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Figure 1. Representative video results using Free?Guide, a novel framework that enables training-Free, gradient-Free video Guidance
leveraging a Large Vision-Language Model. Each image shows the first frame of a video.

Abstract

Diffusion models have achieved impressive results in gen-
erative tasks for text-to-video (T2V) synthesis. However,
achieving accurate text alignment in T2V generation re-
mains challenging due to the complex temporal dependen-
cies across frames. EXxisting reinforcement learning (RL)-
based approaches to enhance text alignment often require
differentiable reward functions trained for videos, hindering
their scalability and applicability. In this paper, we pro-
pose Free’Guide, a novel gradient-free and training-free
[framework for aligning generated videos with text prompts.
Specifically, leveraging principles from path integral control,
Free?Guide approximates guidance for diffusion models us-
ing non-differentiable reward functions, thereby enabling the
integration of powerful black-box Large Vision-Language
Models (LVLMs) as reward models. To enable image-trained
LVLMs to assess text-to-video alignment, we leverage stitch-
ing between video frames and use system prompts to capture
sequential attributions. Our framework supports the flexi-

ble ensembling of multiple reward models to synergistically
enhance alignment without significant computational over-
head. Experimental results confirm that Free?Guide using
image-trained LVLMs significantly improves text-to-video
alignment, thereby enhancing the overall video quality. Our
results and code are available at our project page .

1. Introduction

Diffusion models [21, 33, 34, 36] have emerged as pow-
erful and versatile tools for generative modeling, achieving
state-of-the-art results in tasks that require fine-grained con-
trol over content generation, such as text-to-image (T2I) [33]
and text-to-video (T2V) generation [7, 15]. However, achiev-
ing perfect alignment with text conditions remains a signifi-
cant challenge [12]. This issue becomes even more challeng-
ing in the video domain, where maintaining text-relevant
content across frames requires handling complex temporal

Ihttps://free2guide.github.io/
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dependencies, often resulting in misalignment between gen-
erated frames and the given text prompt.

In the image domain, reinforcement learning (RL)-based
methods have been introduced to address challenges in text-
guided T2I generation by using reward models to estimate
human preferences within diffusion models [2, 10, 47, 48].
Previous works mainly focus on either directly fine-tuning
the diffusion model with gradients derived from a reward
function [6, 30, 31] or employing an RL-based policy gradi-
ent approach [2, 10]. While these fine-tuning methods can
effectively improve sample alignment, they have notable lim-
itations: the former requires a differentiable reward function,
while the latter is typically limited to only few prompts.

Directly adapting these text alignment approaches for
the video domain presents two main challenges. First, they
often require a dedicated video-specific reward function or
additional training on curated video datasets. Collecting
large-scale, aligned text-video datasets is far more complex
than gathering image data, and developing reward functions
tailored to video tasks is similarly difficult. Second, even
with trained reward models for the video domain, additional
challenges such as substantial memory demands for back-
propagation emerge, which grow proportionally as model
scale increases (i.e., scaling laws) [19].

An alternative approach involves using differential re-
ward models during inference time to guide diffusion mod-
els without fine-tuning model parameters [42]. However,
guidance-based methods still require a differentiable re-
ward function, which excludes non-differentiable options
like state-of-the-art visual-language model APIs or human
preference-based metrics. To address this, recent studies
have explored stochastic optimization to guide diffusion
models during the sampling process using non-differentiable
objective functions in music generation [17], and concurrent
research extends this idea within the image domain [50, 51].
However, such methods cannot be directly applied to video
diffusion models due to the complex temporal dependencies
involved.

To address these issues, here we introduce Free?Guide—
a novel text-to-video alignment method by leveraging
the temporal understanding capabilities of Large Vision-
Language Models (LVLMs). Specifically, Free?Guide aligns
text prompts in video generation without requiring gradients
from the reward function. More specifically, drawing on
principles from path integral control, Free?Guide approxi-
mates guidance to align generated videos with text prompts,
regardless of the reward function’s differentiability. Another
important contribution of this paper is a technique to adapt
image-based LVLMs for temporal understanding. In par-
ticular, we concatenate video frames in a structured grid
layout, and design prompts that explicitly indicate sequence
order and reasoning to help LVLMs evaluate videos more
comprehensively. By doing so, Free?Guide enables the use

of powerful black-box vision-language models as reward
models, improving text-video alignment, as illustrated in Fig.
1. Finally, our framework allows for the flexible combination
of reward models by eliminating the need for computation-
ally intensive fine-tuning and backpropagation. As such,
we explore several combinatorial approaches to collaborate
LVLMs with existing large-scale image-based models. Ex-
tensive experiments show that our methods improve text
alignment and the quality of generated videos.

Our contributions are summarized as follows:
We introduce Free?Guide, a novel framework for align-
ing generated videos with text prompts without requiring
gradients from the reward function. To the best of our
knowledge, Free?Guide is the first gradient-free guidance
approach for text-to-video generation that requires no ad-
ditional training.
* We adapt non-differentiable image-based LVLM APIs to
enhance text-video alignment by leveraging stitching and
prompt design to capture video-specific attributes.
We develop an effective ensemble approach that integrates
large-scale image-based models to improve video genera-
tion guidance.

2. Related Work

Text-to-Video diffusion model Text-to-Video diffusion
models (e.g., LaVie [43], VideoCrafter 3, 4]) employ diffu-
sion processes to generate coherent video sequences from
textual prompts [13, 16, 27]. However, a notable limitation is
that video diffusion models often struggle to generate videos
that align accurately with the given text prompts, specifically
in terms of spatial relationships (e.g., “A on B”) and the
representation of temporal style (e.g., “zooming in”).
Diffusion model with LVLM feedback While several ap-
proaches have been proposed to improve the diffusion gener-
ation process with Large Language Models (LLMs) [11, 25,
46, 52], there has been limited exploration of methods lever-
aging Large Vision Language Models (LVLMs) that can also
handle image domains. Recent works explore the integration
of LVLMs as a feedback mechanism to image diffusion mod-
els to enhance control and guide diffusion processes. For
instance, RPG [49] utilizes an LVLM as a planner to ma-
nipulate cross-attention layers in the diffusion model, while
Demon [50] demonstrates that LVLMs can guide diffusion
in alignment with a given persona. In contrast, our approach
leverages LVLMs’ ability to comprehend stitched images,
utilizing this capability to enhance frame-to-frame dynamic
understanding and applying it within the video domain to
improve text-video alignment.

Human Preference Alignment via Reward Models Align-
ing with human preferences has improved generative quality
in diffusion models through fine-tuning diffusion model us-
ing reward model gradients (DRaFT [6], AlignProp [30]) or
policy gradients (DDPO [2], DPOK [10]). On the other hand,
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Figure 2. Overall pipeline of training-free gradient-free Free>?Guide. Free>Guide leverages LVLMs’ ability to comprehend stitched images,
utilizing this capability to enhance frame-to-frame dynamic understanding and applying it within the video domain to improve text-video
alignment. It also enables an effective ensemble approach that integrates large-scale image-based models to improve video generation

guidance.

DOODL [42] and Demon [50] guide the denoising process
to achieve text alignment without training diffusion models.
Note, however, that the previously mentioned methods all
focus on the image domain. Recent work VADER [31] fine-
tunes a pre-trained video diffusion model using gradients
of reward models for aesthetic and text-aligned generation.
While this approach shows promising results for using video
reward models, it demands substantial memory and does
not utilize LVLMs. We address these limitations by propos-
ing a text-video alignment method that approximates image
reward gradients without fine-tuning.

Zeroth-order gradient approximation Zeroth-order gra-
dients, or gradient-free approaches, approximate gradi-
ents of non-differentiable functions by evaluating multiple
points [26, 28]. In diffusion-based inverse problems, meth-
ods like EnKF [51] and SCG [17] leverage gradient-free ap-
proximations to guide sampling based on non-differentiable
or black-box forward models. However, there is a lack of
research specifically focused on gradient-free approaches to
guide sampling for video diffusion models. In video diffu-
sion models, approximating a black-box reward model with
a zeroth-order gradient is advantageous, as gradients of the
reward are unavailable and the high-dimensional space of
video data imposes memory limitations.

3. Preliminaries

3.1. Video Latent Diffusion Model

Video Latent Diffusion Models (VLDMs) learn a stochas-
tic process by iteratively denoising random noise generated
by the forward diffusion process [7]

q(zt|z0) = N(z4; V1 — 0y 2, 1), e

where zo = £(x) is the latent encoding of the clean video
with encoder £ and @; is a noise scheduling coefficient at

timestep . The VLDM estimates the noise in z; by minimiz-
ing the following objective:

Ez07€7t,0 [”6 - CQ(Zt,t,C)Hz} ) 2

where € ~ A/(0,1) and c represents the conditioning input.

To retrieve a clean latent representation, we use a reverse-
time Stochastic Differential Equation (SDE) sampling pro-
cess:

dzy = f(z)dt + g(z¢) dw

= [(20) — 9=V, lozp(z)] dt + (=) dvv.
where f and f are the drift term for the forward SDE and
reverse SDE, respectively, g is the diffusion coefficient, and
w represents a reverse time Wiener process. The initial
point for reverse SDE is sampled from a normal Gaussian
distribution. By discretizing the reverse SDE with an ap-
propriate noise schedule, the VLDM retrieves a clean latent
representation based on the DDIM [35] trajectory,

o 11—y 1 Qi
te 1—ay Qi1
1
2ot = \/7@7 (Zt — V1 —aeq(z,t, C))
Zio1 = a1z + /1 — &1 — 07e€g(z4,t,€) + oy,

4)

where o controls the stochasticity of sampling, € ~ A(0, I)
and zg|; = [E[20|2;] denotes the posterior mean or denoised
version of z;, computed by Tweedie’s formula [8]. To trans-
form the latent representation back to the video domain, a
decoder D is used to decode the latent.
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3.2. Guidance in Diffusion Model

Given the reverse SDE in Eq. (3), our goal is to obtain
the optimal control u(z;) :

dz; = [f(zt) + u(z)] dt + g(z) dw, 5)

which directs the sampling process toward target distribution
p(zt|y), where y represent a desired condition, such as label,
class or text prompt [45]. In classifier guidance [29], if an
auxiliary classifier is available to estimate the likelihood
p(y|z:), the control term can be defined as

U(Zt) = _g(zt)2wVZt 1ng(y|Zt), (6)

where w is a scaling factor that adjusts the strength of the
guidance. This control term follows from applying the Bayes
rule to express p(2:y) o< p(z[y)p(y|z:)".

One might consider adapting classifier guidance by treat-
ing the reward model as a classifier. However, this approach
presents two challenges: the reward model is not trained on
noisy latent representations z; and requires differentiability.
To alleviate these limitations, we utilize a path integral con-
trol approach with zeroth-order gradient approximation, as
described in the following Section 3.3.

3.3. Path Integral Control

Considering the diffusion model as an entropy regular-
ized Markov Decision Process (MDP), we can conceptualize
reverse SDE in the Reinforcement Learning (RL) frame-
work [2, 10, 40] with the state s; and the action a; corre-
sponding to the input z;. In this formula, the optimal policy
p* maximizes the following objective:

1

]E;D[r(zO) -« Z DKL(p(zT—1|zT)||p9(z7'—1‘z7'))]a (7)
=T

where o is a coefficient of KL divergence with orig-
inal policy pg defined by diffusion model. Let
po(zi-1]2z:) = N(pi,021) be a reverse transition distri-
bution in the SDE for the diffusion model and pg(zo.¢) :=
po(2z¢)L_ p(z,_1]|2,). We can define a value function as

o (") = o (M Y
e [ (72 1],

satisfying v(zg) = r(zo) is a reward function [40].

The optimal control to address the entropy-regularized
MDP system can be obtained by solving the Hamilton-
Jacobi-Bellman (HJB) equation as follows [17, 41]:

®

9
u(z) = 7M. )

«

However, this term requires the gradient of the value func-
tion. To bypass the gradient requirements, one can use path
integral control, which is an approach to estimate the optimal
control (or guidance) based on the principles of stochastic
optimal control [20, 39, 41]. In [17], the optimal control can
be approximated as

E [GXP (@) (z¢—1 — Nt)|zt}
E[exp (%) 121
While SCG [17] utilizes this optimal control with diffusion

models to solve inverse problems in image domain, we aim to
use LVLMs to guide videos toward improved text alignment.

u(z) ~ — (10)

4. Free’Guide

In this section, we introduce Free?Guide, a framework
that uses a non-differentiable reward model to guide video
generation during the sampling process. In Sec. 4.1, we
discuss how to apply image-based reward models, including
LVLM, for text-video alignment. Sec. 4.2 outlines methods
for ensembling multiple reward models to achieve synergis-
tic effects. Finally, we interpret the diffusion model as an
entropy-regularized MDP and describe its practical imple-
mentation (Sec. 4.3).

4.1. Video Guidance leveraging Image LVL.Ms

Motivation By leveraging the path integral control approach
discussed in Sec. 3.3, we can guide the reverse process
without relying on the gradient of the reward function. If
the reward model » in Eq. (10) assesses the alignment of
the generated video with the text prompt, it can help steer
the video output to enhance fidelity to the prompt. However,
due to the complexity of videos compared to static images,
there are limited large-scale models specifically trained for
video and text alignment. We analyze the impact of video-
based reward models on video guidance and find that their
effectiveness is limited (see Appendix D.1).

Applying these image-based reward models directly for
video guidance, of course, presents challenges. Image-based
models are not designed to process time-dependent features,
such as motion, flow, and dynamics, so specific adaptations
are required for these models to assess text-video alignment.
As shown in Algorithm 1, we calculate the reward for a
video by summing frame-by-frame rewards from the image-
based model. This approach enables alignment with spatial
information within individual video frames but still lacks
guidance on temporal dynamics.

Image-based LVLMs as a Video Reward Model Al-
though LVLMs are trained on static image-text data, their
extensive pretraining across diverse visual contexts enables
them to implicitly capture elements of motion. As shown in
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Table 1 of [38], treating video as an image grid in LVLMs
strongly correlates with human evaluation. Furthermore, re-
sults from [22, 24] demonstrate that image-based LVLMs
achieve performance comparable to video-specific LLMs in
video QA, validating our approach.

Accordingly, to adapt LVLMs for evaluating multiple
frames simultaneously, we employ a method called stitching,
which combines key frames into a single composite image
(see Fig. 2). Specifically, we first sample key frames from
the video and arrange them in a structured grid layout, label-
ing each frame with its index to indicate its position in the
sequence. This approach allows LVLMs to process tempo-
ral information by leveraging spatial relationship between
frames.

Then, to help LVLMs understand frame order within the
composite image, we provide explicit sequence instructions
through a system prompt. This efficient adaptation enables
LVLMs to recognize frame order by referencing frame num-
bers rather than processing them linearly. We incorporate
Zero-shot Chain-of-Thought [23] in the system prompt to
enhance reasoning ability and mitigate hallucinations. In the
user prompt, we instruct the LVLM to consider every key
frame individually and evaluate the alignment score between
the composite image and the text prompt on a scale of 1 to 9.
The full system instructions and query templates are detailed
in Appendix A.

4.2. Ensembling Reward Functions

Unlike gradient-based guidance, our method significantly
reduces memory requirements by avoiding the computation-
ally intensive backpropagation process. This enables us to
concurrently employ multiple rewards for sampling guid-
ance, potentially leading to synergistic benefits with large-
scale image models. We explore ensemble methods that
allow LVLMs to incorporate temporal information, thereby
supporting more effective guidance for video alignment
when combined with large-scale image models. Note that
Demon [50], a concurrent work that also proposed ensemble
rewards, failed to show the synergy effect of ensemble and
did not have to handle temporal information.

Given the n videos {V; }1_,, we propose three ensembling
methods to combine multiple reward models: Weighted Sum,
Normalized Sum, and Consensus.

e Weighted Sum: This method combines the outputs by
computing a fixed weighted sum, allowing us to control
the influence of each reward model.

Rewardens(V;, 71, 72) = Br1 (Vi) + (1 = B)ra(V5), (11)

where 5 € [0, 1] is a constant weight factor that balances
the contributions of reward models 7; and r5.

¢ Normalized Sum: To ensure a balanced contribution of
each reward models, we first normalize each reward’s

Algorithm 1 Reward Model r(D(z;), ¢)

Require: Reward function r, condition ¢, prompt p, de-
coded frames xo; := D(zo;), and key frames k C
[1,N]
if r is CLIP then
reward < ), sim(r(wélt), r(c))
else if r is ImageReward then
reward < 3=, (2, )
else if 7 is LVLM then
reward < r(concat;er(xf,), ¢, p)
end if
return reward

N A O o e

Algorithm 2 Free?Guide

Require: Video diffusion model €y, reward function r, de-

coder D, noise scheduling parameter {&; }7_,, {o¢} 1,
1: fort =T to1do

Zop \/% (ze — VT = azep(zr))

3 21— Vazop + /1 — a1 — ofeg(z)

4 €l e~ N(0,T)

5: zi | 21+ o€

6 2y \/% (zio1 — VI —a—ieo(2i_1))

7.

8

9

»

r1 < LVLM
if Ensemble then
ry € {CLIP, ImageReward}
10: j « argmax; Rewardens(D(zé‘Fl),rl,7*2)
From Sec. 4.2.

11: else
12: j < argmax; r1(D(2,_,).c)
13: end if
14: Zi_1 zf_l
15: end for

16: return zg

output to the range [0, 1], then sum these normalized values
to get the final ensemble reward.

B r(V;) — min(r(V;))
Rewardens(V;, 71, 72) = Zr: max(r(V;)) — min(r(V;))’

(12)
where max(r), min(r) represents the maximum and min-
imum score from n reward outputs.

* Consensus: Inspired by the Borda count [9], each re-
ward model ranks the videos from best to worst, assigning
points,. based on their rank. The top-ranked video receives
the maximum points, down to 1 point for the lowest rank.
The total reward for each video V; is the sum of points
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from both reward model.

Rewardens(Vi, 71, 72) = points,., (V;) + points,, (V7).
(13)

4.3. Guidance using Path Integral Control

To guide the reverse sampling process without computing
the gradient of the reward function, we utilize the framework
outlined in Eq. (10). However, the expectation of the reward
function in Eq. (10) demands extensive network function
evaluations (NFE) by solving complex differential equations,
such as PF-ODE [36]. Inspired by [17], we instead apply
the DPS [5] approach to approximate Eq. (8) by using the
posterior mean of z;, as defined in Eq. (4). Following DPS,
we can set p(zo.t) = d(z — E[z0|2]) using Direc delta
distribution § in which case Eq. (10) becomes:

Epg(ze_1]20) [exp (W) (2¢-1— ut)]

o <@) (14)

To approximate this expectation using the Monte Carlo
method, we sample n different z;_; through the reverse
SDE as outlined in Eq. (4). Then we assume o« — 0 to ob-
tain optimal control. Under this assumption, Eq. (3) becomes
equivalent to selecting the z;_; that maximizes the reward of
zo|¢—1 [17]. While [17] arbitrarily weighted the reward func-
tion and assumed the weight to be zero, we interpret this as
relaxing the entropy-regularization term in Eq. (7) by defin-
ing the diffusion process as an entropy-regularized MDP. In
practical terms, this approach eliminates careful parameter
exploration by selecting z;_; with the largest reward.

By following this adjusted sampling strategy as described
in Algorithm 2, Free?Guide can efficiently steer video gen-
eration towards better alignment with the reward signals.

u(zy) ~ —

5. Experiments

Baselines and Sampling Strategy. We use open-source text-
to-video diffusion models, LaVie [43] and VideoCrafter2 [4],
as baseline models. The generated videos contain 16 frames
with a resolution of 320 x 512. We employ LVLM as
GPT-40-2024-08-06 [1] using OpenAl APIs. We employ
two large-scale models CLIP [32] and ImageReward [48],
to validate that LVLM’s capability to account for tempo-
ral dynamics can enhance text-video alignment when used
alongside large-scale image reward models. In CLIP, we can
assess alignment by measuring cosine similarity between
text and image embeddings. On the other hand, we can use
ImageReward output as an reward since it predicts human
preference for image-text pairs. For adaptation to the video
domain, we extract key frames from each denoised video and
sum the reward for each frame to evaluate overall alignment,
as outlined in Algorithm 1.

We employ stochastic DDIM sampling with 7 = 1 in
Eq. (4) for a total of T = 50 steps and apply classifier-free
guidance [14] using a guidance scale of w = 7.5 for LaVie
and w = 12 for VideoCrafter2. The number of samples at
each guidance step is set to n = 5 for LaVie and n = 10
for VideoCrafter2. Guidance is applied during the early
sampling steps, specifically within ¢ € [T,T — 5]. In the
weighted sum ensemble, we assign a weight of 8 = 0.75 to
the LVLM reward.

Text Alignment Evaluation. We conduct quantitative evalu-
ation using VBench [18], a benchmark designed to evaluate
the alignment of text-to-video (T2V) models with respect to
a text prompt. Our evaluation protocol measures text align-
ment across six dimensions: Appearance Style, Temporal
Style, Human Action, Multiple Objects, Spatial Relationship
and Overall Consistency. For a fair comparison, we use
standardized prompts for each metric, ensuring consistent
conditions across different models.

General Video Quality Evaluation. In addition to text
alignment, we evaluate the general quality of generated
videos independently of text prompts using six metrics in
VBench: Subject Consistency, Background Consistency, Mo-
tion Smoothness, Dynamic Degree, Aesthetic Quality, and
Imaging Quality.

Video-specific Attributes. Since VBench prompts involve
limited movement, we conducted additional experiments us-
ing T2V-CompBench [38] to analyze video-specific motion
and dynamics. We measure Dynamic Attribution Binding,
which evaluates how well models handle state changes (e.g.
shape and texture) and color variations over time.

5.1. Results

In this section, we present both qualitative and quantita-
tive results to demonstrate the effectiveness of our method.
The top four rows of Fig. 3 shows visual comparisons be-
tween the baseline and reward models. We observe that
leveraging the GPT-40 model to assess text-video alignment
improves alignment with respect to temporal dynamics (e.g.
"tilt down") and semantic representation (e.g. "A and B").
These results indicate that LVLLM can account for tempo-
ral information by processing multiple sub-frames of video
simultaneously, with strong performance in spatial under-
standing.

Building on LVLMs’ capability to account for temporal
dynamics, we validate the feasibility of ensembling tech-
niques that integrate guidance from large-scale image mod-

Method Avg. Method Avg.

LaVie + CLIP 0.5712 LaVie + ImageReward 0.5676
+ GPTWeighted Sum 0.5738 + GPTWeighted Sum 0.5726
+ GPTNormalized sum ~ 0.5734 + GPTNormalized Sum 0.5715
+ GPTconsensus 0.5679 + GPTconsensus 0.5692

Table 1. Qualitative comparison between ensemble methods.
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Figure 3. Qualitative results of our method. Comparison with LaVie on the left and VideoCrafter2 on the right.

Method Appearance Style Temporal Style Human Action ~Multiple Objects ~ Spatial Relationship ~ Overall Consistency ~ Avg.
LaVie [43] 0.2312 0.2502 0.9300 0.2027 0.3496 0.2694 0.3722
+ GPT 0.2366 (+2.3%) 0.2508 (+0.2%)  0.9300 (-0.0%)  0.2546 (+25.6%) 0.3531 (+1.0%) 0.2709 (+0.6%) 0.3827
+ CLIP 0.2370 (+2.5%) 0.2490 (-05%)  0.9400 (+1.1%)  0.2607 (+28.6%) 0.3074 (-12.1%) 0.2738 (+1.6%) 0.3780
++ GPT 0.2350 (+1.6%) 0.2487 (-0.6%) 1.000 (+75%)  0.2447 (+20.7%) 0.3180 (-9.0%) 0.2742 (+1.7%) 0.3868
+ ImageReward 0.2360 (+2.1%) 0.2483 (-0.8%)  0.9300 (-0.0%)  0.2637 (+30.1%) 0.2614 (-25.2%) 0.2728 (+1.2%) 0.3687
++ GPT 0.2373 (+2.6%) 0.2497 (-02%)  0.9400 (+1.1%)  0.2462 (+21.4%) 0.3014 (-13.8%) 0.2772 (+2.9%) 0.3753
VideoCrafter2 [4] 0.2490 0.2567 0.9300 0.3880 0.3760 0.2778 0.4129
+ GPT 0.2504 (+0.6%) 0.2568 (+0.0%) 0.9500 (+2.2%) 0.4878 (+25.7%) 0.4225 (+12.4%) 0.2872 (+3.4%) 0.4425
+ CLIP 0.2542 (+2.1%) 0.2621 (+2.1%)  0.9300 (-0.0%) 0.4261 (+9.8%) 0.2923 (-22.3%) 0.2802 (+0.9%) 0.4075
++ GPT 0.2490 (+0.0%) 0.2612 (+1.8%)  0.9600 (+3.2%)  0.4474 (+15.3%) 0.3361 (-10.6%) 0.2837 (+2.1%) 0.4229
+ ImageReward 0.2513 (+0.9%) 0.2574 +0.3%)  0.9700 (+43%)  0.4733 (+22.0%) 0.4264 (+13.4%) 0.2826 (+1.7%) 0.4435
++ GPT 0.2533 (+1.7%) 0.2607 (+1.6%)  0.9400 (+1.1%)  0.5160 (+33.0%) 0.4371 (+16.3%) 0.2828 (+1.8%) 0.4483

Table 2. Quantitative evaluation on text alignment. Higher numbers indicate better alignment with the text prompt. The numbers in
parentheses denote the performance difference from the baseline.

els to improve text-video alignment. This approach enables find that assigning more weight to LVLM outperformed the
LVLMs to process temporal information, enhancing the qual- alternative of balancing model contributions equally in the
ity of guidance. In Table 1, we explore the most effective ensemble, indicating that the role of LVLM is significant.
ensemble method by comparing average scores on text align- Thus, we adopt the weighted sum ensemble as the default
ment and general video quality evaluation from VBench. We setting. The bottom four rows of Fig. 3 also illustrate qualita-
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Subject  Background =~ Motion  Dynamic Aesthetic Imaging
Method Consistency Consistency Smoothness Degree  Quality — Quality Avg.

As shown in Table 4, leveraging LVLM improves perfor-
mance in Dynamic Attribution Binding. Figure 4 illustrates

LaVie [43] 09450 0.9689 09718 04799  0.5687 0.6611 0.7659

+ GPT 0.9470 0.9693 0.9742 04725 05726  0.6615 0.7662 an example Video Where the water gradually ﬁl]s up over

+ CLIP 0.9495 09712 09735 04560  0.5727  0.6637 0.7644 : : : i

++ GPT 0.9622 0.9781 09804 03703  0.5951  0.6795 0.7609 tme in response FO agtven p 1"0mpt when utl.hzlng LVLM,

TR 00853 09681 09732 04872 05664 06605 07666 whereas the baseline model fails to capture this progression.

++ GPT 09758 09813 09832 05165 05662 0.6530 0.7699

VC2 [4] 09658 0.9748 09818 03846  0.5860 0.6772 0.7617 Method CLIP (1) IR(1) GPT (D)
Meth FE Avg.

+GPT 0.9746 0.9800 09827 02949  0.5977  0.6924 0.7537 ethod NFEs Vg ve2 3039 010 7.09

+CLIP 09762 0.9816 09839 02491  0.6037 0.6886 0.7472 Baseline 100 05815 +GPT 3090 023 728

++ GPT 0.9770 0.9823 09838 02399  0.6042 0.6878 0.7458 Best-of-N 100 0.5802 CLIP 3096 014 711

+IR 0.9739 0.9801 09828 02711 05994  0.6857 0.7488 o 100 0.5981 ++GPT 3095 020  7.07

++GPT 0.9758 09813 09832 02564 06039 0.6877 0.7480 urs : TR 09 022 78

Table 3. Comparison of the general quality of the generated video
independent of the text prompt. Higher numbers indicate better
video quality. ‘“VC2’ is VideoCrafter2 and ‘IR’ is ImageReward.

tive results for ensembling, showing that combining GPT-40
with other image reward models accurately resolves issues
related to dynamics or multiple objects that standalone re-
ward models struggle to properly identify, while maintaining
overall structure.

For more detailed evaluations, we compare the quan-
titative results in Table 2 to assess text-video alignment.
Analysis of the average evaluation scores reveals that in-
corporating LVLM consistently outperforms configurations
that exclude it. Specifically, we observe the most significant
improvement in handling Spatial Relationship across base-
lines. Since CLIP has a limited zero-shot spatial reasoning
capability [37], the text alignment performance decreases in
Spatial Relationship when using CLIP alone. However, en-
sembling with LVLM offers additional cues that help CLIP
to better account for spatial semantics, leading to perfor-
mance improvements. Furthermore, incorporating LVLM
enhances Human action, Overall Consistency in overall case
and Temporal Style, except when using CLIP as the reward
model. Since LVLM can understand temporal nuances by
processing multiple frames at once, it improves performance
by supporting the alignment of temporal movement.

Additionally, we compare general video quality in Table
3. We confirm that even without explicit guidance for consis-
tency or motion, alignment with text prompts improves most
quality metrics except for Dynamic Degree. This metric
often trades off with consistency but can be improved by
ensembling GPT-40 with ImageReward in the LaVie model.
This suggests that ImageReward compensates for the perfor-
mance drop in Dynamic Degree that GPT-40 alone does not
address, resulting in the best performance.

Dynamic h] |

Method ¢ ribution (1) >m > — e
LaVie 0.01242 =T = =
+GPT 0.01360 - =
vC2 0.00663 ' “ u
+GPT 0.00770 = ) - |

of water”

“The glass is going from empty to

Table 4. Results for

T2V-CompBench. Figure 4. Example of T2V-CompBench.

Table 5. Fixed NFE comparison TOPT 06 08 78

on VBench.

Table 6. Reward robustness.

5.2. Analysis

Computational efficiency To evaluate the computational
efficiency of our method, we conduct experiments under a
fixed NFE budget of 100 using VideoCrafter2, as shown in
Table 5. The Baseline uses a single 100-step inference path,
while Best-of-N selects the highest LVLM reward from two
50-step paths. Our approach uses 50 steps, with six samples
in the first 10 steps, while the remaining 40 steps follow the
baseline procedure. Notably, simply selecting from multi-
ple final outputs is ineffective, as it does not influence the
denoising process. In contrast, our method actively guides
generation throughout sampling, leading to improved text
alignment and coherence that cannot be achieved through
post-hoc selection.

Robustness of Rewards We verify that our method
achieves robust performance without overfitting to any par-
ticular reward, avoiding reward hacking, a common issue
in RL literature. Table 6 compares the rewards for the final
video outputs generated by each method. Video guidance
ensembled with LVLM generally achieves higher metrics,
exhibiting a trend similar to the text alignment results in Ta-
ble 2. These findings indicate that the ensemble approach is
not over-optimized for a particular reward, enhancing robust-
ness across diverse evaluation criteria. Additional ablation
studies can be found in Appendix C.

6. Conclusion

In this paper, we introduced Free>Guide, a novel gradient-
free framework to enhance text-video alignment in diffusion-
based generative models without relying on reward gradi-
ents. By approximating the gradient of the reward function,
Free?Guide effectively integrates non-differentiable reward
models, including powerful black-box LVLMs, to steer the
video generation process towards better alignment. Our
experiments demonstrate that Free?Guide consistently im-
proves alignment with text prompts and general video quality.
By enabling ensembling with LVLM, our method benefits
from synergistic effects, further enhancing performance.
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