This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

ZIM: Zero-Shot Image Matting for Anything

Beomyoung Kim

Se-Yun Lee Sewhan Chun

Chanyong Shin
Dong-Hyun Hwang

Joonhyun Jeong Hyungsik Jung

Joonsang Yu

NAVER Cloud, ImageVision

HQ-SAM

Matte-Any

Matting-Any

ZIM (ours)

Figure 1. Qualitative comparison of ours with five existing zero-shot models (SAM [18], HQ-SAM [13], Matte-Any [50], and Matting-
Any [25]). It showcases (a) box prompting results, (b) point prompting results, and (c) automatic mask generation results.

Abstract

The recent segmentation foundation model, Segment
Anything Model (SAM), exhibits strong zero-shot segmenta-
tion capabilities, but it falls short in generating fine-grained
precise masks. To address this limitation, we propose a
novel zero-shot image matting model, called ZIM, with two
key contributions: First, we develop a label converter that
transforms segmentation labels into detailed matte labels,
constructing the new SAIB-Matte dataset without costly
manual annotations. Training SAM with this dataset en-
ables it to generate precise matte masks while maintaining
its zero-shot capability. Second, we design the zero-shot
matting model equipped with a hierarchical pixel decoder

to enhance mask representation, along with a prompt-aware
masked attention mechanism to improve performance by
enabling the model to focus on regions specified by vi-
sual prompts. We evaluate ZIM using the newly introduced
MicroMat-3K test set, which contains high-quality micro-
level matte labels. Experimental results show that ZIM out-
performs existing methods in fine-grained mask generation
and zero-shot generalization. Furthermore, we demonstrate
the versatility of ZIM in various downstream tasks requiring
precise masks, such as image inpainting and 3D segmenta-
tion. Our contributions provide a robust foundation for ad-
vancing zero-shot matting and its downstream applications
across a wide range of computer vision tasks. The code is
available at ht tps ://naver—ai.github.io/ZIM.
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1. Introduction

Image segmentation, which divides an image into distinct
regions to facilitate subsequent analysis, is a fundamental
task in computer vision. Recent breakthroughs in segmen-
tation models have made significant strides in this area, par-
ticularly with the emergence of the segmentation founda-
tion model, Segment Anything Model (SAM) [18]. SAM is
trained on the SA1B dataset [18] containing 1 billion micro-
level segmentation labels, where its extensiveness enables
SAM to generalize effectively across a broad range of tasks.
Its strong zero-shot capabilities, powered by visual prompts,
have redefined the state of the art in zero-shot interactive
segmentation and opened new avenues for tackling more
complex tasks within the zero-shot paradigm.

Despite these achievements, SAM often struggles to gen-
erate masks with fine-grained precision (see Figure 1). To
address this limitation, recent studies [25, 50, 51] have
extended SAM to the image matting task, which focuses
on capturing highly detailed boundaries and intricate de-
tails such as individual hair strands. These approaches
achieve enhanced mask precision by fine-tuning SAM on
publicly available matting datasets [21, 36, 47]. However,
this fine-tuning process can undermine the zero-shot poten-
tial of SAM, since most public matting datasets contain only
macro-level labels (e.g., entire human portrait) rather than
the more detailed micro-level labels (e.g., individual body
parts), as illustrated in Figure 2. Fine-tuning with macro-
level labels can cause SAM to overfit to this macro-level
granularity, resulting in catastrophic forgetting of its ability
to generalize at the micro-level granularity, as shown in Fig-
ure 1. Moreover, the scarcity of large-scale matting datasets
with micro-level matte labels poses a significant obstacle in
developing effective zero-shot matting solutions.

In this paper, we introduce a pioneering Zero-shot Image
Matting model, dubbed ZIM, that retains strong zero-shot
capabilities while generating high-quality micro-level mat-
ting masks. A key challenge in this domain is the need for
a matting dataset with extensive micro-level matte labels,
which are costly and labor-intensive to annotate. To ad-
dress this challenge, we propose a novel label conversion
method that transforms any segmentation label into a de-
tailed matte label. For more reliable label transformation,
we design two effective strategies to reduce noise and yield
high-fidelity matte labels (Section 3.1). Subsequently, we
construct a new dataset, called SA1B-Matte, which con-
tains an extensive set of micro-level matte labels generated
by transforming segmentation labels from the SA1B dataset
via the proposed converter (see Figure 2). By training SAM
on the SA 1B-Matte dataset, we introduce an effective foun-
dational matting model with micro-level granularity while
preserving the zero-shot ability of SAM (see Figure 1).

To further ensure effective image matting, we enhance
the major bottleneck in the network architecture of SAM

that impedes capturing robust and detailed feature maps.
Specifically, SAM employs a simple pixel decoder to gen-
erate mask feature maps with a stride of 4, which is suscep-
tible to checkerboard artifacts and often falls short in cap-
turing fine details. To mitigate this, we design a more elab-
orated pixel decoder, enabling more robust and richer mask
representations (Section 3.2). Furthermore, we introduce a
prompt-aware masked attention mechanism that leads to the
improvement of interactive matting performance.

To validate our zero-shot matting model, we present
a new test set, called MicroMat-3K, consisting of 3,000
high-quality micro-level matte labels. Our experiments on
this dataset demonstrate that while SAM exhibits strong
zero-shot capabilities, it struggles to deliver precise mask
outputs. In contrast, existing matting models show lim-
ited zero-shot performance. ZIM, however, not only main-
tains robust zero-shot functionality but also provides supe-
rior precision in mask generation. Additionally, we high-
light the foundational applicability of ZIM in several down-
stream tasks requiring precise masks, such as image inpaint-
ing [54] and 3D segmentation [3]. We hope this work pro-
vides valuable insights to the research community, encour-
aging further development of zero-shot matting models.

2. Related Work

Image Segmentation. Image segmentation is a fundamen-
tal task in computer vision, enabling the division of an im-
age into distinct regions. Recent advancements in segmen-
tation models [6, 12, 19] have significantly improved the ac-
curacy of segmentation tasks, including semantic, instance,
and panoptic segmentation. The emergence of Segment
Anything Model (SAM) [18] introduced a new paradigm
in segmentation by leveraging visual prompts (e.g., points
or boxes). SAM is designed as a foundational segmenta-
tion model capable of handling diverse tasks due to its ro-
bust zero-shot capabilities, showing remarkable versatility
across a wide range of tasks and domains. However, de-
spite its strengths, SAM struggles to produce high-precision
masks. In this paper, we address this limitation by develop-
ing a novel zero-shot model that enhances mask precision
while maintaining SAM’s generalization capabilities.

Image Matting. Image matting is a more complex task than
image segmentation, as it focuses on estimating the soft
transparency of object boundaries to capture fine details,
which is critical in tasks like image compositing and back-
ground removal. Unlike segmentation, which assigns hard
labels to each pixel, matting requires precise edge detec-
tion and soft labeling for smooth blending between objects
and their background. Recent developments in zero-shot
matting have aimed to build upon the foundational segmen-
tation capabilities of SAM. Most approaches [25, 50, 51]
fine-tune SAM on public matting datasets [21, 22, 36, 47].
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Public Matting Datasets: SA1B:
Micro-Level Coarse Labels

Macro-Level Fine Labels

SA1B-Matte (Ours):
Micro-Level Fine Labels

Figure 2. Qualitative samples from each dataset: Public matting datasets [21, 22, 36, 47] with macro-level fine labels, the SA1B
datset [ 18] with micro-level coarse labels, and our proposed SA1B-Matte dataset incorporating the micro-level labels with fine details.

However, these datasets predominantly contain macro-level
labels, degrading SAM’s ability to generalize on micro-
level structures, such as individual body parts of a human.
The reliance on these datasets can deteriorate the zero-
shot generalization of the model. Furthermore, the lack of
large-scale matting datasets with micro-level labels restricts
progress in developing matting models with truly effective
zero-shot ability. In this paper, we correspondingly con-
struct a large-scale micro-level labeled matting dataset via
our proposed label converter without laborious annotation
procedures, enabling effective zero-shot matting modeling.

3. Methodology

Our contributions can be divided into two components:
matting dataset construction (Section 3.1) and network ar-
chitecture enhancements (Section 3.2).

3.1. Constructing the Zero-Shot Matting Dataset

Motivation. For effective zero-shot matting, a dataset with
micro-level matte labels is essential. However, manually
annotating matte labels at the micro-level requires exten-
sive human labor and cost. To this end, we present an
innovative Label Converter that transforms any segment
label into a matte label, motivated by mask-guided mat-
ting works [35, 53]. We first collect public image matting
datasets [20-22, 24, 44, 53] to train the converter. We derive
coarse segmentation labels from matte labels by applying
image processing techniques such as thresholding, resolu-
tion down-scaling, Gaussian blurring, dilation, erosion, and
convex hull transformations. The converter takes an image
and segmentation label as input source and is trained to pro-
duce a corresponding matte label, as illustrated in Figure 3a.

Challenges. (1) Generalization to unseen patterns: Public
matting datasets predominantly contain macro-level labels
(e.g., entire portraits), as shown in Figure 2. Consequently,
the converter trained on these datasets often struggles to
generalize to unseen micro-level objects (e.g., individual

body parts). This limitation leads to the generation of noisy
matte labels when applied to micro-level segmentation (see
the 4th column in Figure 6a). (2) Unnecessary fine-grained
representation: Some objects, such as cars or boxes, com-
monly do not require fine-grained representation. However,
since the converter is trained to always transform segmen-
tation labels into fine-grained matte labels, it often gener-
ates unnecessary noise into the output matte, particularly
for objects that do not benefit from fine-grained representa-
tion (see the 4th column in Figure 6b).

Spatial Generalization Augmentation. To improve the
converter’s ability to generalize to diverse segmentation la-
bels, we design Spatial Generalization Augmentation. This
approach introduces variability into the training data by ap-
plying a random cut-out technique, as shown in Figure 3a.
During training, both the segmentation label and the cor-
responding matte label are randomly cropped in the same
regions. By exposing the converter to irregular and incom-
plete input patterns, this augmentation forces the converter
to adapt to diverse spatial structures and unseen patterns,
thus enhancing its generalization capability. This method
ensures that the converter can better handle a variety of in-
put segmentation labels, even those that deviate from train-
ing patterns (see the 3rd column in Figure 6a).

Selective Transformation Learning. To prevent the un-
necessary transformation of objects that do not require fine-
grained details (e.g., cars or desks), we introduce Selec-
tive Transformation Learning. This technique enables the
converter to selectively focus on objects requiring detailed
matte conversion (e.g., hair, trees) while skipping finer
transformations for coarse-grained objects. We incorporate
these non-transformable samples into the training process
by collecting coarse-grained object masks from public seg-
mentation datasets [56] (see Figure 3b). During training,
the ground-truth matte label for the non-transformable sam-
ples is set to identical to the original segmentation label,
allowing the converter to learn that no transformation is re-
quired. This selective approach reduces noise in the output
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(a) Spatial Generalization Augmentation

Fipe (Transformable) Samples
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Figure 3. Illustration of the key components of the Label Converter. (a) Overview of the training procedure of the converter using
Spatial Generalization Augmentation (indicated by red dotted boxes). (b) Examples of transformable (fine) and non-transformable (coarse)

samples used in Selective Transformation Learning for the converter.

and ensures that fine-grained transformations are applied
only when needed (see the 3rd column in Figure 6b).

Training. We employ standard loss functions commonly
used in matting tasks, namely using a linear combination of
L1 and Gradient losses [14, 21, 22] to minimize pixel-wise
differences between the ground-truth and predicted matte:

L=1L;y+ )\Lgrad (D
Liy = |M — M| @
Lyrad = |Va(M)=Vo (M) + [V (M)=V, (M")] (3)

where M and M’ represent the ground-truth and predicted
matte label, respectively, and A is a loss weighting factor.
In addition, V and V, represent the gradients along the
horizontal and vertical axes, respectively. Moreover, we set
a probability parameter p to control the random application
of Spatial Generalization Augmentation during training.

SA1B-Matte Dataset. After training the label converter,
we transform segmentation labels in the SA1B dataset [18]
to matte labels using the converter, constructing a new
SA1B-Matte dataset. As shown in Figure 2, the coarse la-
bels in the SA1B dataset are successfully transformed into
high-quality precise matte labels. Compared to existing
public matting datasets consisting of macro-level fine la-
bels, the SA1B-Matte dataset is a large-scale image mat-
ting dataset with micro-level fine labels, providing an ideal
foundation for developing zero-shot matting models.

3.2. ZIM: Zero-Shot Image Matting Model

Overview of ZIM. Our proposed model, ZIM, builds upon
SAM [18] and consists of four components, as illustrated
in Figure 4: (1) Image Encoder: extracts image features
from the input image, producing an image embedding with
a stride of 16. (2) Prompt Encoder: encodes point or box
inputs into prompt embeddings concatenated with learnable
token embeddings, serving a role similar to the [c1ls] to-
ken in ViT [8]. (3) Transformer Decoder: takes the im-
age and token embeddings to generate output token em-
beddings. It performs four operations: self-attention on the

tokens, token-to-image cross-attention, an MLP layer, and
image-to-token cross-attention that updates the image em-
bedding. (4) Pixel Decoder: upsamples the output image
embedding with a stride of 2. Lastly, the model produces
matte masks by computing a dot product between the up-
sampled image embedding and output token embeddings.

Motivation. While SAM has shown success in segmenta-
tion tasks, its pixel decoder, which comprises two straight-
forward transposed convolutional layers, is prone to gener-
ating checkerboard artifacts, especially when handling chal-
lenging visual prompts, such as multiple positive and neg-
ative points placed near object boundaries or box prompts
with imprecise object region delineation, as shown in Figure
1. Furthermore, their upsampled embeddings with a stride
of 4 are often insufficient for image matting, which benefits
from finer mask feature representations.

Hierarchical Pixel Decoder. To address these shortcom-
ings, we introduce a hierarchical pixel decoder with a multi-
level feature pyramid design, motivated by [49], as illus-
trated in Figure 4. The pixel decoder takes an input image
and generates multi-resolution feature maps at strides 2, 4,
and 8 using a series of simple convolutional layers. The im-
age embedding is sequentially upsampled and concatenated
with the corresponding feature maps at each resolution.
The decoder is designed to be highly lightweight, namely
adding only 10 ms of computational overhead compared to
the original pixel decoder of SAM on a V100 GPU. Our
hierarchical design serves two key purposes: First, it pre-
serves high-level semantics while refining spatial details, re-
ducing checkerboard artifacts and enhancing robustness to
challenging prompts. Second, it generates high-resolution
feature maps with a stride of 2, essential for capturing fine-
grained structures in matting.

Prompt-Aware Masked Attention. To further boost
the interactive matting performance, we propose a
Prompt-Aware Masked Attention mechanism, inspired by
Mask2Former [6] (See Figure 4). This mechanism allows
the model to dynamically focus on the relevant regions
within the image based on visual prompts (e.g., points or
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Figure 4. Overview of the ZIM architecture. Based on the SAM network architecture [18], we introduce two key improvements: (1)
Hierarchical Pixel Decoder for more robust and higher-resolution mask feature map generation, and (2) Prompt-Aware Masked Attention

mechanism to enhance interactive matting performance.

boxes), enabling more attention to the areas of interest.

For box prompts, we generate a binary attention mask
M> that indicates the specific bounding box region. The
binary attention mask M" € {0, —oo} is defined as:

0

—oo  otherwise

if (x,y) € box region
(2,9) g @

MP(z,y) = {
where (z,y) represents the pixel coordinates. This forces
the model to prioritize the region within the box prompt.

For point prompts, we generate a soft attention mask us-
ing a 2D Gaussian map distribution with standard deviation
o. The soft attention mask, M? € [0, 1], smoothly weighs
the region around the point of interest, ensuring a graded
focus that transitions smoothly to the surrounding regions.

The attention mask is incorporated into the cross-
attention blocks of the transformer decoder. Specifically,
the attention mask modulates the attention map as follows:

| softmax(M® + Q,K[)V; + X;—1  (box prompt)
b softmax(MP ® QK[)V, + X;_1 (point prompt)
&)

where © denotes element-wise multiplication, X; repre-
sents the query feature maps at the I** layer of the decoder,
and @, K, and V; implies the query, key, and value matri-
ces, respectively, at the [*" layer. This mechanism dynami-
cally adjusts the model’s attention according to the visual
prompt, leading to performance improvement in prompt-
driven interactive scenarios (see Table 3a).

Training. We train ZIM using the SA1B-Matte dataset.
From the ground-truth matte label, we extract a box prompt
from the given min-max coordinates and randomly sample
positive and negative point prompts following [41]. The
model is optimized using the same matte loss functions de-
fined in Eq. (1).

4. MicroMat-3K: Zero-Shot Matting Test Set

We introduce a new test set, named MicroMat-3K, to eval-
uate zero-shot interactive matting models. It consists of
3,000 high-resolution images paired with micro-level matte
labels. It includes two types of matte labels: (1) Fine-
grained labels (e.g., hair, tree branches) to primarily eval-
uate zero-shot matting performance, where capturing intri-
cate details is critical. (2) coarse-grained labels (e.g., cars,
desks) to allow comparison with zero-shot segmentation
models, which is still essential in zero-shot matting tasks.
Moreover, It provides pre-defined point prompt sets for pos-
itive and negative points and box prompt sets for evaluating
interactive scenarios. More detailed information about the
MicroMat-3K is described in the supplementary material.

S. Experiments
5.1. Experimental Setting.

Training Dataset for Label Converter. To train the label
converter, we collect six publicly available matting datasets
(i.e., AIM-500 [21], AM-2K [22], P3M-10K [20], RWP-
636 [53], HIM-2K [44], and RefMatte [24]), consisting
of 20,591 natural images and 118,749 synthetic images in
total. For non-transformable samples, we extract coarse
object categories (e.g., car and desk) from the ADE20K
dataset [56], sampling 187,063 masks from 17,768 images.

Evaluation Metrics. We use widely adopted evaluation
metrics for the image matting task, including Sum of Ab-
solute Difference (SAD), Mean Squared Error (MSE), Gra-
dient Error (Grad), and Connectivity Error (Conn).

Implementation Details for Label Converter. The label
converter model is based on MGMatting [53] with Hiera-
base-plus [40] backbone network. For training the con-
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MicroMat3K Fine-grained MicroMat3K Coarse-grained

Method Prompt | g p| | MSE| | MAE| | Grad| | Conn| | SAD| | MSE| | MAE| | Grad| | Conn|
SAM [18] point | 68.076 | 21.651 | 23307 | 16.496 | 67.730 | 17.093 | 5569 | 5.756 | 4.800 | 17.035
box | 36.086 | 11.057 | 12.714 | 14.867 | 35.834 | 3.516 | 1.044 | 1.231 | 2551 | 3.450

HQ-SAM [13] | Point | 110681 | 36.674 | 38.331 | 16855 | 110421 | 18.842 | 6457 | 6645 | 4599 | 18.79

box 124.262 | 42.457 | 44.144 | 13.673
point 68.797 | 20.844 | 23.564 | 8.118

124.113 | 8.458 2733 | 2.920 | 2472 8.400

68.939 | 19.717 | 6.053 | 6.675 | 2.633 19.506
box 34.661 | 9.746 | 12.182 | 7.021 | 34.856 6.950 1.983 | 2.445 | 2.142 6.905

point | 275.398 | 77.335 | 97.141 | 20.019 | 270.722 | 164.145 | 36.187 | 55.943 | 23.244 | 155.780
box 246.214 | 68.372 | 87.617 | 19.185 | 241.597 | 109.639 | 23.780 | 38.662 | 15.841 | 102.439

point | 31.286 | 8.213 | 10.740 | 5.324 | 31.009 6.645 1.788 | 2.320 | 1.469 6.472
box 9.961 1.893 | 3.426 | 4.813 9.655 1.860 0.448 | 0.659 | 1.281 1.807

Matte-Any [50]

Matting-Any [25]

ZIM (ours)

Table 1. Quantitative comparison of ZIM and six existing methods on the MicroMat-3K test set, evaluated separately on fine-grained and
coarse-grained categories using point and box prompts across five evaluation metrics.

Matte-Any Matting-Any HQ-SAM
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Figure 5. Downstream Transferability Evaluation by replacing SAM with ZIM as the segmentation foundation model in various down-
stream tasks: Matte-Any [50] and Matting-Any [25] are evaluated on MicroMat3K-Fine, AIM-500 [21], AM-2K [22], and P3M-500-
NP [20] using the MSE metric. HQ-SAM [13] is assessed on DIS [37], COIFT [27], HRSOD [55], and ThinObject [27] using mIoU.
Inpainting Anything [54] is tested on COCO [28] using CLIP distance. Following Medical Image Segmentation evaluation protocol [32]
with five different prompting modes (mloU). 3D segmentation follows the SA3D [3] framework and is evaluated on NVOS [39].

verter, we set the input size to 1024 x 1024, a batch size of
16, and a learning rate of 0.001 with cosine decay schedul-
ing using the AdamW optimizer [30]. The training process
runs for 500K iterations with the probability parameter p of
0.5 and the loss weight A of 10.

5.2. Experimental Results

We evaluate ZIM against four related methods on Micro-
Mat3K: SAM [18], HQ-SAM [13], Matte-Any [50], and
Matting-Any [25]. All methods use the ViT-B [8] back-

Implementation Details for ZIM. For the ZIM model, we
use the same image encoder (i.e., ViT-B [8]) and prompt
encoder as SAM. Leveraging the pre-trained weights from
SAM, we fine-tune the ZIM model on 1% of the SA1B-
Matte dataset, which amounts to approximately 2.2M matte
labels. We set the input size to 1024 x 1024, batch size to
16, a learning rate to 0.00001 with cosine decay scheduling
using the AdamW optimizer [30], and training iterations to
500K. The loss weight A is set to 10 and the o for the point-
based attention mask is set to 21 by default.

bone network. Table | presents the evaluation scores across
five metrics for both point and box prompts on fine-grained
and coarse-grained masks. For coarse-grained results, SAM
achieves reasonable zero-shot performance, while other
methods (e.g., Matting-Any and HQ-SAM) struggle to gen-
eralize to unseen objects. This is likely due to their fine-
tuning on macro-level labeled datasets, which degrades
their zero-shot capabilities. The qualitative results in Figure
| show that these methods often produce macro-level out-
puts, even provided with micro-level prompts. Moreover,
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Fine-grained Coarse-grained

SGA ‘ STL ‘ SAD| | MSE| | Grad| | SAD| | MSE| | Grad]

3.324 | 0.276 | 2.664 | 0.716 | 0.117 | 0.684

v 2.440 | 0.122 | 2.139 | 0.697 | 0.092 | 0.634
v 3.153 | 0.239 | 2.457 | 0.635 | 0.089 | 0.653

v v 1.999 | 0.080 | 1.771 | 0.281 | 0.021 | 0.399

Table 2. Quantitative analysis of key components of the label
converter: Spatial Generalization Augmentation (SGA) and Se-
lective Transformation Learning (STL).

SAM tends to suffer from checkerboard artifacts when chal-
lenging prompts are introduced. In contrast, ZIM generates
a more robust quality of masks, due to our hierarchical fea-
ture pyramid decoder. The fine-grained results in Table 1|
highlight ZIM’s superiority in producing high-quality mat-
ting outputs while maintaining strong zero-shot capabilities.

5.3. Downstream Transferability

We assess the transferability of ZIM compared to SAM
across various downstream tasks. Specifically, we first in-
tegrate ZIM into existing matting methods, Matte-Any [50]
and Matting-Any [25], and observe significantly improved
box prompting MSE results across diverse matting bench-
marks, including MicroMat3K-Fine, AIM-500 [21], AM-
2K [22], and P3M-500-NP [20]. Likewise, replacing SAM
with ZIM in HQ-SAM [13] notably enhances performance
in fine-grained segmentation datasets, including DIS [37],
COIFT [27], HRSOD [55], and ThinObject [27].

Moreover, we extend our analysis to broader vision
tasks, including image inpainting, medical image segmenta-
tion, and 3D segmentation. Specifically, we evaluate image
inpainting using the Inpainting Anything framework [54]
on the COCO dataset [28] via the CLIP Distance met-
ric [9, 52]. For medical image segmentation, we utilize
the zero-shot evaluation protocol from [32] on five diverse
medical imaging datasets [1, 11, 33, 42], measured by mean
IoU (mloU). Additionally, we assess 3D segmentation per-
formance within the SA3D framework [3] on the NVOS
dataset [39]. These tasks inherently require highly precise
segmentation masks for optimal outcomes. While replacing
SAM with existing matting models (e.g., Matte-Any and
Matting-Any) results in significant performance drops due
to limited generalization capabilities, employing ZIM con-
sistently boosts zero-shot performance across these diverse
scenarios, highlighting its robust generalization and precise
mask representation capabilities. Comprehensive qualita-
tive and quantitative results for these tasks are provided in
the supplementary materials.

6. Ablation Study

In this section, we analyze the impact of the key compo-
nents of our method using the MicroMat-3K test set.

Input Image

=

(a)

Output Matte

Input Seg Output Matte

Input Image Input Seg wo/ STL

Figure 6. Qualitative analysis of key components of the la-
bel converter: (a) without Spatial Generalization Augmentation
(SGA) and (b) without Selective Transformation Learning (STL).

Analysis of Label Converter. To analyze the effect of
Spatial Generalization Augmentation (SGA) and Selective
Transformation Learning (STL) strategies, we conduct an
ablation study by removing each component individually.
The SGA is designed to enhance the generalization ability
of the converter by simulating diverse input patterns, par-
ticularly beneficial given that the converter is trained on
macro-level labeled datasets. Without the SGA, the con-
verter struggles to produce clear matte labels for unseen ob-
jects, as shown in Figure 6a. In addition, the STL is de-
signed to help the converter avoid unnecessary label con-
version for coarse objects. Without the STL, the converter
attempts to transform every segmentation label into a matte
label, resulting in noisy outputs for unseen coarse objects,
as shown in Figure 6b. The quantitative results in Table 2
confirm that using both strategies yields the best label con-
version performance on the MicroMat-3K test set.

Analysis of ZIM Model. We conduct experiments to an-
alyze the effect of the prompt-aware masked attention and
hierarchical mask decoder. The prompt-aware masked at-
tention is designed to direct the model’s focus on the regions
of interest to improve the promptable matting performance.
Table 3a shows that leveraging the masked attention yields
a substantial improvement to our ZIM model. In addition,
the hierarchical mask decoder is designed to produce more
robust and higher-resolution mask feature maps to allevi-
ate checkerboard artifacts and capture finer representation,
simultaneously. Its effectiveness is particularly evident in
reducing the gradient error for fine-grained objects in Table
3a, since the enhanced pixel decoder generates more solid
and detailed mask outputs. Notably, the decoder remains
lightweight, adding only 10 ms of additional inference time.
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Attn | Dec Fine-grained Coarse-grained
SAD| | MSE| | Grad| | SAD] | MSE| | Grad|
13.623 | 2.718 | 6.516 | 2.071 | 0474 | 1.526
v 13.198 | 2.504 | 6.445 | 2.049 | 0471 | 1.486
v | 11.074 | 2.094 | 5401 | 2.069 | 0.487 | 1.355
v v 9.961 | 1.893 | 4.813 | 1.860 | 0.448 | 1.281

(@)

Attn Mask Fine-grained Coarse-grained
T21 | 12T | SAD] | MSE| | Grad| | SAD} | MSE| | Grad]
11.074 | 2.094 | 5401 | 2.069 | 0.487 | 1.355
v 9.961 | 1.893 | 4.813 | 1.860 | 0.448 | 1.281
v 12.526 | 2.658 | 6.032 | 2.353 | 0.554 | 1.481
v v 10437 | 1.997 | 5.066 | 1.999 | 0470 | 1.306

(b)

. Fine-grained Coarse-grained
Model ‘ Trainset ‘ SADJ | MSE} | Grad} ‘ SAD| | MSE} | Gradl
ZIM ‘ SA1B-Matte | 9.961 ‘ 1.893 ‘ 4.813 ‘ 1.860 ‘ 0.448 ‘ 1.281
Public-Matte | 120.571 | 38.332 | 6.730 | 9.506 | 2.760 | 1.688
Matting- | SAIB-Matte | 41.242 | 12.267 | 7.707 | 4.626 | 1.284 | 1.552
Any [25] | Public-Matte | 246.214 | 68.372 | 19.185 | 109.639 | 23.780 | 15.841

©

Table 3. Analysis of ZIM using box prompt evaluations: (a) Ef-
fect of Attn (prompt-aware masked attention) and Dec (hierar-
chical pixel decoder). (b) Effect of the masked attention in T2T
(token to image) and I2T (image to token) cross-attention layers.
(c) Effect of trainset: our SA1B-Matte and public matting datasets.

Moreover, we delve into the effect of prompt-aware
masked attention in our transformer decoder, which com-
prises two kinds of cross-attention layers (see Figure
4): token-to-image (t2i) updating token embeddings (as
queries) and image-to-token (i2t) updating the image em-
bedding (as queries). As a result in Table 3b, applying
masked attention to only the t2i layer leads to a meaningful
improvement. This suggests that focusing attention on to-
kens based on visual prompts in the t2i layer enhances their
ability to capture relevant features. In contrast, applying at-
tention to specific regions within the image embedding in
the i2t layer may disturb the capture of global features.

Analysis of Training Dataset. Table 3c investigates the in-
fluence of the training dataset on ZIM’s zero-shot matting
performance. When ZIM is trained on publicly available
matting datasets, which predominantly contain macro-level
masks, the performance on the micro-level MicroMat3K
dataset significantly degrades. This result underscores the
necessity of training with micro-level mask annotations for
effective generalization to multi-granularity details. Despite
Matting-Any [25] also being trained on SA1B-Matte, ZIM
still surpasses its performance by a considerable margin,
highlighting the advancements of our network architectural
improvements for the zero-shot interactive matting task.

Discussion on Domain Shift. There is a distinct domain
shift between traditional matting test sets and ZIM trained
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Figure 7. Domain shift between traditional public matting testsets
and ZIM trained with SA1B-Matte (object-level).

2 AIM-500 60{ % P3M-500-NP
ZIM (point) ZIM (point)
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Number of points
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Figure 8. Quantitative comparison of ZIM (with varying num-
bers of point prompts) and existing matting methods (Matte-
Any [50], Matting-Any [25], GFM [23], AIM [21], and SMat [51])
on the traditional matting test sets (AIM-500 [21] and P3M-500-
NP [20]). The “auto” implies prompt-free mode.

with SA1B-Matte. Traditional matting test sets [20, 21] typ-
ically regard entire salient objects as foreground, whereas
ZIM mainly focuses on object- and part-level matting (Fig-
ure 7). This mismatch leads to substantial performance
penalties for ZIM under box prompting on these test sets
(Figure 7), which is inherent from SAM’s prompt ambi-
guity issue. However, by leveraging dense multiple-point
prompting, ZIM effectively mitigates this discrepancy, sur-
passing existing methods [21, 23, 25, 50, 51], even some of
which are explicitly trained on datasets similar to the evalu-
ation domain (Figure 8). This highlights the adaptability of
our zero-shot interactive matting modeling.

7. Conclusion, Limitation, and Future Work

In this paper, we presented a pioneering zero-shot image
matting model that advances the field by generating precise,
fine-grained matte masks. We addressed the limitations of
SAM, which struggles with high-detail segmentation tasks,
by introducing a novel label conversion method and en-
hancing the network architecture with a hierarchical pixel
decoder and prompt-aware masked attention mechanism.
However, ZIM inherits inherent shortcomings from SAM,
including ambiguous visual prompt handling and robust-
ness in uncertain predictions. Future research should aim
at resolving these distinct challenges through innovative ap-
proaches to prompt design and uncertainty-based modeling.
‘We hope that the research community will continue to build
on this work, exploring new applications in computer vision
and enhancing its zero-shot matting performance.
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