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Abstract

Dataset condensation aims to compress large dataset into
smaller synthetic set while preserving the essential repre-
sentations needed for effective model training. However, ex-
isting methods show severe performance degradation when
applied to noisy datasets. To address this, we present ro-
bust dataset condensation (RDC), an end-to-end method
that mitigates noise to generate a clean and robust synthetic
set, without requiring separate noise-reduction preprocess-
ing steps. RDC refines the condensation process by integrat-
ing contrastive learning tailored for robust condensation,
named golden MixUp contrast. It uses synthetic samples to
sharpen class boundaries and to mitigate noisy representa-
tions, while its augmentation strategy compensates for the
limited size of the synthetic set by identifying clean sam-
ples from noisy training data, enriching synthetic images
with real-data diversity. We evaluate RDC against existing
condensation methods and a conventional approach that
first applies noise cleaning algorithms to the dataset be-
fore performing condensation. Extensive experiments show
that RDC outperforms other approaches on CIFAR-10/100
across different types of noise, including asymmetric, sym-
metric, and real-world noise. Code is available at https:
//github.com/DISL-Lab/RDC-ICCV2025.

1. Introduction
The unprecedented growth of deep learning has raised

significant concerns about computational resource sustain-
ability in model training [45]. While various efficiency
techniques like model compression [1] and data augmen-
tation [17] have been proposed, their effectiveness remains
limited. Dataset condensation emerges as a direct solution
by distilling large-scale datasets into compact synthetic ver-
sions that preserve essential learning signals [43]. However,
existing dataset condensation methods still have an unre-
solved critical issue: real-world datasets contain noisy la-
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(a) Clean Dataset. (b) Noisy Dataset.
Figure 1. Condensed images generated by a dataset condensation
method, Acc-DD [52], with CIFAR-10 datasets with clean and
noisy labels, where the asymmetric label noise of 40% are injected
following these rules: airplane!car, car!bird, and horse!ship.

bels that may not be true [40], significantly degrading the
quality of condensed data. Consequently, existing conden-
sation methods that assume clean, well-curated data face
limitations in practical applications.

Noise, commonly arising from data collection errors
(e.g., sensor inaccuracies) [18], labeling errors (e.g., human
or algorithmic misannotations) [25, 36], or external attacks
(e.g., label flip attack) [47], directly impacts the effective-
ness of dataset condensation, leading to significant perfor-
mance degradation. Figure 1 illustrates the detrimental im-
pact of noise on one of the state-of-the-art (SOTA) dataset
condensation methods, Acc-DD [52]. In (a), the representa-
tions remain well-preserved in the absence of noise. How-
ever, in (b), with 40% of asymmetric noise, noise interfer-
ence is evident. For instance, in the condensation process
for the ship class, the presence of noise from the horse class
results in a distorted representation, where the synthesized
ship erroneously exhibits horse-like legs.

While two-stage approaches that apply dataset cleaning
methods [4, 46] prior to condensation can help mitigate the
problem, this approach is not a complete solution. Firstly,
completely removing noise through dataset cleaning is in-
herently difficult, especially in large-scale datasets where
subtle or systematic noise often persists [42]. Secondly,
dataset cleaning processes are resource-intensive, requiring
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Figure 2. Robust dataset condensation using golden MixUp contrast. The noisy dataset is large but contains noisy labels, whereas the
synthetic dataset is small but has clean, fixed labels. Our approach leverages the strengths of both contrasting aspects by mixing clean
images selected from the noisy real dataset with the synthetic ones, enhancing diversity while minimizing the risk of label noise.

significant time and computational effort [9]. Thirdly, im-
proper cleaning may inadvertently discard valuable infor-
mation, further compromising the integrity of dataset [6].
Therefore, this underscores the need for an end-to-end
dataset condensation method that is robust to label noise.

In this paper, we propose Robust Dataset Conden-
sation (RDC), the first dataset condensation method that
maintains robust performance, even when applied to noisy
datasets. In particular, unlike the two-stage approaches,
RDC is implemented in an end-to-end manner, enabling the
direct synthesis of a noise-resilient synthetic dataset without
requiring any separate noise-handling procedure.

Specifically, RDC enhances the condensation process
with a contrastive learning framework that leverages both
synthetic and real data, as illustrated in Figure 2. Inspired
by the fact that the condensed dataset is optimized with
fixed labels, which are considered as ground-truth labels,
RDC employs supervised contrastive learning [14] to di-
rectly learn the relationships among synthetic images in
condensation. This facilitates class-wise feature separation,
thereby minimizing interference from other classes and act-
ing as an implicit regularization mechanism for the syn-
thetic set. However, relying solely on synthetic data leads
to a lack of diversity, particularly when the number of syn-
thetic images per class (IPC) is low (e.g., IPC 10 or 50). This
limitation prevents the condensation process from fully es-
caping the negative influence of label noise.

To remedy this, we introduce golden MixUp contrast
(GMC), a novel robust contrastive learning method tailored
for dataset condensation, which addresses the lack of di-
versity caused by low IPC while minimizing the risk of la-
bel noise. Unlike naive contrastive learning, it systemati-
cally constructs a set of clean samples, called a golden set,
which consists of samples selected or relabeled from the
noisy training dataset, and integrates the golden set with
synthetic samples with clean, fixed labels through MixUp.
This approach not only enhances diversity but also ensures
that noisy labels do not corrupt the contrastive learning pro-

cess. By integrating GMC into the dataset condensation pro-
cess, RDC allows the synthetic set to absorb correct contex-
tual information from real samples, further improving its
expressiveness and generalization ability.

Our main contributions can be summarized as follows:
• We are the first to address dataset condensation in the

presence of label noise, a crucial advancement for real-
world applications where noisy labels are inevitable.

• We introduce an end-to-end robust dataset condensation
(RDC) framework that leverages the strengths of two con-
trasting datasets in dataset condensation, i.e., large, noisy
real dataset versus small, yet clean synthetic dataset.

• We propose golden MixUp contrast to mitigate the issue
of limited sample availability in the synthetic set while
leveraging refined clean samples to enable the synthetic
dataset to learn clean and diverse representations.

• Through extensive experiments, we demonstrate that our
method outperforms existing dataset condensation ap-
proaches in noisy environments.

2. Related Work
Dataset Condensation. Dataset condensation [55] (also
known as dataset distillation) aims to synthesize a small-
scale dataset that retains the essential features of a large-
scale original one, enabling models trained on the con-
densed data to achieve comparable accuracy to those trained
on the full dataset. This technique has been widely ex-
plored in areas such as privacy-preserving machine learn-
ing [7, 19], continual learning [23, 24, 53–55], and feder-
ated learning [8, 41, 57]. Existing methods largely fall into
four categories: meta-model matching, gradient matching,
trajectory matching, and distribution matching [34]. Meta-
model matching [43] optimizes a synthetic dataset by com-
puting loss using the original dataset, with advancements
such as kernel ridge regression [28] and Gram matrix-based
optimization [58]. Gradient matching [55] aligns gradients
between synthetic and real datasets, with improvements like
Siamese augmentation (DSA) [53] and model perturbation
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(Acc-DD) [52]. Trajectory matching [2] refines the syn-
thetic dataset by following the training trajectory of models
trained on the original dataset, with enhancements includ-
ing soft label assignment (TESLA) [5] and trajectory range
adjustment (DATM) [11]. Distribution matching [54] aligns
the distributions of synthetic and original datasets, further
improved through class-aware regularization (IDM) [56]
and attention map matching (DataDAM) [35].

While these methods demonstrate strong performance
on clean datasets, their effectiveness significantly degrades
when applied to noisy datasets. Therefore, to address this is-
sue, we propose a condensation method that remains robust
even in the presence of noise.

Contrastive Learning. Contrastive learning is a self-
supervised technique that forms positive and negative pairs
in feature space, bringing positive pairs closer while push-
ing negative pairs apart. Methods such as SimCLR [3] and
MoCo [13] use this principle to learn discriminative fea-
tures. Supervised contrastive learning (SupCon) [14] ex-
tends this approach by utilizing label information, treating
all samples of the same class as positive pairs and those of
different classes as negative pairs. SupCon has been applied
in LLM training [10, 37], multimodal representation learn-
ing [26, 27], robustness to noisy labels [21, 30], and rec-
ommendation systems [48]. MixUp contrast (MixCo) [15]
is another extension that integrates MixUp [50] into con-
trastive learning, enabling the use of not only positive pairs
but also semi-positive pairs to more effectively distinguish
the positive pairs from negative pairs. The key idea behind
MixCo is to incorporate softened data representations into
contrastive learning, allowing the model to capture implicit
relationships between positive and negative samples while
alleviating the instance discrimination problem.

But when MixCo is applied to noisy data, it fails to filter
out noise and instead enforces contrastive learning on in-
correct labels. To address this, we propose a novel approach
that enables contrastive learning on reliable samples.

3. Preliminaries

Formulation of Dataset Condensation. Suppose T =
{(x1, y1), . . . , (x|T |, y|T |)} denotes the original dataset,
where xi is an image and yi is its corresponding label. Sim-
ilarly, let S = {(s1, ys1), . . . , (s|S|, y

s
|S|)} be the signifi-

cantly smaller synthetic dataset, where |T | � |S| and | · |
denotes the dataset size. Then, the objective of dataset con-
densation is to ensure that a model trained on S achieves
performance comparable to one trained on T .

Dataset condensation methods relies on a model trained
on T to extract representations that serve as the foundation
for condensation. Given a model f✓, the parameters are op-

timized to minimize the cross-entropy (CE) loss as:

✓⇤ = argmin
✓

1

|T |
X

(x,y)2T

`CE
�
f✓(x), y

�
. (1)

This optimization seeks to find ✓⇤ that minimizes the loss,
ensuring that the model learns the best possible representa-
tion from the dataset T .

Once the model has been trained on T , dataset conden-
sation methods construct a synthetic dataset S such that a
model trained on S learns a representation similar to that
obtained from T . To achieve this, a condensation loss Lcond
is introduced, which aligns the representations learned from
the model trained on S with those from the reference model
trained on T . The specific formulation of Lcond varies de-
pending on the matching strategy employed. To define the
training process on S , an auxiliary model is optionally re-
quired and trained on the learnable synthetic dataset S as:

✓⇤S = argmin
✓S

1

|S|
X

(s,ys)2S

`CE
�
f✓S (s), y

s
�
. (2)

Then, the synthetic dataset S is then optimized by minimiz-
ing the condensation loss:

S⇤ = argmin
S

Lcond(f✓⇤(T ), f✓⇤
S
(S)), (3)

where f✓⇤(T ) and f✓⇤
S
(S) denote the outputs of the function

f applied to T and S , respectively. The extracted features
are obtained by utilizing specific components of these out-
puts, based on the matching method. Some approaches like
IDM [56] use a shared model for both T and S .

The formulation above assumes that the original dataset
T is clean. Yet, real-world data often contains label noise,
as T 0 = {(x1, ỹ1), . . . , (x|T 0|, ỹ|T 0|)}, where part of ỹ are
incorrect labels, while the rest remain correct. When clean
label y is replaced with its noisy counterpart ỹ, the opti-
mization steps involving ✓⇤ through Eq. (1) results in over-
fitting to the noise. Consequently, the representations ex-
tracted from f✓⇤(T 0) become degraded, which significantly
deteriorates the quality of S⇤ obtained in Eq. (3).

To address this issue, it is necessary to ensure that
Eqs. (1) and (3) remain robust to label noise in the presence
of T 0. Specifically, the goal is to train S in a manner that
mitigates the impact of noisy labels ỹ, enabling it to gener-
alize as if T 0 contained only true labels. This ensures that
the synthetic dataset S achieves comparable performance to
that obtained when trained on a clean dataset.

Formulation of Supervised Contrastive Learning. For
the original dataset, T = {(x1, y1), . . . , (x|T |, y|T |)}, su-
pervised contrastive learning (SupCon) establishes an an-
chor (xi, yi) as the central reference point. It assigns sam-
ples with the same label as the anchor to positive pairs,
where positive set is defined as P = {(xp, yp) 2 T |
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xp 6= xi, yp = yi}. Meanwhile, samples with different la-
bels are designated as negative pairs, where the negative set
is given by N = {(xn, yn) 2 T | yn 6= yi}. By optimizing
the model to bring the anchor closer to positive pairs and
push it further away from negative pairs, the class bound-
aries can be reinforced. Since SupCon is performed in the
embedding space, embeddings are extracted for all samples
using the model f✓. Utilizing these embeddings, the overall
loss function LSupCon is obtained by summing the individual
losses computed for each sample as an anchor as:

LSupCon(T , P,N)

=
X

xi2T

�1
|P |

X

xp2P

log
exp(f✓(xi) · f✓(xp)/⌧)P

xa2P[N
exp(f✓(xi) · f✓(xa)/⌧)

, (4)

where ⌧ is a temperature parameter that controls the sharp-
ness of the similarity distribution by scaling the logits.

4. Robust Dataset Condensation (RDC)
Overview. We regularize the dataset condensation pro-
cess by incorporating supervised contrastive learning (Sup-
Con), leveraging the fact that the fixed labels assigned to
synthetic data in the condensation process are inherently
regarded as ground truths. This enables effective represen-
tation learning, ensuring that synthetic samples maintain
well-structured class boundaries while mitigating the im-
pact of noisy labels in the real dataset. However, a major
bottleneck of this approach is the severe scarcity of syn-
thetic samples due to the inherent constraints of dataset con-
densation. Thus, we aim to address this limitation by en-
hancing the diversity of the synthetic set.

To this end, we conduct supervised contrastive learning
based on the ground truth labels assigned to the synthetic
samples while integrating carefully selected clean samples
from the original noisy dataset to enhance diversity and mit-
igate the risk of label noise. The following section details
the key components of our RDC method.

4.1. Golden MixUp Contrast (GMC)
To mitigate feature distortion from noisy labels in

the original dataset, we employ SupCon on synthetic
set. Since the labels ysi in the synthetic dataset S =
{(s1, ys1), . . . , (s|S|, y

s
|S|)} are always true and fixed, we

leverage this label information as the supervisory signal to
apply SupCon. However, the effective application of Sup-
Con requires a sufficient number of samples. Since conden-
sation generates only a limited number of images per class,
effective augmentation is crucial to compensate for the lack
of diversity in the context.

To address this, we propose golden MixUp contrast,
which complements the limited diversity of synthetic sam-
ples by mixing the real samples selected from the original
training dataset. Note that naively selecting real images for

MixUp may introduce noise, as mixed samples can contain
conflicting or misleading semantic information. Therefore,
we construct a golden set G, consisting of carefully selected
clean samples C and re-labeled confident samples R with
high confidence. This enables reliable MixUp, achieving
high diversity while minimizing the negative impact of in-
correct labels.

4.1.1. Extracting Golden Set from Noisy Dataset
During the training of the model f✓ in Eq. (2), after initial

warm-up epochs t0, we accumulate the loss values of each
training sample until the ongoing epoch T using a model
trained on all samples from the noisy original dataset T 0.
The accumulated loss list L is defined as L = {`i | i 2 I 0},
where I 0 represents the set of sample indices, specifically,
I 0 = {1, . . . , |T 0|}. The accumulated loss `i for sample xi

is given by `i =
PT

t=t0
`CE(f✓t(xi), ỹi).

After applying a logarithmic transformation to the ac-
cumulated loss values, the accumulated loss list L turns to
Llog, defined as Llog = {log `i | i 2 I 0}. Subsequently, we
fit a bi-modal univariate Gaussian Mixture Model (GMM)
with two components, where the lower-mean distribution
is classified as the clean set, and the higher-mean distribu-
tion is classified as the unclean set. This is based on the
observation that clean labels tend to have lower loss val-
ues than noisy ones, attributed to the memorization effect of
deep neural networks [20, 39, 40, 49].

Formally, the log-transformed accumulated loss values
are modeled as a mixture of two Gaussian distributions:

p(log `i) = ⇡1N (log `i | µ1,�
2
1) + ⇡2N (log `i | µ2,�

2
2), (5)

where N (log `i | µk,�2
k) is a Gaussian distribution with

mean µk and variance �2
k, and ⇡1,⇡2 are the mixing coeffi-

cients such that ⇡1+⇡2 = 1. We assume µ1 < µ2, meaning
the lower-mean Gaussian corresponds to the clean set, and
the higher-mean Gaussian corresponds to the unclean set.
Each sample xi is assigned to one of the two components
based on its posterior probability:

p(zi = k | log `i) =
⇡kN (log `i | µk,�2

k)P2
j=1 ⇡jN (log `i | µj ,�2

j )
, (6)

where zi 2 {1, 2} represents the component assignment.
The clean set C and unclean set U are then defined as:

C = {(xi, ỹi) 2 T 0 | p(zi = 1 | log `i) > 0.5}
U = {(xi, ỹi) 2 T 0 | p(zi = 2 | log `i) � 0.5}.

(7)

C consists of samples more likely to belong to the lower-
mean Gaussian (clean set), and U consists of samples more
likely to belong to the higher-mean Gaussian (unclean set).

Additionally, before overfitting to noisy labels, a model’s
predictions can provide valuable insights into the true un-
derlying labels [31, 39, 51]. Thus, for all samples in U ,
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we pass them through the model f✓ and obtain their soft-
max values across all classes. If a sample exhibits a signif-
icantly high softmax value for a single class beyond a cer-
tain threshold, we consider it to have high confidence. These
samples undergo relabeling, as the model is able to correctly
identify easy samples that were originally misclassified due
to label noise. After relabeling, these samples have fixed
labels, yfixi which are assumed to be correct, and are col-
lectively referred to as the relabeled set R:

R=
�
(xi, y

fix
i ) | (xi, ỹi) 2 U ^max p✓(y | xi) > c

 
, (8)

where yfix
i = argmax

y
p✓(y | xi). (9)

Here, c is set to be 0.95 (i.e., very high confidence) follow-
ing the recent methods in noise-robust learning [38, 39].

Finally, the golden set G is defined as the union of the
clean set C and the relabeled set R. Since G is assumed to
contain only correct labels, we attach g to the label as:

G = C [R =
n
(x1, y

g
1), . . . , (x|G|, y

g
|G|)

o
. (10)

We provide a detailed analysis on the golden set in terms
of its size and correctness in Appendix A.

4.1.2. SupCon with Golden Set using MixUp
By utilizing the golden set defined in Eq. (10), we per-

form MixUp between synthetic samples (si, ysi ) and sam-
ples from the golden set (xj , y

g
j ), which is formulated as:

s⇤i = �si + (1� �)xj , (� 2 [0, 1]), (11)

where � is the MixUp coefficient controlling the interpola-
tion between the two samples. The set of all mixed samples
s⇤i is denoted as SMixUp. In golden Mixup contrast, the an-
chor is set as the mixed sample, s⇤i . For each anchor sample,
positive and negative pairs for SupCon are defined with two
criteria, as the label of s⇤i is affected by the two samples
involved in MixUp: (1) a sample si from the synthetic set
S with the label ysi , and (2) a sample xj from the golden
set G with the label ygj . The bidirectional alignment in Sup-
Con using the two criteria preserves consistency between
mixed–synthetic and mixed–original sample pairs, prevent-
ing feature distortions and enhancing robustness [15].

Pairs with Synthetic Set. When defining positive pairs
based on the synthetic set, they can be formulated as P ⇤

s =
{(sp, ysp) 2 S | ysp = ysi }, which corresponds to samples in
S that share the same label ysi as the synthetic sample si as-
sociated with the anchor s⇤i . Negative pairs refer to samples
in the synthetic set that do not share the same label as si and
are defined as N⇤

s = {(sn, ysn) 2 S | ysn 6= ysi }. Based on
this definition, SupCon loss with respect to the synthetic set
is formulated as follows:

Lsyn
contrast = LSupCon(SMixUp, P

⇤
s , N

⇤
s ). (12)

Pairs with Golden Set. When defining positive pairs with
the golden set, they are expressed as Pg = {(xp, ygp) 2 G |
ygp = ygj }, which represents samples in G that share the
same label ygj as the golden sample xj associated with the
anchor s⇤i . Negative pairs consist of samples in the golden
set that have a different label from xj and are defined as
N⇤

g = {(xn, ygn) 2 G | ygn 6= ygj }. With this definition, the
SupCon loss for the golden set is formulated as:

Lgolden
contrast = LSupCon(SMixUp, P

⇤
g , N

⇤
g ). (13)

Thus, the final loss for golden MixUp contrast is de-
fined as follows. The weights used in MixUp are ap-
plied to Lsyn

contrast and Lgolden
contrast, and their weighted sum

forms the final loss. Additionally, we incorporate Lsyn =
LSupCon(S, P,N), which is computed using only the syn-
thetic set, S1. This approach strengthens the compactness
of synthetic images by applying contrastive learning solely
within the synthetic set. Formally, the GMC loss is:

LGMC = (� · Lsyn
contrast + (1� �) · Lgolden

contrast) + Lsyn. (14)

This enables the synthetic set to incorporate the diverse
contexts of real images with correct labels, resulting in a
clear distinction between class representation boundaries in
dataset condensation, even in the presence of label noise.

4.2. Improving Robustness of Model Training
Furthermore, we enhance the robustness of the training

model f✓ in Eq. (1) while improving the condensation pro-
cess in Eq. (2) by our golden MixUp contrast. During the
training of f✓, we employ semi-supervised learning using
the constructed golden set G. Specifically, since the golden
set G is clean, it can be defined as the labeled set. The re-
maining unclean samples, excluding the relabeled ones, i.e.,
U/R, are considered noisy and are therefore defined as the
unlabeled set, where label information is not utilized. By
leveraging this unlabeled set, the model is enabled to extract
clean features even from noisy datasets, further enhancing
the quality of the synthetic set.

To achieve this, we design a loss function for the model
f✓ to perform semi-supervised learning. The loss function
consists of that used in DivideMix [33] (see Appendix B.1.1
for details), along with the cross-entropy loss of the golden
set, LG = `CE(G). Therefore, the loss related to model up-
dates in Eq. (1) is updated as follows:

LRDC
model = LDivideMix + LG . (15)

4.3. Objective Function of RDC
To summarize, we modify the training of the model in

Eq. (1) and the learning of condensed images in Eq. (2),
both of which are vulnerable to label noise.

1 To increase the number of images, augmentation such as controlling
color, crop, cutout, flip, scale, and rotate is applied to the synthetic dataset.
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Firstly, the noisy-resilient training of the model through
semi-supervised learning is formulated as follows:

✓RDC = argmin
✓

(LRDC
model). (16)

Through this optimization, the model mitigates overfitting
caused by noise and extract accurate representations.

Secondly, the noise-resilient learning of the condensed
images is denoted as follows:

SRDC = argmin
S

(Lcond + LGMC), (17)

where the loss from the golden MixUp contrast is combined
with the loss defined by the chosen dataset condensation
method. Note that our RDC method is flexible and can be
plugged into various condensation approaches. The algo-
rithm of RDC is provided in Appendix C.

5. Experiment
Following the evaluation protocol from previous dataset

condensation studies [53, 54, 56], we evaluate the perfor-
mance of RDC on an image classification task. The evalu-
ation pipeline involves learning the condensed images and
training classifiers from scratch on them. Note that, in our
setup, training datasets for dataset condensation are cor-
rupted by either artificial or real-world label noise. The final
test accuracy is a commonly used measure of robustness to
noisy labels [20, 39]. In other words, higher test accuracy
indicates greater robustness. To ensure reliability, we repeat
each test three times and report the average test accuracy.

Additionally, we present the evaluation results using Dd-
Ranking [22] in Appendix D.

Noisy Datasets. We conduct experiments using both the
original clean datasets, CIFAR-10 and CIFAR-100 [16], as
well as their noisy counterparts. Specifically, we consider
three types of label noise: (1) asymmetric noise [32], where
labels are flipped to its adjacent class (e.g., class 0 ! class
1, class 1 ! class 2); (2) symmetric noise [32], where labels
are randomly flipped to any other class with equal probabil-
ity; and (3) CIFAR-10N and CIFAR-100N with real-world
noise [44], where their labels are annotated by humans and
contains mistakes due to subjective judgement or ambigu-
ity. For the two former synthetic noise, we adjust the noise
ratio from 0% (clean) to 20% (moderate noise) and 40%
(heavy noise) to evaluate the impact of different noise lev-
els on dataset condensation. For the latter real-world noise,
we select CIFAR-10N-{Random1, Worse} with 17% and
40% of noise, and CIFAR-100N-Noisy with 40% noise.

Dataset Condensation Setups. RDC is compatible with
existing dataset condensation methods. Thus, we imple-
ment RDC on top of two popular condensation methods,
each taking a different approach: IDM [56] (see Appendix

B.3), the SOTA method based on distribution matching; and
Acc-DD [52] (see Appendix B.4), another method based on
gradient matching. In our experiment, IDM is used mainly
because of its simplicity compared to other condensation
methods. Specifically, IDM shares a single network for both
the original and synthetic datasets in dataset condensation,
and thus the extraction of the golden set and its subsequent
use in semi-supervised learning directly influence the train-
ing of the synthetic dataset. These characteristics make IDM
particularly well-suited to maximizing the advantages of
RDC. The results with Acc-DD can be found in Section 5.2.
For the dataset condensation setup, we learn 10 and 50 con-
densed images per class (Img/Cls) with noisy CIFAR-10,
while we learn 1 and 10 Img/Cls with noisy CIFAR-100.

Regarding the backbone, we mainly use ResNet18 [12],
a model popularly used in noise-robust learning, throughout
the experiment section. To verify the generalization capabil-
ity of RDC, we present results using alternative backbones,
3-layer ConvNet and VGG11, in Section 5.4.

Compared Methods. Since our method is built on top of
two existing methods, we directly compare it with a random
selection approach (denoted as Random) and the two base
methods, IDM and Acc-DD, as well as their extension using
the two-stage approach2. Specifically, for the two-stage ap-
proach (see Appendix B.2), we first apply DivideMix [20],
a state-of-the-art semi-supervised robust learning method,
before dataset condensation to refine the noisy training set.

Implementation Details. We primarily follow the imple-
mentation of our base methods, IDM and Acc-DD. Regard-
ing the hyperparameters introduced by RDC, we set the
warm-up epochs to be 5 and 20 for noisy CIFAR-10 and
CIFAR-100 datasets, respectively. For the golden MixUp
contrast, we set the MixUp � value to 0.75 (found by a grid
search). For the SupCon loss in Eq. (4), the temperature ⌧
is set to be 0.07 in every case. For the DivideMix method,
which is used in the two-stage extension and in Eq. (15), we
follow the original settings summarized in Table 7 of [20].
Further details on grid search and implementation can be
found in Appendix B.1 of the supplementary material.

5.1. Robustness against Label Noise
Tables 1 and 2 present a robustness comparison of our

method against three baseline methods, along with refer-
ence results (Whole Dataset) serving as an upper bound,
on noisy CIFARs datasets. We include the random selec-
tion (Random), a coreset-based approach that selects ran-
dom images from the original set, following prior stud-
ies. RDC achieves a significant performance improvement
on both datasets. Notably, the improvement is even more

2GMC can also be applied to soft-label dataset condensation methods,
DATM [11], by using similarity scores weighted by class probability prod-
ucts. More detailed formulations are provided in Appendix E.

2862



CIFAR-10 Clean Asymmetric Noise Symmetric Noise Real-world Noise

Noise Ratio ⇡ 0% 20% 40% 20% 40% Random1 (17%) Worse (40%)

Img/Cls 10 50 10 50 10 50 10 50 10 50 10 50 10 50

Random 22.28 36.05 19.55 29.12 19.53 24.48 17.11 29.31 18.36 24.28 20.19 31.88 20.19 28.26
IDM 45.10 60.24 39.63 47.64 30.61 34.85 42.97 56.54 41.17 45.62 44.68 57.19 38.36 49.46

IDM + Two-stage 43.77 60.24 45.59 60.23 33.29 38.61 45.70 59.27 46.52 59.26 45.25 60.15 45.29 60.10
IDM + RDC (Ours) 47.28 60.80 46.92 61.76 41.35 55.55 47.12 63.15 46.23 59.61 48.36 61.85 46.52 61.93

Whole Dataset 95.37 81.42 58.81 84.00 64.79 85.45 67.36

Table 1. Robustness comparison between random selection and three dataset condensation methods on noisy CIFAR-10 datasets under
various noise conditions. All methods use ResNet18 as the backbone. Img/Cls denotes the number of images per class and Whole Dataset
denotes the model accuracy on the entire training set, which is the upper bound for dataset condensation with varying noise types.

CIFAR-100 Clean Asymmetric Noise Symmetric Noise Real-world Noise

Noise Ratio ⇡ 0% 20% 40% 20% 40% Noisy (40%)

Img/Cls 1 10 1 10 1 10 1 10 1 10 1 10

Random 3.73 12.46 3.04 11.20 2.79 6.83 2.94 10.40 2.46 7.14 3.21 10.27
IDM 5.16 18.94 4.23 18.04 2.57 12.42 3.97 19.02 2.69 16.59 4.09 16.35

IDM + Two-stage 5.81 18.97 5.59 19.75 3.44 15.57 6.08 19.51 5.77 19.85 6.03 19.28
IDM + RDC (Ours) 11.23 26.73 8.83 23.42 6.35 15.60 9.64 24.04 6.00 17.60 9.60 24.62

Whole Dataset 78.22 65.98 46.37 64.67 49.45 54.41

Table 2. Robustness comparison between random selection and three dataset condensation methods on noisy CIFAR-100 datasets under
various noise conditions. All methods use ResNet18 as the backbone.

Tiny-ImageNet Clean Asymmetric 40% Symmetric 40%

Img/Cls 1 10 1 10 1 10

Random 1.93 7.90 1.20 3.90 1.39 3.97

IDM 2.32 7.07 2.08 6.38 2.26 6.61
IDM + Two-stage 0.61 0.54 0.67 0.51 0.60 0.59

IDM + RDC (Ours) 3.41 11.02 3.65 11.09 3.85 11.73

Whole Dataset 65.58 40.06 36.66

Table 3. Robustness comparison between random selection and
three dataset condensation methods on noisy Tiny-ImageNet un-
der various noise types. All methods use ResNet18 as backbone.

pronounced on CIFAR-100, where dataset condensation is
more challenging due to the larger number of classes.

Specifically, RDC exhibits a significant improvement,
surpassing the two-stage approach across almost all IPC
settings and noise conditions. Particularly, in the CIFAR-
10 setting with 40% asymmetric noise, where the two-stage
approach fails to fully recover performance, our method
achieves an accuracy of 55.55%, bringing it much closer to
the 60.24% accuracy obtained by IDM on the clean dataset
(see the Clean column). This reveals that the stability of our
approach and highlights its generalizability in challenging
asymmetric noisy setup. Moreover, our method not only re-
stores performance in noisy environments but also surpasses
other methods trained on clean datasets. This is likely at-
tributed to the presence of label noise even in clean CIFAR
datasets [29, 44] and the regularization effect introduced by
applying SupCon within the dataset condensation process.

In contrast, IDM suffers a substantial performance drop
when compared to its performance on clean datasets, due to
its lack of consideration for noise. The two-stage approach

is effective in recovering performance in most noisy en-
vironments. However, it fails to fully restore performance
when 40% asymmetric noise was present in both CIFAR-
10 and CIFAR-100, indicating that the insufficiency of per-
forming data cleaning in a separate stage without integrat-
ing it into an end-to-end process.

Furthermore, RDC remains its robust performance even
on a larger noisy Tiny-ImageNet dataset in Table 3.

5.2. Implementation with Acc-DD
In Table 4, we apply RDC to Acc-DD, the condensation

method in gradient matching. We synthesize 10 Img/Cls
on noisy CIFAR-10 using ResNet18. The results remain
consistent when using IDM as the base model. In detail,
Acc-DD is highly vulnerable to noisy settings. While the
two-stage approach aids performance recovery, it is insuf-
ficient when the dataset contained 40% asymmetric noise.
However, when RDC is integrated into Acc-DD, the perfor-
mance (60.99%) exceeds that of Acc-DD trained on a clean
dataset (57.18%) in all noise settings except the 40% asym-
metric noise case. These results highlight the applicability
of RDC across different dataset condensation approaches.
Additional experiments on applying RDC to MTT [2] and
DATM [11] are presented in Appendix F.

5.3. Component Ablation Study
Table 5 presents the stepwise component analysis of

RDC on noisy CIFAR-10 with varying noise types with 10
Img/Cls. Using IDM as the base model, we progressively
activate each component of RDC in the order of (1) apply-
ing semi-supervised learning (DivideMix) in Eq. (15), (2)
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CIFAR-10 Clean Asymmetric Noise Symmetric Noise Real-world Noise

Noise Ratio ⇡ 0% 20% 40% 20% 40% Ran1 (17%) Worse (40%)

Random 22.28 19.55 19.53 17.11 18.36 20.19 20.19
Acc-DD 57.18 49.42 35.33 50.77 40.40 53.79 47.27

Acc-DD + Two-stage 57.93 58.93 40.97 58.85 57.72 58.34 58.31
Acc-DD + RDC (Ours) 60.99 59.47 55.18 60.12 58.62 58.84 59.39

Whole Dataset 95.37 81.42 58.81 84.00 64.79 85.45 67.36

Table 4. Robustness comparison among different methods using Acc-DD as the base model on CIFAR-10 under various noise conditions.

Component Asymmetric Symmetric Real-world

IDM 30.61 41.17 38.36
+ (1) SSL (DivideMix) 35.23 41.93 44.47
+ (2) SupCon wo. Augment 33.89 43.63 44.99
+ (3) SupCon w. Augment 35.24 44.94 45.58
+ (4) Golden MixUp Contrast 41.35 46.23 46.52

Table 5. Ablation study on noisy CIFAR-10 using ResNet18. The
last row (all components applied) corresponds to RDC.

Backbone VGG11 ResNet18

Eval.\Cond. IDM IDM + RDC IDM IDM + RDC

ConvNet 26.83 38.39 38.25 57.46
VGG11 28.56 36.59 37.02 55.57

ResNet18 24.61 38.96 34.85 57.77

Table 6. Generalization of RDC to various model architectures.

incorporating only the canonical SupCon Lsyn in Eq. (14),
(3) utilizing simple augmentation such as flip and crop on
the synthetic set, and (4) applying golden MixUp contrast.

The results reveal that: (1) the use of DivideMix using
the golden set G results in a performance improvement.
Subsequently, (2) the use of SupCon using only the syn-
thetic set S leads to an improvement; however, the perfor-
mance is deteriorated (in Asymmetric) or the gain is in-
significant (in Symmetric and Real-world). (3) Simple data
augmentation fails to address the diversity deficiency in the
synthetic set for SupCon, as indicated by its minimal impact
on performance, while (4) the application of GMC consider-
ably boosts the performance. Thus, the ablation underscores
the synergistic impact of all RDC components.

5.4. Generalization to Other Architectures
Table 6 presents the generalizability of RDC across

various model architectures. Specifically, we synthesize
50 Img/Cls using two different backbones, VGG11 and
ResNet18, on CIFAR-10 with 40% asymmetric noise. We
then report the classification accuracy of three models, in-
cluding ConvNet, VGG11, and ResNet18, each trained us-
ing the condensed images generated by either VGG11 or
ResNet18. Firstly, the results reveal that our RDC method
maintains its robustness when condensing images with
VGG11 other than ResNet18 (as evidenced by the im-
provement in the IDM and IDM+RDC sub-columns un-
der the VGG11 column). Secondly, the condensed images,
regardless of whether they are generated from VGG11 or

(a) Acc-DD. (b) w. Two-stage. (c) w. RDC.
Figure 3. Visualization of condensed images, comparing Acc-DD
and its extension using the two-stage and RDC (ours) methods.
Appendix H provides more examples.

ResNet18, maintain their effectiveness in cross-architecture
setups, e.g., condensed images from VGG11 can be used to
train ConvNet or ResNet18 (as evidenced by each column).
Here, note that the improvement achieved by RDC persists
even in the cross-architecture setup. Therefore, RDC gener-
alizes well across different model architectures.

5.5. Comparison with Condensed Images
Figure 3 visualizes a subset of 10 Img/Cls condensed im-

ages when CIFAR-10 contains 40% asymmetric noise. In
(a), where Acc-DD is directly applied for condensation, in-
terference from other classes is evident, i.e., frog-like fea-
tures appear in the condensed images for horse (top row),
and horse-like features are present in the condensed images
for ship (bottom row). In (b), a two-stage approach is em-
ployed, where dataset cleaning is performed before Acc-
DD. While this mitigates some interference compared to
(a), imperfect dataset cleaning still results in residual con-
tamination from other class representations. In contrast, (c)
demonstrates that when RDC is integrated into Acc-DD, in-
terference from other classes is clearly eliminated, enabling
the accurate synthesis of horse and ship representations.

6. Conclusion
We propose RDC, the first solution to address the nega-

tive impact of noisy labels on dataset condensation. Noisy
training data blurs class boundaries, resulting in represen-
tations affected by interference from other classes. To miti-
gate this, we use the fixed labels of the synthetic set to apply
supervised contrastive learning, while introducing golden
MixUp contrast, which transfers the representations of reli-
able real images to the synthetic set. Through experiments,
we show the robustness and generalizability of RDC across
various noise types, levels, and architectures.
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