluate DIP models on not just what happened, but
also why it happened. To address this gap, we introduce the

25378


https://mukil07.github.io/VCBM.github.io/

DAAD-X dataset (see Table 1), which includes both driving
maneuvers (what) and corresponding explanations (why),
enabling richer interpretability.

However, due to their architectural limitations, existing DIP
architectures cannot be directly employed to leverage such
explanations effectively. For instance, recent architectures, such
as VideoMAE [32], DINOv2 [21], and MViTv2 [17] encode
spatial and temporal information as flattened token represen-
tations, making it challenging to extract human-interpretable
insights. Although self-supervised tasks such as frame ordering
and motion prediction help capture temporal dynamics,
the learned features often fail to correspond intuitively to
human-understandable concepts. These limitations highlight
the need for models that explicitly align learned features
with explanations, ensuring both maneuver prediction and
interpretability are jointly optimized.

We address this problem by including concept bottleneck
models (CBM) [14], which are widely used to make models
interpretable. CBM converts the highly uninterpretable features
to low-dimensional, human-understandable explanations by
training every neuron of a layer to represent one explanation.
These explanations are fed to a sparse linear layer for the
final model prediction. This results in a more straightforward
interpretation of the final model prediction through linear
combinations of interpretable explanations. However, applying
these CBMs to video tasks is non-trivial since it does not
understand the inherent temporal context of video data, a gap
largely unexplored in the literature.

To overcome these challenges, we propose video CBM.
By integrating spatially and temporally consistent tokens with
CBMs, our approach delivers high-level explanations that
naturally capture spatio-temporal features, offering the best of
both worlds. To improve the understanding of DIP models, we
make the following contributions in this work:

* We propose DAAD-X, a multi-modal driving action anticipa-
tion video dataset incorporating hierarchical in-cabin eye-gaze
and out-cabin ego-vehicle explanations. This dataset provides
human-understandable justifications for driving maneuvers,
enhancing interpretability and decision-making transparency.

* Propose a multi-modal video-aware concept bottleneck
model (VCBM) with learnable token merging and localized
concept bottleneck. Our approach effectively leverages
spatio-temporal features to disentangle explanations. To the
best of our knowledge, this is the first work to propose a
concept-based interpretability method explicitly tailored for
video-based models.

* We presented qualitative results for VCBM on the DAAD-X
dataset, demonstrating its improved performance across
multiple backbone models. In addition, we introduced
a multi-label t-SNE visualization to highlight the causal
correlation between multiple explanations in a video, offering
a deeper interpretation of the model’s reasoning.

Table 1. Comparison of datasets. Our dataset is a subset of
DAAD [37] and it includes additional categories of explanations for
multi-modal videos, encompassing both in-cabin (Aria eye-gaze) and
out-cabin (ego-vehicle) perspectives.
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HDD[23] 0 1 No Yes X N/A NA Xx X X X
ROAD[29] 0 1 No Yes X N/A NA Xx X X X
Dr(eye)[22] 1 1 Yes Yes v N/A NA Xx X X X
DAAD[37] 2 4 Yes Yes v N/A NA X x X X
BDD- 0 1 No No X Categorical Frame v X X X
OIA [38]
BDD-X[13] 0 1 No Yes X Contextual Temporal v X vV
DAAD-X 2 4 Yes Yes v Categorical Temporal v/ v vV
(Ours)
*eX means explanation
2. Related Work

2.1. Driver Intention Prediction

Various methods have been explored to recognize ego-vehicle
actions and driver intentions. Early approaches, such as Hidden
Markov Models [33], focused on vehicle state prediction,
while recent research has shifted to deep learning-based driver
action anticipation. Traditionally, bidirectional RNNs [20]
and CNN-LSTM architectures [9], [10], [11], [12], [25], [3]
were used, though they often emphasize spatial features over
temporal dependencies, limiting performance in extended video
sequences. To address this, transformer-based architectures [34]
were introduced, improving long-range dependency capture, and
memory-based anticipation methods such as Cemformer [18]
and M?MVIT [37] enhanced temporal consistency. One
closely related work [38] produces explanations only for a
single frame without incorporating the temporal context. The
explanations are limited to short words or phrases, lacking the
granularity required to capture cross-frame dynamics, making
them unsuitable for interpreting video models.

These video models remain uninterpretable, posing
challenges for safe deployment in AD systems. To address
this limitation, we propose a video-based interpretable intention
prediction model with human-understandable explanations.

2.2. Explainable Video Dataset

Interpretability has recently gained significant attention, yet
video-based interpretability remains challenging in tasks such
as action recognition and long-video understanding [8, 36].
Existing DIP datasets, such as Brain4Cars [10], Viena2 [2],
HDD [23], AIDE [39], and DAAD [37], though they provide
maneuver labels under diverse conditions, lack reasoning or ex-
planatory annotations, limiting their suitability for interpretable
models. BDD-OIA [38] offers single frame-level explanations
but fails to capture the spatio-temporal context necessary for
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comprehensive intention prediction models across a video.
Although BDD-X [13] offers detailed freeform contextual
explanations, it cannot create interpretable models since we
require categorical annotations to link a particular driving
action to a specific, repeatable explanation with precise, distinct
mapping. To bridge this gap, we introduce a new multi-modal
video-based driving action dataset with human-understandable
explanations to advance interpretability in autonomous driving.

2.3. Concept-Based Explanations

Understanding model decisions in multi-modal and temporal
contexts is challenging due to the added temporal dimension
and complex shared representations [24]. Prior works, including
concept bottleneck models [14, 19], and concept relevance
propagation [1], use fixed human-understandable concepts
for decision-making, offering interpretability but failing to
model temporal inputs [15]. This limitation can lead to models
learning spurious correlations and overlooking non-linear
feature relationships. Due to the rigorous requirements of
manual human-understandable annotations for CBM, the
label-free CBMs were introduced in [19, 27, 31] to generate
concepts with the help of a pretrained text encoder. Recent
methods such as LalAR [36] and HENASY [35] have used
language grounding on videos for contextual interpretability,
but they fail in driving tasks due to the inability of the language
model to capture positional and directional cues, which are
essential in driving. To address this issue, we propose a simple
framework that pools relevant features across frames, generating
fine-grained, faithful explanations for videos.

3. DAAD-X Dataset

Motivation: While driving on a straight, smooth road, a
driver typically makes minimal steering adjustments or eye
movements, as fewer decisions are required. However, during
maneuvers—such as turning, lane changing, or stopping—the
driver must be highly attentive, making precise hand movements
based on visual cues. In such critical moments, DIP models
can predict actions (e.g., turning left, slowing down), but they
do not inherently explain why a particular action was predicted
or whether it was the correct decision. For instance, consider
a scenario where a driver approaches an intersection. If the
DIP model predicts a left turn but does not indicate whether the
decision was influenced by a traffic signal, movement of another
vehicle , or presence of pedestrians, the prediction remains a
black box. Without explanations, assessing whether the model’s
reasoning aligns with human decision-making is difficult.

To bridge this gap, it is essential to annotate DIP datasets
with both actions and corresponding explanations, i.e., both
ego-vehicle and eye-gaze explanations. By incorporating these
explanations—such as the presence of obstacles, road signs, or
the driver’s eye-gaze behavior—we can develop interpretable
models that not only predict actions and intentions but also
justify their decisions. This would enhance trust, safety, and
usability of autonomous driving.

Ego Explanation by Maneuver Gaze Explanation by Maneuver
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Figure 2. Driving video annotation statistics of DAAD-X dataset.
ustrating the distribution of (left) ego-vehicle explanations and (right)
eye-gaze explanations across different maneuver actions. Details of
the full explanation annotation are provided in the Supplementary
Material. Zoom in for better clarity.

Dataset details: To address these issues, we created a new
dataset from the DAAD dataset [37] to generate human-
understandable explanations. DAAD was the closest match
for our setup, as it is multi-modal with eye-gaze information
and is well-conditioned across diverse weather conditions,
drivers, times of day, and driving scenarios. The DAAD dataset
includes seven intention labels, each corresponding to a specific
maneuver: go straight (ST), right turn (RT), left turn (LT),
right lane change (RLC), left lane change (LLC), slow/stop
(SS), and U-turn (UT). We selected 1,568 video clips from the
DAAD dataset, each ranging from 7 to 15 seconds in length.
These videos are annotated with 17 ego-vehicle explanations
and 15 gaze explanations using the VIA video annotator [0],
an open-source tool. We refer to this enriched dataset as the
explainable DAAD dataset (DAAD-X). Table 1 compares
DAAD-X with previous datasets.

3.1. Data Annotation and Statistics

Annotation details: During annotation, annotators watch each
driving video and assign reasoning for the driver’s maneuver.
This process involves selecting a relevant gaze explanation and
one or more ego-vehicle explanations to provide contextual
justification. The gaze explanation is a single-attribute label
chosen from 15 predefined gaze explanations, which indicate
where the driver is looking based on gaze coordinates collected
using the Aria eye tracker [30]. In contrast, ego-vehicle
explanations consist of 17 multi-attribute labels, where
multiple explanations can be assigned to a single video. These
explanations capture key scene attributes and offer semantically
meaningful cues for both spatial and temporal localization.
For example, in the explanations “ego-vehicle is nearing the
intersection”, “road is clear ahead on the left lane”, “gaze is
mostly towards front right side”, the term “nearing” conveys
temporal semantics, while “clear ahead” and “front right side”
provide spatial context from the ego-vehicle’s perspective.

The annotated DAAD-X dataset provides a rich set of
explanations, capturing both gaze and ego-vehicle attributes to
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Figure 3. Overall architecture of the proposed VCBM. The dual video encoder first generates the spatio-temporal features (tubelet embeddings)
for the ego-vehicle and gaze input sequence video pair. These tubelets are concatenated along the channel dimension and fed into the proposed
learnable token merging block to produce K -cluster centers based on composite distances. These clusters are then fed into a localised concept
bottleneck to disentangle and predict the maneuver label and one or more explanations to justify the maneuver decision.

enhance interpretability. As illustrated in Fig. 2, each annotated
instance includes the driver’s maneuver, a gaze explanation,
and multiple ego-vehicle explanations. In total, the dataset
contains 2,536 explanations, though their distribution is highly
unbalanced. Among gaze explanations, the most frequent is
“towards the forward direction” (223 occurrences), while the
least common is “to the left side” (10 occurrences). Similarly,
for ego-vehicle explanations, “a left turn coming ahead” appears
most frequently (199 occurrences), whereas explanations such
as “nearing an intersection and traffic light is green” are rare,
occurring only 7 times for the go straight maneuver, 6 times
for a left turn, and just 2 time for a right turn. Given this
long-tail distribution, we apply stratified sampling to ensure
balanced representation, splitting the dataset into training (70%),
validation (20%), and testing (10%) sets.

Sanity Check. Once annotated, the annotations were shuffled
3 times among the annotators to validate the explanations.
Since explanations are subjective, we initially selected the most
obvious ones. For ambiguous cases, a consensus was reached
based on the votes and comments of 10 annotators. With this
process, less than 1% of the total videos were found to be
incorrectly annotated and subsequently corrected. More details
in Supplementary Material.

4. Video Concept Bottleneck Model (VCBM)

4.1. Problem Formulation

Given a set of input videos, where each video consists of
x4,y € RY. 1, represents the gaze view video and z s is a front
view of an ego-vehicle. Now, we have a corresponding driving
maneuvers prediction for each video sequence represented by
y and explanations denoted as e. e € {0,1}!7 represents the
17 explanations. Consider the training dataset consisting of
{(z}, 2%,y",¢") };=;, where T is the total training instances.
We can predict y = f(g(z)) where g : RY — R'7 represents
the bottleneck layer, which maps input video features to 17
intermediate explanations. f: R'” — R is a sparse linear layer
that maps intermediate explanations to the final maneuver

prediction labels.

In our work, we introduce an unsupervised clustering
module m : R — R? (detailed discussion in Section 4.3) to
cluster similar features across frames. Finally, we follow [14]
to learn bottleneck model (},m, §) using the joint bottleneck
approach, which minimizes the weighted sum as,

Fang=avgming g (Zi (L (Flgm(a®)) )+ 0o, (g(m(x(i))),e;i))D
1)

L, and L¢, represent multiclass cross entropy loss and
multilabel aggregated binary cross entropy loss for each
explanation j € {1,17}. Here, A is the weighting factor.

4.2. Our Model Architecture

We illustrate VCBM, our proposed model architecture, in Fig. 3.
VCBM comprises a dual video encoder, a novel learnable token
merging (LTM), and a localised concept bottleneck model
(LCBM) module. LTM and LCBM help interpret both in-cabin
gaze and out-cabin front video data effectively. At its core,
VCBM predicts the driver’s intended maneuver and provides
human-understandable explanations for why the maneuver was
selected, enhancing interpretability in the DIP task.

Video Encoder. Our video encoder architecture is based
on [34]. For an input video sequence, gaze video as ch and
ego-vehicle front video as x’]}, we pass them individually
to each branch to extract individual feature embeddings
2z = (24,2f) € RPXNXDim B N Dim represents the batch
size, number of tokens, and feature representation dimension.
To retain spatial positioning while maintaining temporal consis-
tency [40], we concatenate these feature embeddings along the
channel dimension represented as z;. Now, we pass z; through
our proposed modules, Learnable Token Merging (LTM) and
Localised Context Bottleneck Model (LCBM), to obtain the
final prediction discussed in detail in the remaining section.
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4.3. Learnable Token Merging

We introduce an LTM module to ensure the LCBM captures
local features across frames. LTM groups semantically similar
features into a reduced set of representative tokens, which are
then passed as inputs to LCBM. We first perform unsupervised
clustering in LTM on the concatenated multi-view feature
representations z; from the encoder. The features are compared
with K learnable cluster centers z;, where (4, ) represents
token position and K << NN to ensure that explanations are
assigned to a compact set of merged features. The similarity
between a feature token and a cluster center is computed using
cosine similarity, given by,

l
i e
d( i,3) _ =1
t
feat 7= ’|||| Ze, ||’
We introduce a composite similarity block (in Fig. 3) that
integrates and refines the similarity measures. The composite

similarity block enhances clustering by enforcing spatial and
d(%])

spatial

vie{l,...N}, Vje{l,..K} (2)

temporal consistency. We compute additional spatial
(4:9)

and temporal distances d; emporal *

i) d(i’j ) l i)
(2,7 spatia, 7
S;D(Jltial = ; ’ dspcjztial = \/(ml _mcj )2 + (yz - ij )2
max
©)
) (4.7) l )
(2,9 tempora 1,
dtefjnporal = T £ ) dfeznpm’al ‘tl _tcj ‘ “)
max
The total composite distance used for clustering is,
dizﬁposite f (;Ja)t +6 di;fztml dgzjm)poral (5)

Here, the x.,y.,t. represent the learnable cluster center
position in spatial and temporal dimensions, respectively,
and «, 3, represent the normalized weights for distances.
Instead of hard clustering [7, 28], we employ soft clustering
by assigning soft labels w;; to each token z; using a softmax
over the negative composite distances,

d(w )

617])( composzte)

K (4.5)
Zj: 1 exp( dcomposzte )
The updated cluster centers are then computed as a weighted
sum of token embeddings,

(©)

wij =

=N )

> i1 Wi

By merging similar features into a compact token represen-
tation, this approach reduces redundancy in video embeddings
while ensuring that spatio-temporally relevant features are
retained. These merged token representations serve as inputs
to the LCBM, enabling it to generate fine-grained explanations
while maintaining spatial and temporal consistency.

4.4. Localised Context Bottleneck Model
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Figure 4. VCBM merges relevant features across frames (z.;)
and assigns explanations. Blue represents merged traffic features,

denotes , and arrow thickness
indicates prediction confidence.

The LCBM further refines the representations from
LTM by mapping high-dimensional encoded vectors to a
human-understandable low-dimensional space. Traditional
CBM approaches rely on global feature embeddings or global
average pooling, which can discard fine-grained spatial and
temporal details. Instead, LCBM approach preserves these
details by feeding all the pooled token representations into the
bottleneck block (g(z.)), as illustrated in Fig. 4.

Rather than immediately averaging features before the
bottleneck, we introduce a late averaging strategy, allowing
each merged token to retain its individual contribution to the
explanation process. Each fully connected (FC) layer in the
bottleneck module corresponds to a specific explanation and
produces a single logit, representing the confidence of that
explanation. This ensures that each FC layer processes all
tokens, enabling a more robust and interpretable assignment
of explanations. By retaining fine-grained spatio-temporal
details, this LCBM enhances the activation maps, leading to
more precise and human-understandable explanations in DIP.

5. Experiments

5.1. Implementation Details

For our experiments, we used I3D [4] pre-trained on ImageNet
RGB images, as well as VidleoMAE [32] with a ViT-B/16 back-
bone [5] and MViTv2-B [17], both pre-trained on Kinetics-400
dataset. For more details on data augmentation, training param-
eters, and evaluation metrics refer Supplementary Material.

5.2. Results

‘We compare our proposed method with three backbone archi-
tectures: the CNN-based 13D, transformer-based VideoMAE,
and MViTv2. Table 2 shows the performance of the baselines
and the backbone models with and without the bottleneck
layer. We observe that the transformer-based MViTv2 baseline
outperforms the CNN-based I3D baseline in predicting
explanations using the bottleneck layer. While CNN excels
in spatial feature extraction, video-based explanation tasks
require a strong temporal understanding across frames, making
transformers more effective.
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Table 2. Evaluation on DAAD-X dataset: Evaluated baselines with
(wB) and without (woB) bottleneck. Here, LTM indicates Learnable
Token Merging.

Action ego-vehicle eXplanation
Model
Acc Fi | Acc  Fi |Fi(mac) Fi(mic)
I3D woB [4] 7478 7421 - - - -

VideoMAE woB [34] | 725 71.81| - - - -

MViTv2 woB [17] |64.03 63.98| - - - -
I3D wB [4] 74.09 73.47(25.26 36.73| 18.53 43.49
VideoMAE wB [34] |67.01 66.48|24.21 38.24| 23.77 41.53
MViTv2 wB [17] 63.29 6247|2535 37.1 243 42.1

I3D + LTM wB (Ours) [73.21 72.2 {28.31 39.43| 24.1 44.06
MViTV2 + LTM wB
(Ours)

69.73 69.15|31.22 43.86| 29.17 49.11

Table 3. Importance of token aggregation. Compared the
effectiveness of token merging (using all the tokens from the encoder)
over utilizing the CLS token for producing explanations.

Action ego-vehicle eXplanation
Acc Fi | Acc  Fi |Fi(mac) Fi(mic)
CLS Token |I3D woB |74.38 74.1 - - - -
Summarization| 13y g 7373 7225(23.15 337 | 169 4195
3D woB|7478 7421| - - - -
BDwoB|7321 722 2831 39.43| 241  44.06

Strategy Model

Full Token
Aggregation™®

Table 4. Effect of number of clusters. A bottleneck with lower
clusters learns more global representation. Increasing the clusters
further reduces performance due to noisy cluster centers.

Model #Clusters Action ego-vehicle eXplanation

Acc Fy | Acc P (ﬂf;c) (nlj:ic)

13D + LTM wB 1 70.78 70.47|24.64 34.47| 16.67 4229
13D + LTM wB 3 71.78 71.44| 25 38.46| 22.85 43.87
13D + LTM wB 5 7321 722 |28.31 3943| 24.1 44.06
13D + LTM wB 7 74.28 74.03|24.64 349 | 1844 4101
I3D + LTM wB 10 70.35 69.64|23.92 33.28| 16.09 41.2
MVITV2 + LTM wB 5 69.73 69.15|31.22 43.86| 29.17 49.11
MVITV2 + LTM wB 10 65 64.53| 30 4351|27.11 47.11

5.3. Insights and Ablations

In this section, we provide additional insights into the effect
of token merging, the importance of gaze modality in VCBM,
and the impact of temporal cues.

5.3.1. Effects of LTM and LCBM

In Table 4, we analyze the impact of varying the number of
clusters in the LTM block (see Fig. 3) on both action and
explanation predictions in the proposed method. Using a
single cluster is analogous to employing a CLS token in a
transformer, where all tokens are aggregated into one global

Table 5. Component-level ablation. Significance of proposed
modules (LTM and LCBM) on 13D architecture.

Components Action ego-vehicle eXplanation
LTM LCBM | Acc Fi Acc  F1 | Fi(mac) Fi(mic)
X X 68.1 6744|1122 2144 9.37 22.51
v X 72.8 72.15|26.03 35.6 19.15 441
X v 74.09 7347|2526 36.73| 18.53 43.49
v v 7321 722 |28.31 3943 24.1 44.06

representation. As the number of clusters increases, each cluster
is attributed to certain similar features across the tokens, but
adding more clusters counteracts by learning additional noise
patterns, which detracts from the prediction performance.
LCBM is designed to compute explanations based on all
locally aggregated tokens from the LTM block, rather than
relying on a single global CLS token. This approach enhances
the justification of explanations by preserving the contextual
integrity of feature groups, making the model more interpretable
as illustrated in the Table 3. The component-level ablation
shown in Table 5 demonstrates that incorporating the LCBM
block improves explanation and action performance metrics.
By attending to all the input tokens, the LCBM effectively
retains fine-grained details, leading to more precise bottleneck
representations. Additionally, integrating the LTM block further
enhances explanation performance due to its ability to extract
meaningful merged tokens. However, the averaging process
during token merging reduces the granularity of individual
features, resulting in a slight drop in action prediction accuracy.

5.3.2. Importance of Gaze modality

In-cabin ego-centric view with

no gaze gaze overlaid gaze cropped

Figure 5. Variants of gaze input. The driver’s view video is processed
in the following way to show the best way to represent gaze without
affecting spatial features. The gaze cropped variant (R = 350)
produces the best quantitative results.

We analyse the impact of gaze modality on explanation
predictions by testing three settings: without gaze, gaze overlaid,
and with gaze cropped regions, as illustrated in Fig. 5. In
Table 7, we show the accuracy of identifying the gaze variant.
Initially, without gaze, both action and explanation predictions
are lower. Further, the gaze is being overlaid onto the driver’s
view, but this method adds noise to the image and deteriorates
finer details. To mitigate this issue, we cropped a circular
region centered on the gaze ground truth from the driver’s view,
experiments with various diameters (in pixels), in Table 7 show
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Figure 6. GradCAM visualization on proposed method. At ¢ = 1, the activations are scattered, but as time progresses to ¢t =7, the CAM
gradually refines and localise on important objects. This represents how humans make decisions, which evolves over time.

improved performance for explanation by achieving an optimal
score at R = 350. However, excessively increasing the crop
size reduced the concentration of relevant gaze information,
reducing the explanation performance.

5.3.3. Tradeoff between Explanation and Action
Classification

We train explanation classification jointly with action prediction
to align with human reasoning. Table 6 shows that adding
the auxiliary explanation loss through the scaling parameter
A in Equation 1 boosts both explanation and action accuracy.
However, excessive weight can slightly affect the action
classification performance.

Table 6. Tradeoff of Explanation Classification. Increasing the
emphasis on explanation classification leads to a decline in the action
prediction performance.

scaling factor () Action ego-vehicle eXplanation 4
Acc Fy Acc Py Fy(mac)  Fi(mic)

0 7214 71.82 0 14.56 8 8.65

0.01 7107 6994 | 0.71 9.87 33 12.95

0.1 7428 7343 | 571 1736 10.09 14.48

0.5 7321 722 | 2831 3943 24.1 44.06

1 7035  69.23 30 40.02 22.58 46.4

5.3.4. Effect of Temporal Cues

In Fig. 7, we show the impact of temporal cues on action and
explanation performance across CNN and transformer models.
Interestingly, transformers exhibit lower action prediction
accuracy than CNNs, likely due to two factors: (1) CNNs
rely more on spatial features and process limited temporal
context, suggesting that DIP tasks can be addressed at the frame
level but at the cost of explainability, and (2) transformers
undergo stronger regularisation to prevent learning spurious
correlations from noisy data, with the help of random shuffling
as discussed in Sec. 4. This random shuffling disrupts temporal
order, affecting transformer performance, while CNNs remain
unaffected since they are less reliant on temporal information.
The severity s in Fig. 7 represents the degree of reshuffling.
Let T be the total number of frames in the video. We

first divide it into 16 equal segments, each containing ¢ = 1—7(;

frames. Based on the severity parameter s, we merge every
s consecutive segments, forming M = 1—96 merged segments.

From each merged segment, we uniformly sample s frames:

E:{fi,lafi,Qy-"7fi,s}a Z:LaM

where each sampled frame f; ; is selected uniformly from
the 7' merged segment. The total number of sampled frames
sums up to:

M

> IF|=16.

i=1
This indicates that our explanation annotations are influenced
by temporal dependencies.

71.‘ 31
\

-~

Action Accuracy
w
wu
»
/
Explanation Accuracy
4
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12 4 8 . 16 12 4 8 . 16
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Figure 7. Effect of temporal cues. As the severity of frame reshuffling
increases, the action and explanation accuracy of MViTv2 drops
significantly compared to I3D. Notably, explanation accuracy drops
more than action accuracy, indicating the importance of temporal cues
for producing meaningful explanations.

5.4. Qualitative Analysis
5.4.1. GradCAM Visualization

As shown in Fig. 6, the vehicle’s current maneuver is predicted
as “Slow Down”, with intermediate outputs providing ego-
vehicle explanations. This demonstrates that LTM and LCBM
effectively focus activations on relevant features that align
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Table 7. Gaze modality input variants. Having the gaze cropped re-
gions is better than the usual way of overlaying the gaze in the DIP task.

. Action ego-vehicle eXplanation
Variants
Acc P Acc Iy Fi(mac) Fi(mic)
nogaze | 68.11 6794 | 877 1752 9.37 2251
overlaid | 71.57 70.57 | 1403 226 11.86 28.55
50 67.85 6751 | 1428 2424 11.34 28.8
150 7021  69.2 | 20.63 2846 15.22 34.18
250 7263 7242 | 23.74 3336 17.59 40.13
350 7409 7347 | 2642 36.73 18.53 43.49
450 74.64 73.74 | 2526 36.01 19.18 43.46
550 7428 73775 | 24.64 35.67 17.39 43.32

with the predicted explanations. In contrast, the baseline CBM,
without late averaging and LTM, results in more dispersed,
global activations, making it less interpretable.

5.4.2. Label-anchored Multi-label t-SNE Visualization

Visualizing explanations in the feature space is essential for
understanding what the DIP model has learned in maneuver
prediction. When dealing with multi-label explanations,
techniques like t-SNE help interpret the latent space and reveal
relationships between different explanations. However, since
t-SNE is not directly suited for multi-label classification, we
introduce explanations as anchor points within the latent space.
This approach offers two key benefits: (1) anchor points high-
light the degree of correlation among different explanations, and
(2) individual video features are positioned in alignment with
and in close proximity to their relevant anchor points, ensuring
a more interpretable representation of the learned features.

To formalize, let z’; € R¢ be the backbone feature vector for

the i-th sample, for :=1,...,T". For each explanation k, define
(k)

amask indicator s; " as follows,

(%) 1, ifclass k is activated for sample 4,
S =

¢ 0, otherwise.
The aggregated feature representation for the explanation £,
denoted by z, is calculated by applying the mask to the features
and then averaging over the samples where the mask is active,

T (k) s
DS 2

Zk="7 (&
Zi:lsz(‘ )

This aggregated feature z;, serves as an anchor in the 2D
t-SNE space for explanation k. This makes the feature space
more interpretable, revealing degree of causal relationships
learned between explanations.

Fig. 8 illustrates the 17 explanation anchors, each marked
with distinct shapes. This visualization highlights that semanti-
cally related explanations tend to form clusters, while individual
video features (depicted as colored points) are positioned near
their corresponding explanation anchors. For example, if a
video contains both “traffic light is green” and “left turn coming

)

ahead,” its feature representation will be located near both
respective anchors, reflecting the model’s learned associations.

Baseline Proposed
Classes - ) Classes LR
@ straight oy
@ slowDown m
@ Left Tum ER 4o}
® Lefic . ?
Right_Tum
Right_LC o<
unuim ) )
* Anchor Label >
- He
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le 7 | @~ The Ego vehicle is nearing an intersection ||~ ®
|® - The road is clear ahead on the right lane 11 and troffic tght s green P
4

Figure 8. Label-anchored multi-label t-SNE. Colored dots represent
clusters of individual video features. Left: Baseline model exhibiting
a poorly disentangled representation space. Right: Proposed method
demonstrating improved separation of explanation symbols, with
a stronger causal correlation to the videos. The square marker is
positioned at the center, representing a feature commonly observed
across all videos. The hexagon indicates an explanation learned in
scenarios where a U-turn is performed, as a right turn and a right lane
change always accompany it.

Limitations and future scope: Our proposed method gener-
ates high-level explanations while preserving faithful feature at-
tributes. However, GradCAM activations are predominantly ob-
served in the forward direction. This occurs because we assume
that important objects are only considered if they are visible from
both views, i.e, the driver’s gaze should guide, where the model
should focus on from the front view. Consequently, token merg-
ing relies on the assumption that the video frames are at least par-
tially aligned. An interesting direction for future work would be
to investigate the effects of explicitly aligning both views before
performing token merging using techniques like homography.

6. Conclusion

This work introduces a novel paradigm for conceptual
interpretability in driving maneuver prediction. We developed
a comprehensive multi-modal dataset incorporating human-
understandable explanations to help create interpretable models
within the autonomous driving systems. Our analysis of
existing architectures revealed that transformer models excel
at generating explanations due to their inherent temporal bias.
Leveraging this insight, we proposed VCBM, a model that
merges spatio-temporal features to predict localised explana-
tions and reliably represents them through post hoc feature
attribution methods. Additionally, our feature-level visualization
approach effectively elucidates the causal correlations among
explanations, enhancing driver intention prediction systems’
overall transparency and reliability.
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