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Abstract

The widespread availability of off-the-shelf machine
learning models poses a challenge: which model, of the
many available candidates, should be chosen for a given
data analysis task? This question of model selection is
traditionally answered by collecting and annotating a val-
idation dataset—a costly and time-intensive process. We
propose a method for active model selection, using predic-
tions from candidate models to prioritize the labeling of
test data points that efficiently differentiate the best can-
didate. Our method, CODA, performs consensus-driven
active model selection by modeling relationships between
classifiers, categories, and data points within a probabilis-
tic framework. The framework uses the consensus and dis-
agreement between models in the candidate pool to guide
the label acquisition process, and Bayesian inference to up-
date beliefs about which model is best as more information
is collected. We validate our approach by curating a col-
lection of 26 benchmark tasks capturing a range of model
selection scenarios. CODA outperforms existing methods
for active model selection significantly, reducing the anno-
tation effort required to discover the best model by upwards
of 70% compared to the previous state-of-the-art. Code and
data are available at: https://github.com/justinkay/coda.

1. Introduction

The availability of off-the-shelf machine learning models
is growing rapidly. As of this writing there are over 1.9M
pre-trained models available for download from the Hug-
gingFace Models repository [22], ranging from small spe-
cialized models to large general-purpose foundation mod-
els. Application-specific model zoos are growing as well,
curating sets of models for everything from wildlife moni-
toring [18] to medicine [8, 46]. These zoos potentially en-
able accurate data analysis without the need for custom ML
development, but introduce a new challenge: which model,

of the many available, performs best for a given set of

data? Traditionally model selection decisions are made by
collecting labels for a subset of the data in question and
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Figure 1. We introduce CODA, a consensus-driven method for

active model selection. This figure shows the number of labels
needed to converge to the optimal or near-optimal (within 1% ac-
curacy) model in a benchmark suite of 26 model selection tasks.
CODA is significantly more label-efficient than prior work, iden-
tifying a near-optimal model with fewer than 25 labeled examples
over 50% of the time, and with fewer than 100 labeled examples
over 80% of the time.

evaluating the performance of each model on that subset.
To ensure results are robust, these datasets need to be large,
representing significant human effort for each new dataset.

While reducing human effort during training has been
well-studied [35, 59], efficient model selection at test time
is relatively unexplored. Progress on this challenge will
be beneficial for both users of pre-trained models and for
researchers designing label-efficient algorithms. In partic-
ular, the field of unsupervised domain adaptation (UDA)
proposes to adapt algorithms to new data without any hu-
man labels whatsoever, yet successful UDA methods are
highly dependent on the use of human-labeled validation
sets for model selection [15, 24, 28, 29, 42]. This contra-
diction has motivated work in unsupervised model selec-
tion [43, 56, 70], but so far these methods have proven to
be unreliable, especially in challenging real-world condi-
tions [15, 24, 28, 42].

Recently, methods for active model selection have been
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proposed to identify an optimal model from a candidate set
with fewer labels than required by traditional fully-labeled
validation [25, 40, 45, 58]. Active methods use model pre-
dictions to guide the label acquisition process, iteratively
querying a human expert for labels on specific data points
that are expected to be most informative. Though promis-
ing, prior work remains label-inefficient, often requiring
several hundred to several thousand labels to reliably per-
form model selection [40, 45, 58]. There are two key limi-
tations that lead to this inefficiency: (1) models are largely
treated independently of each other, both before and during
the label collection process, ignoring valuable information
captured by model agreement and disagreement; (2) cate-
gories are also treated independently, ignoring correlations
between data points that can be deduced from category-
specific model errors.

In this paper we propose a novel consensus-driven active
model selection method, CODA, to address these limita-
tions. Our approach models relationships between classi-
fiers, categories, and data points in order to make more in-
formed label queries. To do this we revisit classical prob-
abilistic models of the classification data generating pro-
cess. Specifically, we propose a framework inspired by the
Dawid and Skene model of annotator agreement [14, 47],
whereby each classifier is represented by a confusion matrix
that captures its per-category performance characteristics.
We adapt this framework for active model selection by con-
structing a probabilistic estimate over which model is best
that accounts for per-category classifier consensus and un-
certainty. We then iteratively query for ground-truth labels
on data points that are expected to provide maximal infor-
mation about the probability that each model is the best.

We validate our approach by curating a benchmarking
suite of 26 model selection tasks representing a variety of
real-world use cases across computer vision and natural lan-
guage processing, which we publish alongside our method
to support future model selection research. Our approach
exceeds, often significantly, the performance of the previ-
ous state-of-the-art on 18 out of these 26 tasks. In addition,
our method is exceptionally label-efficient, often requiring
fewer than 25 labeled examples to identify the best or near-
best model (see Fig. 1).

In summary, our main contributions are the following:

1. We introduce CODA, a novel method for active model
selection. CODA leverages model consensuses and
Bayesian inference to identify the most informative la-
bels for performing model selection at test time.

2. We curate a benchmarking suite of 26 active model se-
lection tasks to validate our approach and compare with
prior work. We release the data publicly to support fu-
ture research in active model selection.

3. We demonstrate that CODA achieves state-of-the-art
performance on 18 out of 26 tasks in our benchmark.

Additionally, though not the main focus of our work,
we show that CODA’s initialization routine allows us to
match or exceed state-of-the-art unsupervised model se-
lection results on 20 out of 26 tasks.

2. Related work

Model selection in machine learning is typically per-
formed using a held-out “validation” set to select between
different candidate algorithms, hyperparameters, and/or
training checkpoints. Differences between training, valida-
tion, and test distributions create challenges for model se-
lection [3, 27, 30]. While in some cases out-of-distribution
accuracy has been observed to be highly linearly correlated
with in-distribution accuracy [41, 51, 52], in others it has
been observed to be uncorrelated or even negatively corre-
lated [41, 57, 64], indicating that reliable model selection
for a dataset of interest cannot in general be performed us-
ing a validation set from a different data distribution. This
has implications both for pre-trained models sourced from
model zoos, where little or nothing is known about the train-
ing data distribution, as well as for models trained on one
distribution and deployed on another. Our experiments and
benchmarking suite evaluate both settings.
Unsupervised model selection methods perform model se-
lection without the use of test labels. These methods have
largely been proposed in the context of unsupervised do-
main adaptation, where unlabeled test-domain data is avail-
able for training. Unsupervised validation methods in this
setting typically compute a heuristic such as entropy based
on model predictions on this unlabeled test-domain data,
under the assumption that these measures are correlated
with accuracy [43, 53, 56, 69]. Alternatively, methods
may use the accuracy on labeled in-distribution examples,
weighted by their “similarity” to out-of-distribution sam-
ples, as a proxy [70]. Unfortunately, many of these methods
have been shown to be poorly or even negatively correlated
with test-domain accuracy [15, 24, 42].

One key limitation of this family of methods is that they
consider the predictions of individual model checkpoints in
isolation from any other models being evaluated; in con-
trast, recent work has identified the possibility to utilize
the predictions of all models concurrently to better estimate
their individual performance [20, 60]. Our method also har-
nesses this consensus information, but uses a probabilistic
framework to aggregate and update our beliefs about the
prediction set over time.
Active learning and active testing methods intelligently
select informative data points to reduce annotation effort
for training and evaluating machine learning models [31,
32, 35, 44, 59]. Active testing is related to our setup but dif-
fers in that the goal is to estimate the test loss of one model,
rather than select the best from a set of candidates. Exist-
ing methods function by constructing unbiased importance
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sampling estimators of model performance [31]. While it
is possible to perform active model selection by perform-
ing active testing concurrently for all models and selecting
the one with the lowest loss estimate, we will demonstrate
this is significantly less label-efficient than specific targeted
strategies for active model selection.

Active model selection methods have focused predomi-
nantly on the online setting, where data points are observed
in a stream [25, 26, 37]. In contrast, we focus on the pool-
based setting where a static collection of unlabeled data is
available from the beginning. Early work in the pool-based
setting resembles work in active testing, using importance-
weighted loss estimates for each model [40, 58]. As pointed
out by Kossen et al. [32], these importance-sampling-based
approaches exhibit high variance early in the sampling pro-
cess, since metrics are computed solely from the labels col-
lected so far. Practically, this means model selection re-
mains unreliable until a significant number of annotations
have been collected.

Recent work from Okanovic et al. [45] performs active
model selection without importance sampling estimators by
defining a simple single-parameter distribution over which
model is best at any given time. At each time step, the pos-
terior probability for each model being best is updated ac-
cording to Posterior = 1�✏

✏
⇥ Prior if the model gets the

label correct, where ✏ is a hyperparameter determining the
learning rate. This simple probabilistic approach has been
shown to be more label-efficient than prior work, but still re-
quires significant annotation effort to overcome both its un-
informative priors and independence assumptions between
data points. Our method addresses these limitations by con-
structing informative unsupervised priors and by modeling
correlated errors across the test data pool.

Probabilistic models of agreement aggregate annotations
created by a group of human annotators on a dataset. They
do so by modeling a “data generating process” that de-
scribes how annotations are created according to latent ran-
dom variables like per-annotator accuracy. The Dawid-
Skene model [14] (which we describe in more detail in
Sec. 4.1) is an early example that remains popular today.
Initially proposed for aggregating the predictions of doc-
tors regarding patient outcomes, it has since found success
in cleaning crowd-sourced annotations [50, 68] and merg-
ing human- and AI-generated predictions [6, 63, 65]. Many
extensions have been proposed that incorporate Bayesian
inference [47, 48] or more complex data generating pro-
cesses [7, 19, 68]. We extend the general latent variable
framework for active model selection. We do not fit the
model directly to predictions as in prior work; instead, we
use the framework as a starting point and update it itera-
tively to incorporate actively-collected information.

3. Active model selection problem formulation

Models and data We assume that we have a hypothesis
set H = {hk}|H|

k=1 consisting of candidate models from
which we want to select. Each model has generated pre-
dictions on some unlabeled test set D = {xi}|D|

i=1 that we
care about but cannot exhaustively annotate. We assume the
predictive task is a C-way multi-class classification prob-
lem with ĉk,i = argmaxc hk(xi), where ĉk,i 2 {1, . . . , C}
and hk(xi) 2 [0, 1]C are the class prediction and the C-
dimensional prediction vector of model hk on data point xi,
respectively. Our setup is agnostic to whether hk(xi) is a
soft score vector or one-hot labels.
Active data point selection At every time step t, we query a
human expert for a single ground truth label yi. The choice
of which yi to query for is up to the model selection algo-
rithm. We partition D into disjoint unlabeled and labeled
subsets: D = DU [DL. Once a point has been queried for
a ground-truth label it moves from DU to DL.
Model selection and evaluation At each time step t, a
model selection algorithm returns its choice ĥ

(t) of the
model it currently believes is best. To evaluate these choices
we assume that we know the form of the loss function L that
we would use to evaluate each model in H if we had test la-
bels. Our true best model, h⇤ (the one we hope to select), is
the one that minimizes this loss empirically over D:

h
⇤ = arg min

h2H

1

|D|

|D|X

i=1

L (h(xi), yi) , (1)

where yi are the true labels corresponding to xi. In this pa-
per we focus on accuracy-based loss functions; extending
our framework to additional metrics is an interesting direc-
tion for future work.

We evaluate the efficacy of model selection algorithms
based on the regret incurred at each time step, defined as
the difference in loss between our chosen model ĥ(t) and
the true best model h⇤:

Regret
t
=

1

|D|

|D|X

i=1

h
L

⇣
ĥ
(t)(xi), yi

⌘
� L (h⇤(xi), yi)

i

(2)
We also measure cumulative regret at each time step, de-
fined as the sum of all previous regrets:

Cuml. Regret
t
=

tX

s=1

Regret
s

(3)

Note that we can only measure these values while bench-
marking as it requires oracle access to ground truth labels.

4. Method

4.1. A Dawid-Skene model for classifier predictions

The Dawid-Skene (DS) model is a probabilistic representa-
tion of how human annotators generate predictions on a set
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Figure 2. CODA for active model selection. Simplified example with two models. At time step 0 we instantiate a Bayesian framework for
tracking model performance over time (Sec. 4.1), using the consensus of all model predictions to instantiate per-model priors (Sec. 4.2).
At each time step we perform three actions: (1) We estimate PBest, the current probability that each model is best, by integrating over our
current beliefs (Sec. 4.3); (2) We compute the expected information gain in the PBest distribution that would result from labeling each point
in our dataset, and select the argmax as the most informative point (Sec. 4.4); (3) We query for the ground truth label of our selected data
point, evaluate whether each model correctly predicts the true label, and update our beliefs (Sec. 4.5).

of data [14]. We adapt this model for the purpose of instead
modeling the prediction process of machine learning mod-
els. Unlike prior work, we do not fit the model directly to
the set of predictions; rather, we iteratively fit parameters to
actively-collected ground-truth labels over time.

In particular, we base our approach off of the Bayesian
instantiation of the DS model introduced by Passonneau and
Carpenter [47]. We model the prediction process of each
classifier hk using a confusion matrix Mk of size (C,C).
Each row corresponds to a true class c 2 {1, . . . , C} and
each column to a predicted class c

0 2 {1, . . . , C}. Thus
each cell in the matrix represents the conditional probability

Mk, c, c0 = P
�
ĉk,i = c

0 �� yi = c
�
. (4)

Our goal will be to perform statistical inference on the pa-
rameters of this confusion matrix. As such, the components
of the data generating process are represented by random
variables with latent parameters. The data generating pro-
cess proceeds as follows:
1. Each data point’s true class label yi is drawn randomly

from per-data-point prior distributions over which class
that data point could be, yi ⇠ Cat(⇡(xi)).

2. Each row of the classifier’s confusion matrix is drawn
randomly from per-row distributions, Mk, c,· ⇠ ✓k,c,
where ✓k,c is the prior distribution over what the row
of the confusion matrix could be. To accommodate
Bayesian updates, we initialize each ✓k,c to be a Dirich-
let prior.

3. The sampled true class indexes into the corresponding
row of the classifier’s confusion matrix, Mk, yi .

4. The classifier’s prediction for that data point is sam-
pled from the distribution over that row’s cells,
ĉk,i ⇠ Cat(Mk, yi).

See the supplemental material Fig. 9 for an illustrative view.

4.2. Constructing consensus priors (Fig. 2, Step 0)

We begin by collecting each model’s prediction vectors over
the unlabeled dataset D. We take advantage of the “wisdom
of the crowd” (of classifiers) to form initial consensus labels
by summing these probabilities across all models,

si,c =
HX

k=1

hk,c(xi) 8 c = 1, . . . , C,

and then define the consensus label c⇤
i

= argmax c si,c.
For each model hk, we then compare its predictions hk(xi)
against the consensus labels c⇤

i
for all i to initialize empiri-

cal confusion matrices:

M̂k,c,c0 =

|D|X

i=1

�
1
⇥
c
⇤
i
= c

⇤
· hk,c0(xi)

�
(5)

We then use these empirical estimates to create Dirichlet
priors ✓ over our beliefs in each row as:

✓k,c,c0 = (�c,c0 + ↵M̂k,c,c0) / T, (6)

�c,c0 =

8
<

:
1, if c0 = c,

1

C � 1
, otherwise.

(7)

Where ↵ is a hyperparameter controlling a blend between
our empirical estimates and a static prior � representing
50% macro-accuracy, and T is a temperature parameter
controlling the number of initial “pseudo-counts”. We use
↵ = 0.1 and T = 0.5 by default for all experiments.

4.3. Computing PBest (Fig. 2, Step 1)

Throughout the active label collection process, we will cre-
ate and update a probability distribution representing our
belief in which model is best,

PBest =
�
P (h = h

⇤)
�
h2H

(8)
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This distribution is the key component of our model selec-
tion algorithm. At each time step, we return argmaxh PBest
as our choice of model, and (when benchmarking) evaluate
our choice by computing the regret and cumulative regret of
this choice at each time step.

We focus on accuracy as our target metric. In this case
a simple option would be to use the posterior means of
each classifier’s overall accuracy, computed by summing
each row’s diagonal probability weighted by an estimated
marginal class prevalence ⇡̂(c) derived from the consensus:

Accmean(hk) =
CX

c=1

⇡̂(c) M k, c, c (9)

⇡̂(c) =
1

|D||H|

|D|X

i=1

|H|X

k=1

CX

c0=1

hk,c0(xi)Mk, c0, c (10)

Eq. (9) has the benefit of being efficient to com-
pute but ignores the probabilistic nature of our estimates,
failing to account for differences in uncertainty between
classes/classifiers. Remember that we have access to more
than just point estimates of the confusion matrices: we
model our beliefs in what these confusion matrix entries
could be based on what we have observed so far. We do
this with per-row Dirichlet distributions, allowing us to in-
corporate additional uncertainty into accuracy estimates as
follows. First, see that the marginal distribution for the cth
class of the cth row’s Dirichlet distribution (i.e. the diagonal
entry) is a Beta distribution with parameters:

↵k,c = Mk,c,c, �k,c =
CX

c0 6=c

Mk,c,c0 (11)

Then, to compute PBest, we can integrate over the mix-
tures of all models’ per-row Beta distributions weighted by
the class marginal ⇡̂(c) as defined in Eq. (10). Supposing
each classifier hk’s performance Xk is drawn independently
from some distribution with PDF fk(x) and CDF Fk(x),
the integral that computes the probability that hk’s draw ex-
ceeds those of all others is:

PBest(hk) = P
�
Xk = max

l

Xl

�
(12)

=

Z 1

0
fk(x)

Y

l 6=k

Fl(x) dx, (13)

Where the PDFs and CDFs are mixtures over the per-model
per-row Beta distributions from Eq. (11):

fk(x) =
CX

c=1

⇡̂(c)fk,c(x) (14)

Fl(x) =
CX

c=1

⇡̂(c)Fl,c(x) (15)

where fk,c(x) is the PDF of Beta(↵k,c,�k,c) and Fl,c is the
CDF of Beta(↵l,c,�l,c).

Intuitively, to have Xk be the largest draw, we can “fix”
Xk at some value x (with probability density fk(x)), and
then require that all Xl for l 6= k lie at or below x (which
happens with probability Fl(x) each). See supplemen-
tal Fig. 10 for an illustrative view. In our implementa-
tion, we discretize [0, 1] and approximate the above inte-
gral using a trapezoidal rule to integrate. Finally we obtain
PBest =

�
PBest(h1), . . . , PBest(h|H|)

�
.

4.4. Selecting points to label (Fig. 2, Step 2)

To decide which point to label next at each time step, we
aim to pick the one that, on average, reduces our uncertainty
over PBest the most. We quantify our uncertainty using the
Shannon entropy H(PBest). For a candidate point xi, let
⇡̂(c | xi) be the probability that xi belongs to class c under
our current beliefs (as in Eq. (10), without marginalizing).
For each hypothetical label c, we perform a virtual update of
all confusion matrix rows according to the update procedure
defined in the next section (Sec. 4.5, Eq. (18)). This yields a
hypothetical distribution P

c

Best. We measure the new entropy
H(P c

Best) and then revert to our original state. Weighting by
⇡̂(c | xi), the expected posterior entropy is

CX

c=1

⇡̂
�
c | xi

�
H
�
P

c

Best
�
. (16)

Hence, the expected information gain (EIG) for point xi is

EIG(xi) = H
�
PBest

�
�

CX

c=1

⇡̂
�
c | xi

�
H
�
P

c

Best
�
. (17)

At each iteration, we compute EIG(xi) for all unlabeled
points and query the label for the one with the highest EIG,
then perform the real partial update to our Dirichlet param-
eters as in Eq. (18).

4.5. Updating beliefs (Fig. 2, Step 3)

As true labels become available, we update our confusion
matrix estimates to incorporate new information. Consider
we have just observed the label for xi is yi = c. Recall from
Sec. 4.1 that we model each classifier’s class prediction for
xi as a random draw according to row c of its confusion
matrix, ĉk,i ⇠ Cat(Mk, c). We use the fact that our Dirichlet
prior for this row is the conjugate prior for this categorical
distribution to update the Dirichlet for the next time step as:

✓k, c, ĉk,i  ✓k, c, ĉk,i + ⌘ (18)

Where ⌘ is a learning rate hyperparameter allowing for par-
tial updates. When ⌘ = 1 this reduces to the standard
Dirchlet-categorical update rule. In practice, we find that
partial updates with ⌘ < 1 are useful for stability. We use
⌘ = 0.01 by default for all experiments.
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5. Datasets

Models are not re-trained during model selection. Therefore
a model selection benchmark can be represented as a tuple
(p,y), where p 2 R|H|⇥|D|⇥C is the set of predictions for
each model h 2 H , data point xi 2 D, and class c 2 C, and
y = {y1, . . . , y|D|} are the ground-truth labels for each data
point in D. We perform model selection directly on the test
set, i.e. there is no validation/test set split. This matches the
pool-based setting of prior work in active testing and active
model selection [31, 45].

We curate a suite of 26 diverse model selection bench-
marking tasks from 3 different existing benchmarks along
with over 3500 pre-trained models. This benchmark suite
represents the largest empirical study of active model se-
lection to date. In this section we describe the models in
the candidate pool as well as how they were trained. In
some cases, we train these models ourselves; in others, we
source public pre-trained models for which we do not have
any information about the training process. We publish our
benchmark suite, both the curated set of datasets and the
pretrained models, to support future research.
ModelSelector [45] is a benchmark suite focused on pre-
trained models sourced from online repositories such as
HuggingFace Models and PyTorch hub. We source the pre-
diction files directly from the ModelSelector GitHub repos-
itory. We curate tasks for which at least 100 test data points
are available for easy comparison with other datasets in our
benchmarking suite. In total we include ten image and text
based classification tasks: CIFAR10 (low accuracy mod-
els) [33], CIFAR10 (high accuracy models), PACS [34], and
seven tasks from the GLUE language classification bench-
mark [67]. We refer to the vision tasks collectively as MSV
(“ModelSelector Vision”). MSV and GLUE involve be-
tween 9–114 models per task totaling 851 models.
WILDS [30] is a benchmark of in-the-wild distribution
shifts which provides an opportunity to study model se-
lection in the domain generalization setting, where models
have been specifically trained to generalize to new test data.
We focus on all classification tasks in WILDS where per-
forming standard model selection using the provided valida-
tion sets results in a regret greater than 1%, i.e. where active
model selection would be beneficial (experiments included
in supplemental). These tasks are: iWildCam [4], which in-
volves classifying wildlife in imagery; FMoW [10], which
involves classification of land use in remote sensing im-
agery; CivilComments [5], which involves toxicity classifi-
cation of text data; and Camelyon17 [2], which involves tu-
mor classification in histopathology data. These tasks range
from binary to 182-way classification. We train all base-
line algorithms from Koh et al. [30] using their publicly-
available codebase: empirical risk minimization with in-
distribution validation (ERM) [66], CORAL [62], IRM [1],
and GroupDRO [21]. We train each method for the default

number of epochs used by WILDS, saving a checkpoint ev-
ery epoch, resulting in between 20 and 240 models per task
and 348 models total.
DomainNet126 [49, 55] is an unsupervised domain adap-
tation benchmark where the task is 126-way classification
of objects in real and synthetic imagery. We follow Peng
et al. [49] and construct 12 adaptation tasks across 4 do-
mains: real imagery, paintings, clipart, and sketches, and
use the standard UDA training protocol outlined used in
prior work [42, 49, 55]. We use the Powerful-Benchmarker
codebase [43] to train 10 popular unsupervised domain al-
gorithms on DomainNet126: ATDOC [36], BNM [11],
BSP [9], CDAN [39], DANN [17], GVB [12], IM [61],
MCC [23], MCD [54], and MMD [38]. We train each
method for 40 epochs, saving a checkpoint every 2 epochs.
In total, this gives us 10 algorithms⇥ 20 checkpoints = 200
models for each transfer task (2400 models overall).

6. Baselines

We compare our method against five other active model se-
lection methods, ranging from classic approaches to recent
state-of-the-art methods. The methods are:
Random sampling The simplest baseline samples a point
uniformly at random each time step and maintains an em-
pirical risk estimate for each model over time. We perform
model selection by returning the model with the lowest em-
pirical risk estimate at every time step.
Uncertainty sampling [13] We follow Okanovic et al.
[45] to adapt classic committee-based uncertainty sampling
techniques from active learning [13] to the active model se-
lection scenario. At each time step, we greedily sample the
point that most models in H disagree on, defined as the en-
tropy of the mean prediction of all models. We perform
model selection with empirical risk estimation.
Active Testing [31] Active Testing aims to obtain label-
efficient unbiased estimates of model performance through
importance-weighted sampling. To do so, they use a surro-
gate model, which is assumed to be more accurate than any
candidate models in H , to guide the data sampling process.
Points are sampled stochastically in proportion to the esti-
mated loss of the model of interest with respect to the sur-
rogate’s predictions. We adapt the framework to the active
model selection setting as follows: we instantiate the surro-
gate model as the same ensemble we use to form our initial
consensus estimates. We implement a naive extension of the
Active Testing acquisition function that simply sums the ac-
quisition probabilities from all models in the hypothesis set.
We perform model selection with empirical risk estimation
using unbiased risk estimators [16, 31].
VMA [40] VMA is an active model selection extension to
the Active Testing framework. Their acquisition function is
based on minimizing the pairwise variance of the difference
between model loss estimates, where the loss estimates are
the same importance-weighted estimates as [31]. Again we
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Task Random Uncertainty Active VMA Model CODA

Sampling Testing Selector (Ours)

D
om

ai
nN

et
12

6

real!sketch 147.1 197.7 269.8 119.2 88.8 101.2
real!painting 143.6 167.9 118.9 139.9 92.1 87.2

real!clipart 237.7 217.6 152.1 206.9 153.2 231.7
sketch!real 280.4 252.7 236.4 273.4 268.4 11.9

sketch!painting 156.6 181.9 237.7 157.1 173.9 13.0

sketch!clipart 228.2 224.6 162.0 227.9 38.1 432.4
painting!real 364.8 224.0 215.6 358.9 293.4 2.4

painting!sketch 179.3 440.7 202.5 211.5 209.8 72.3

painting!clipart 222.7 296.6 251.4 271.8 73.2 43.1

clipart!real 322.1 177.1 159.1 306.4 72.7 25.3

clipart!sketch 247.2 924.8 282.6 291.3 532.7 51.3

clipart!painting 147.0 162.9 222.6 167.9 131.7 122.2

W
IL

D
S iwildcam 287.0 380.4 392.1 440.6 459.0 201.7

camelyon 175.2 311.6 206.1 160.1 198.3 288.7
fmow 189.7 191.9 153.0 189.2 211.7 70.0

civilcomments 140.9 13.3 76.7 50.1 125.3 318.6

M
SV

cifar10-low 410.6 629.7 399.9 476.5 567.2 58.7

cifar10-high 346.2 281.7 154.9 383.7 90.9 74.1

pacs 216.6 6.9 101.8 116.5 97.9 57.9

G
LU

E

cola 368.1 169.5 239.8 317.8 207.8 2226.7
mnli 237.4 80.8 234.2 312.8 148.5 23.5

qnli 222.7 231.6 246.6 283.0 185.7 120.4

qqp 136.7 388.9 127.8 169.2 186.8 4.8

rte 375.7 390.3 424.4 674.7 243.6 283.8
sst2 219.9 89.6 174.9 373.6 202.0 51.7

mrpc 318.2 301.1 235.2 332.3 173.1 49.0

Table 1. Active model selection main results: cumulative re-

gret at step 100. Best method per task in bold, second best under-
lined (lower is better). CODA is state-of-the-art on 18 out of 26
tasks, often significantly outperforming the next-best method, e.g.
by 90⇥ on painting!real. Variances reported in supplemental.

instantiate the surrogate model as the ensemble of all mod-
els in H and return the model with the lowest unbiased risk
estimate every time step.
ModelSelector [45] ModelSelector is currently the state-
of-the-art method for active model selection. It utilizes a
probability distribution similar to our PBest, but computes
this independently of any per-model performance metrics.
Their PBest is updated according to the following update
rule: PBest,t+1(hk) = 1�✏

✏
⇥ PBest,t+1(hk) if hk gets the

label at time t correct. ✏ is a learning rate hyperparameter
that is set with a self-supervised protocol. We follow this
protocol using their codebase to find the optimal ✏ for any
datasets that they do not benchmark in their paper.

7. Experiments

Experimental settings All results are reported as the mean
over five random seeds. We do not tune the hyperparame-
ters of our method on each dataset; instead we select fixed
values {T = 0.5,↵ = 0.1, ⌘ = 0.01} based on a limited set
of initial experiments.
Active model selection results Our main results for active
model selection are shown in Tab. 1. We use accuracy as
our loss function and cumulative regret at step 100 as our
main point of comparison for all methods, as this provides
a summary of overall performance in the few-label regime
where active selection is most impactful. We report addi-
tional metrics in the supplemental. For a more detailed look
at performance within this time window, we visualize the re-

Figure 3. Active model selection average results. We visual-
ize regret (top row) and cumulative regret (bottom row) from time
steps 1 to 100, median value across all tasks within benchmarks.
Lower is better. CODA is consistently the best performer over time
for all settings except the binary classification tasks in WILDS.
Full per-task results in supplemental.

gret and cumulative regret over time in more detail in Fig. 3
and for all tasks separately in the supplemental.

CODA outperforms all prior work on 18 out of the 26
datasets tested, often significantly, resulting in an over 80%
reduction in regret compared to the next-best method on 5
datasets, greater than 50% reduction compared to the next-
best on 11 datasets, and greater than 25% reduction from
the next-best on 15 datasets. The next-best method is in-
consistent across benchmarks. Of the eight datasets where
ours is not the best method, uncertainty-based sampling and
ModelSelector are best on three each while Active Testing
and VMA are best on one each. Our method performs worst
on CoLA and CivilComments, where we underperform ran-
dom sampling by 6.1⇥ and 2.3⇥, respectively. We analyze
these successes and failures in more detail in the remainder
of this section.
Ablation studies First we ablate the priors used by our
method in Fig. 5. We see that the consensus-informed
priors introduced in Eq. (5) are a key component of our
good performance. Removing them increases regret signifi-
cantly during the early parts of the label acquisition process.
We also see that the diagonal-weighted prior introduced in
Eq. (7) to regularize the consensus priors performs better
than uniform on some, but not all, datasets regardless of the
number of classes. Note that in binary classification, the
uniform and diagonal settings are equivalent.

In Fig. 6, we ablate our acquisition function (expected in-
formation gain w.r.t. PBest, Eq. (17)). We compare with ran-
dom sampling as well as uncertainty-based sampling [13]
which greedily selects the data point with the largest Shan-
non entropy in the mean prediction of all models. We
see that expected information gain results in the lowest cu-
mulative regret in most cases. However we also see that
uncertainty-based sampling also performs well in combi-
nation with the CODA probabilistic framework, sometimes
outperforming expected information gain.
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Figure 4. Failure analysis on CivilComments and CoLA.

CODA may underestimate the performance of very biased classi-
fiers in early steps (CivilComments, left), but overestimate them in
later steps (CoLA, right) when there is also data imbalance present
(blue bars). More details in Sec. 7.

Limitations and failure analysis We investigate CODA’s
poor performance on CivilComments and CoLA in Fig. 4.
We find that poor performance in these cases is caused by
a combination of data imbalance and model bias. CODA
uses the predicted class marginal in its updates (Eq. (17)),
but regularizes this to counteract overconfident predictions
(Eq. (7)). In CivilComments this causes us to upweight the
contribution of minority class predictions early on, requir-
ing a moderate amount of samples to identify the imbalance.
In addition, the best model on CivilComments is extremely
biased, with 98% accuracy on the majority class but only
54% accuracy on the minority class, exacerbating the prob-
lem when selecting based on micro-accuracy. Similarly, in
CoLA, CODA selects a very biased model—one that only
predicts the negative class—later in the model selection
process (step 70) again because the dataset is estimated to
be more balanced than it actually is. We note that these fail-
ures are exceptional cases, as CODA performs well on other
datasets with significant imbalance (e.g. iWildCam). This
points to interesting directions for future work to address
data imbalance, model bias, and use-case specific metrics.
Additional unsupervised results Though not the main fo-
cus of this paper, our method can also be used to perform
unsupervised model selection by using only the consensus-
informed priors to compute PBest. We show that this is re-
markably effective, matching or outperforming the previous
state-of-the-art in unsupervised model selection in 20 of 26
benchmarks, in the supplemental material.

8. Conclusion and future work

We have introduced a new method for active model se-
lection that can identify the best model in a pool of can-
didates with significantly fewer human labels than prior
work. The ability to do so has implications for users of
pre-trained machine learning models, who can use CODA
to efficiently select the best model for their dataset, as well
as for researchers in fields such as domain adaptation who
face model selection challenges during model development.

Our work opens up several exciting areas for future re-
search. Within the active model selection framework there
are several interesting directions: (1) How to better con-
struct and utilize informative priors, whether from unsuper-

Figure 5. Ablation of CODA prior design. We compare a uni-
form prior on the confusion matrices (top row) with diagonal up-
weighting (“Diag.” column; Eq. (7)) and consensus prior (“Cons.”
column; Eq. (5)) we introduce. For binary classification tasks,
uniform and diagonal weighting are equivalent. In most cases,
both the consensus prior and diagonal upweighting provide bene-
fits, and are complementary.

Figure 6. Ablation of CODA acquisition function. We use
the CODA probabilistic framework and compare different data
point acquisition functions: random sampling, uncertainty-based
sampling, and expected information gain (EIG, the default). We
see that EIG typically improves upon other sampling approaches,
however uncertainty-based sampling is also a strong acquisition
function in combination with the rest of the CODA framework.

vised procedures or by incorporating human-provided do-
main knowledge; (2) Extending the active model selection
framework beyond accuracy and classification to support
more tasks and target metrics; (3) Exploring more sophis-
ticated probabilistic models that better capture predictive
quantities such as model confidence.

More broadly, active model selection can be seen as one
facet of a larger research goal of how to best utilize hu-
man effort in the development and deployment of machine
learning systems. We show that active model selection is
a particularly effective use of annotation effort, but there
are many things that could be done with collected labels,
either in serial or in parallel. For example, an interesting
research direction is how to perform active learning and/or
active testing concurrently with active model selection, and
how to efficiently allocate effort to the different tasks. We
hope our work can provide a strong starting point for inves-
tigating these questions.
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