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Abstract

While deep models are effectively trained based on a soft-
max cross-entropy loss, a cosine-based softmax loss also
works for producing favorable feature embedding. In the
cosine-based softmax, temperature plays a crucial role in
properly scaling the logits of cosine similarities, though be-
ing manually tuned in ad-hoc ways as there is less prior
knowledge about the temperature. In this paper, we address
the challenging problem to adaptively estimate the tempera-
ture of cosine-based softmax in the framework of supervised
image classification. By analyzing the cosine-based soft-
max representation from a geometrical viewpoint regarding
features and classifiers, we construct a criterion in a least-
square fashion which enables us to optimize the temperature
at each sample via simple greedy search. Besides, our thor-
ough analysis about temperature clarifies that feature em-
bedding by the cosine-based softmax loss is endowed with
diverse characteristics which are controllable by the tem-
perature in an explainable way. The experimental results
demonstrate that our optimized temperature contributes to
determine a feasible range of temperature to control the fea-
ture characteristics and produces favorable performance on
various image classification tasks.

1. Introduction
Deep neural networks are applied in various computer vi-
sion fields with great success [11]. While the network ar-
chitecture has been steadily advancing, those models are ef-
fectively trained based on a softmax cross-entropy loss in
most cases. In the softmax loss, relationships between in-
put features and classifiers are exploited by means of inner-
product, which is fundamentally characterized by the angle
between those vectors, i.e., cosine similarity; feature em-
bedding by the softmax loss exhibits angular discriminativ-
ity [25, 40]. Thus, a cosine-based softmax loss is an im-
portant variant of the softmax loss, paying much attention
to the angle through L2-normalization both of features and
classifiers in the inner-product form.

The cosine-based softmax loss, dubbed as cos-softmax
loss, is applied to lean feature embeddings [42, 45] such as
for face images [9, 25, 37]. Lots of face classes (individuals)
are effectively embedded on a hyper-sphere through the cos-
softmax loss, frequently equipped with large-margin regu-
larization, to attain discriminative and generalization power
applicable to novel face images. For feature embedding, the
cos-softmax loss is also applied in self-supervised learn-
ing, especially contrastive learning [5, 6, 12]; unlabeled
samples are compared by means of cosine similarity in a
way of instance discrimination. The feature representation
learned by the cos-softmax loss is recently shown to exhibit
favorable discriminativity for detecting out-of-distribution
(OOD) samples based on feature norms [31].

While a cos-softmax loss contributes to effective feature
embedding, it contains a critical issue regarding tempera-
ture. In the literature of deep learning using a standard
softmax loss, softmax temperature is effectively utilized
in knowledge distillation [13] and is also analyzed from a
viewpoint of training dynamics [2]. For the cos-softmax
loss, the temperature plays a more important role in scal-
ing the cosine similarity bounded in [−1, 1] for building
meaningful loss function; either too low or too high tem-
perature deteriorates the cos-softmax loss. Thus, in most
cases, the temperature of cos-softmax is manually tuned so
as to produce favorable performance in an empirical man-
ner. Thus, it is a challenging problem to automatically de-
termine proper temperature as it could be variable according
to classification tasks and/or feature embedding space.

In this paper, we explore an approach to adaptively es-
timate the temperature of cos-softmax in a framework of
supervised classification. For establishing criteria to op-
timize the temperature, we analyze the cos-softmax from
two viewpoints of probabilistic and geometrical formula-
tion. While the probabilistic aspect of cos-softmax is de-
rived from von Mises-Fisher distribution [28] on a hyper-
sphere, we also propose a geometrical viewpoint to connect
the cos-softmax with projection onto a convex hull spanned
by the classifier vectors, inspired by sparse-representation
classification [41]. The method enables us to optimize tem-
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perature by means of simple greedy search at each sam-
ple without introducing extra training procedure other than
back-propagation for a backbone model. Besides, on the ba-
sis of the optimized temperature, we thoroughly analyze ef-
fect of cos-softmax temperature on feature embedding from
various perspectives including generalization. The analy-
sis clarifies that the embedded features exhibit diverse char-
acteristics which are controllable by the temperature in an
explainable/interpretable way.

Our contributions are summarized as follows:
• We propose a least-square approach to adaptively esti-

mate temperature in a cos-softmax loss by exploiting ge-
ometrical relationships among features and classifiers in
the supervised learning framework.

• Through the analysis regarding cos-softmax temperature,
we clarify the diverse characteristics of feature embed-
ding learned by cos-softmax losses with various temper-
atures. The optimized temperature by our method works
as a lower bound of feasible temperature range to control
the feature characteristics in an explainable way.

• In the experiments, we demonstrate that the method is ap-
plicable to provide effective temperature across diverse
numbers of classes C = 10 ∼ 93431 and on various tasks
such as OOD detection and imbalanced classification.

1.1. Related works
Cosine-based softmax loss. While a standard softmax
loss is widely applied to train deep models, a cos-softmax
loss is also useful in the literature of metric learning to
exploit intrinsic angular characteristics of feature repre-
sentation. In the feature embedding, supervised learning
equipped with classifiers is effectively applied to build dis-
criminative feature representation [45] such as in a scenario
of face recognition [9, 25, 36, 37]. The metric learning
can also be formulated by exploiting relationships among
samples and cos-softmax is applicable to pair-wise com-
parison of samples [42]. In recent years, the cos-softmax
loss based on pair-wise samples is employed in contrastive
learning [5, 6, 12] to learn feature embedding in a self-
supervised way. On the other hand, in [31], L2-norm of
the feature representation learned by a cos-softmax loss is
shown to exhibit favorable performance for detecting out-
of-distribution (OOD) samples. In this work, we focus on
a cos-softmax loss in the framework of supervised classi-
fication, which is versatile across various tasks, to analyze
characteristics of feature embedding through a lens of soft-
max temperature.
Sotmax temperature. There are some works to analyze
the softmax temperature. In a standard softmax loss, a
role of temperature is analyzed by [2] from a viewpoint of
training dynamics, presenting performance improvement in
some cases. While the temperature is usually set to 1 in
a standard softmax loss, it is crucial to tune the tempera-

ture in the cos-softmax loss since meaningful loss functions
are build by properly scaling the logits (cosine similarities)
bounded in [−1, 1]; in most cases, the temperature is man-
ually tuned maybe in a trial-and-error manner. In the con-
trastive learning framework, effect of the cos-softmax tem-
perature on encoding pair-wise sample relationships is ana-
lyzed in [22, 35] such as through a lens of uniformity [38]
which is a specific viewpoint to self-supervised learning;
though, the temperature needs to be manually tuned. In
visual-textural contrastive learning, a trainable temperature
is analyzed from a viewpoint of equilibrium in the loss [33].
In contrast to those works of contrastive learning, we ana-
lyze cos-softmax temperature in the supervised classifica-
tion scenario, and formulate approaches to adaptively esti-
mate the temperature.

The works [1, 17] provide approaches to calibrate logits
by tuning softmax temperature in a post-hoc manner after
training to enhance confidence of classification. In contrast,
our method optimizes a temperature in an in-vivo manner
during training toward effective model learning. As the con-
fidence is slightly related to our analysis in Section 3.2.1,
our method would have potential synergy with the post-hoc
calibration, though it is beyond our scope in this paper.

2. Method
This paper focuses on a softmax cross-entropy loss based
on cosine similarities between a feature vector and classi-
fier weight vectors. A neural network ϕΘ equipped with
parameters Θ extracts a d-dimensional feature vector x =
ϕΘ(I) ∈ Rd from an input image I. For image classi-
fication, the feature vector x is classified by using linear
classifier weights W = [w1, · · · ,wC ] ∈ Rd×C into C-
dimensional logits z ∈ RC , which are responsible for re-
spective C classes, in a form of cosine similarity as

zc = x̃⊤w̃c, where x̃ =
x

∥x∥2
and w̃c =

wc

∥wc∥2
. (1)

To build a loss function for training both Θ and W , soft-
max cross-entropy is applied to the logits z by

ℓ(z, y)=− log
exp(zy/τ)∑C
c=1 exp(zc/τ)

=− log
exp(κzy)∑C
c=1 exp(κzc)

,

(2)
where y indicates a class label assigned to the input I and
τ is a softmax temperature parameter; for ease of discus-
sion, we use its reciprocal κ=1/τ ∈R+ in this paper. The
temperature affects the cos-softmax loss (2) [22, 35], thus
requiring careful tuning for effective training; it is usually
determined in a manually ad-hoc way [25, 37, 45] since an
optimal temperature would be dependent on tasks and fea-
ture distributions, characteristics of which are hard to know
in advance. Thus, we tackle the challenging problem to au-
tomatically determine temperature, i.e., κ in (2), by consid-
ering the two approaches; probabilistic ane geometric ones.
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2.1. Probabilistic approach

The parameter κ is connected to bandwidth of von Mises-
Fisher (vMF) distribution [28], a probability model on a
hyper-sphere. We leverage kernel density estimation [3] to
probabilistically model a feature x̃ on the basis of classifier
weights {w̃c}Cc=1 as follows;

p(x;κ) =
1

C

C∑
c=1

1

Zκ,d
exp

(
κx̃⊤w̃c

)
, (3)

where Zκ,d =
(2π)d/2Id/2−1(κ)

κd/2−1 is a normalization constant
involving bandwidth κ, dimensionality d and a modified
Bessel function Id/2−1 [28].

2.1.1. Rule of thumb
Through a theoretical approximation, the rule-of-thumb [3]
in the vMF-KDE framework provides bandwidth of

κ∗ =
r̄(d− r̄2)

1− r̄2
where r̄ =

∥∥∥∥ 1

C

∑
cw̃c

∥∥∥∥
2

. (4)

As it assumes distribution of directional samples, there may
be a gap between the characteristics of samples and classi-
fiers w̃ which are trainable to distinguish features. Besides,
(4) is dependent on dimensionality d, possibly increasing κ
for deep models that produce high-dimensional features.

2.1.2. Maximum likelihood
Based on the KDE framework (3), we can directly estimate
κ by maximizing the log-likelihood log p(x̃;κ). It, how-
ever, is known that the normalization constant Zκ,d is hard
to deal with in such a high dimensional space. Thus, we ap-
proximate it by the upper bound Z̄κ,d [14] to formulate the
following optimization problem;

EML
κ = − log

1

C

C∑
c

1

Z̄κ,d
exp

(
κx̃⊤w̃c

)
(5)

κ∗ = argmin
κ

EML
κ . (6)

The high dimensionality d in deep models hinders computa-
tion of the normalization constant, though it is slightly miti-
gated by the approximated Z̄κ,d. We will empirically evalu-
ate this maximum-likelihood (ML) approach in Section 3.1.

2.2. Geometric approach

As discussed above, it might be less feasible to model fea-
ture vectors of high dimensionality in a probabilistic man-
ner. To cope with the issue, we resort to geometric repre-
sentation of feature x̃ by using classifier weights {w̃c}Cc=1

in a softmax-based framework.

Similarly to sparse-representation classification [41], we
can describe x̃ on the basis of classifiers w̃c as

x̃ ≈
C∑

c=1

αcw̃c, s.t. α ∈ Ω≜{α |
∑

c αc = 1, αc ≥ 0∀c},

(7)
which leads to an optimization w.r.t the coefficients α as

min
α∈Ω

1

2
∥x̃−

∑
cαcw̃c∥22 ⇒ min

α∈Ω
α⊤W̃⊤W̃α−

∑
cαczc.

(8)

Geometrically speaking, it computes the projection of x̃
onto a convex hull spanned by {w̃c}Cc=1 which is connected
to a classifier subspace [19].

On the other hand, the softmax representation (2) can be
derived from the optimization problem of{

exp(κzc)∑
k exp(κzk)

}C

c=1

=arg min
α∈Ω

1

κ

∑
cαc logαc −

∑
cαczc,

(9)

the detail of which is shown in a supplementary material.
The formulation (9) is analogous to (8); they maximize cor-
relation to z at the second term while minimizing the regu-
larization regarding α at the first term. Thus, the optimizer
in (9), i.e., softmax, is closely related to the optimizer in (8).

Based on the above analysis, we optimize κ by mini-
mizing the projection error (8) in a least-square manner.
To that end, the softmax substitutes for the coefficients as
αc = exp(κzc)∑

k exp(κzk)
in the least-square (LS) formulation (8)

to provide the following optimization problem;

ELS
κ =

1

2

∥∥∥∥∥x̃−
C∑

c=1

exp(κx̃⊤w̃c)∑
k exp(κx̃

⊤w̃k)
w̃c

∥∥∥∥∥
2

2

, (10)

κ∗ = argmin
κ

ELS
κ . (11)

2.2.1. Discussion
Back-propagation. A convex combination of classifier
weights w̃c with softmax coefficients, fundamental repre-
sentation in the LS (10), is also found in back-propagation.
The softmax loss (2) has gradients w.r.t x̃ as

− ∂ℓ

∂x̃
∝ w̃y −

C∑
c=1

exp(κx̃⊤w̃c)∑
k exp(κx̃

⊤w̃k)
w̃c, (12)

in which the second term corresponds to the convex com-
bination in (10). The loss gradient (12) updates the feature
x̃ by direction from the combination vector to the ground-
truth classifier w̃y . As the combination vector gets close
to x̃ through the optimization (11), the feature representa-
tion x̃ is effectively updated toward the target classifier w̃y

since the updating direction approaches the orientation of
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w̃y − x̃. Thereby, the LS-optimized κ∗ in (11) contributes
to reducing intra-class variance around w̃y .

In addition, we also mention that too small κ degrades
the back-propagation (12). By κ → 0, it is reduced to

− ∂ℓ

∂x̃
∝ w̃y −

1

C

∑C
c=1w̃c, (13)

which excludes dependency on x̃, thus failing to properly
train the feature representation.
Characteristics of κ. The projection (8) generally pro-
vides sparse coefficients of α. If the feature x̃ is far away
from the classifier weights {w̃c}c, the logits are fairly small,
zc ≪ 1 ∀c. In that case, κ∗ would be larger to produce the
sparse coefficients induced in (8) from the small logits. In
other words, κ∗ would roughly reflect the distance between
x̃ and a convex hull spanned by w̃c; this is detailed in a
supplementary material.

2.3. Optimization
The optimal κ is given at each sample and then fed into the
loss (2) to trigger back-propagation for training the model
Θ and classifier W ; κ is not subject to end-to-end learning.

While the rule-of-thumb (Section 2.1.1) provides a
closed-form optimizer (4), the other two approaches based
on maximum likelihood (Section 2.1.2) and least squares
(Section 2.2) require seeking the optimizer in (6, 11). It is
noteworthy that a simple line search works by computing
the (easy-to-compute) criteria (5, 10) over candidates of κ;

κ∗ = argmin
κ∈K

Eκ, (14)

where K indicates a predefined candidate set for κ; we con-
struct K by equally-spaced 20 values (|K| = 20) in log scale
on [e−2, e5], as detailed in a supplementary material.

3. Results
We apply the cosine-based softmax loss (2) to train deep
models while optimizing κ (Section 2) on various scenarios
of image classification; the training protocols are detailed in
a supplementary material.

3.1. Optimization for κ

We first compare the three types of optimization approaches
proposed in Section 2 by training ResNet-50 [11] (d =
2048) on ImageNet [8] dataset (C = 1000). For reference,
trainable κ is also applied by end-to-end learning an auxil-
iary parameter κ′ ∈ R such that κ = exp(κ′) ∈ R+.

The performance results are shown in Table 1 reporting
optimized κ∗ by the four methods after training; as κ∗ is
obtained in a sample-wise manner, we report an averaged
κ∗ across samples. The optimized κ∗ at each training epoch
is also shown in Figure 1.

Table 1. Classification accu-
racy (%) with optimized κ∗ on
ImageNet by ResNet-50.

Method κ∗ Acc.

Rule (4) 65525 3.36
ML (6) 0.14 0.10
LS (11) 12.83 77.27

Trainable 120.8 75.51
Figure 1. Optimized κ at each
training epoch.

Rule-based approach (4) rapidly increases κ as the
classifiers w̃c are trained toward r̄ = ∥ 1

C

∑
C w̃c∥2 → 1

which is attributed to relatively large κ induced by high
dimensionality d = 2048. The issues regarding the high
dimensionality and trainability of classifier weights signifi-
cantly impedes the rule in Section 2.1.1 which is originally
derived from probabilistic distribution of samples [3].

ML approach (6) produces too small κ∗ on this Ima-
geNet task, indicating uniform feature distribution in the
KDE model (3). Due to the smaller κ, it is hard to properly
update the features as analyzed in Section 2.2.1, degrading
discriminativity, and thus uniformity of feature distribution
distribution is not improved while retaining small κ∗. Be-
sides, as discussed in Section 2.1.2, the normalization con-
stant Z̄κ,d is not so well defined in the high-dimensional
feature space, which exacerbates estimation of κ.

LS approach (11) produces moderate κ, exhibiting fa-
vorable performance, in contrast to the above-mentioned
two approaches that fail to estimate κ. This proposed
method exploits geometrical projection from x̃ onto a con-
vex hull of classifiers to optimize κ with high robustness
against feature dimensionality1, thereby stably producing
favorable κ∗. At the early stage of training, the features are
distributed away from the classifiers, which causes larger
κ∗ as discussed in Section 2.2.1. Then, as the training pro-
ceeds, the features are so close to the classifier vectors that
κ∗ becomes smaller.

Trainable approach is inferior to the LS approach since
it renders too large κ at the later training epochs. When
most samples are correctly classified by sufficiently training
a model, the trainable κ keeps increasing so that the softmax
loss is (trivially) reduced by the enlarged logits.

These analyses show that the proposed least-square (LS)
approach (Section 2.2) effectively optimizes the parameter
κ, a reciprocal of temperature as τ∗ = 1/κ∗.

3.2. Analysis of κ
Next, we thoroughly analyze κ on standard image classifi-
cation tasks using benchmark datasets of Cifar-10/100 [21],
Food-101 [4] and ImageNet [8].

While our LS approach automatically estimates κ∗, we

1The projection is intrinsically performed in a lower-dimensional sub-
space spanned by x̃ and {w̃c}Cc=1.
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prefix κ to various values which are constant throughout
training. Table 2 shows performance results of all κ’s, also
reporting the performances of a standard softmax loss with-
out normalization for reference. The proposed LS method
effectively optimizes κ in an adaptive manner to respective
tasks and models. On the same model ϕθ, the optimized κ∗

are diverse; one can see different κ∗ respectively on Cifar-
10/100 using ResNet-34 and on ImageNet/Food-101 using
ResNet-50. It is noteworthy that our method adaptively
estimates κ across various numbers of classes; generally,
larger κ∗ is obtained on larger number of classes, as sum-
marized in a supplementary material. Interestingly, the per-
formances seem to be maximized roughly in κ∼ [κ∗, 2κ∗],
implying that κ∗ works as a lower bound of feasible range
in which κ produces competitive performance.

Then, we delve deeper into the learnt feature represen-
tation on various κ. For that purpose, we first clarify the
distinctive characteristics of loss functions equipped with
different κ. To ease discussion, we presume that non-
target logits zc, ∀c ̸= y are close to zeros, i.e., the angle
∠(x̃, w̃c) ≈ 90◦, after sufficient number of training epochs.
Accordingly, the softmax loss (2) is reduced to

ℓκ(zy) = −κzy + log[exp(κzy) + (C − 1)], (15)

where the number of classes is denoted by C. As depicted
in Figure 2, the function with smaller κ outputs higher loss
scores at larger zy to enforce the logit zy to be close to 1, i.e.,
∠(x̃, w̃y) → 0◦, by keeping update for feature representa-
tion. On the other hand, the function with larger κ rapidly
decreases loss, vanishing at smaller zy (∠(x̃, w̃y) ≫ 0); it
endows larger zy with little update in a similar way to Fo-
cal Loss [24]. Therefore, these loss functions with smaller
and larger κ would lead to distinct characteristics of feature
representation, especially regarding intra-class distribution
around the classifier w̃y; that is, smaller/larger κ could be
associated with smaller/larger feature variance.

Then, we empirically analyze feature distribution in Fig-
ure 3 by applying t-SNE [34] to ResNet-50 features trained
on ImageNet. It shows that intra-class distribution are
broadened by changing κ= 5 to κ= 60. While exhibiting
compact intra-class structure, κ = 5 collapses discrimina-
tion among classes since such a too small κ fails to learn
discriminative features (Section 2.2.1), as shown by the low
performance score in Table 2. Roughly speaking, κ ∼ κ∗

contributes to both compact intra-class distribution and per-
formance improvement. At the larger κ= 60, features are
distributed with large intra-class variance, making the class
boundaries less clear to degrade performance (Table 2).

We also quantitatively analyze the feature diversity in
Table 3 which shows three types of measures: averaged
intra-class angle E(x̃,y)∠(x̃, w̃y), averaged angle to clas-
sifier subspace Ex̃∠(x̃, span({w̃c}Cc=1)) and rank of fea-
ture distribution. Smaller κ obviously contributes to intra-

Table 2. Image classification accuracies (%).

Dataset Cifar-10 Cifar-100 Food-101 ImageNet
C 10 100 101 1000

Model ResNet34 ResNet34 ResNet50 ResNet50
d 512 512 2048 2048

softmax 95.56 79.07 83.03 77.12

LS (11) 95.49 78.26 83.27 77.27
(κ∗) (5.39) (11.17) (8.30) (12.83)

Fixed κ = 1 86.19 23.07 31.01 17.48
κ = 5 95.39 78.86 83.07 68.95
κ = 10 95.57 78.99 83.34 77.09
κ = 20 95.64 78.42 83.24 77.76
κ = 30 95.67 78.06 82.86 77.66
κ = 40 95.85 78.70 82.45 77.52
κ = 50 95.57 78.29 82.35 77.30
κ = 60 95.61 78.24 82.22 76.88

κ = 2κ∗ 95.54 78.57 83.44 77.81

(a) C = 100 (b) C = 1000

Figure 2. Simplified loss functions (15) focusing on zy .

class compactness. As analyzed in Section 2.2.1, the LS
approach effectively works for compact feature representa-
tion through back-propagation, and thus the optimized κ∗

is regarded as a lower bound of κ that produces favorable
compactness as well as competitive classification perfor-
mance. Increasing κ induces not only larger intra-class vari-
ance but also higher deviation from the classifier subspace
span({w̃c}Cc=1), resulting in higher rank than C = 1000.
From a viewpoint of linear C-class discrimination, only the
feature representation in the classifier subspace, of which
rank is at most C, matters to classification. Actually, in the
standard softmax loss, features are contained in the classi-
fier subspace, producing less deviation, and thus exhibit 784
rank which is close to C = 1000, though intra-class vari-
ance is relatively large. On the other hand, feature distri-
bution produced by larger κ is deviated from the classifier
subspace while rendering higher rank. Thus, the larger κ
enables the model to extract features not so tailored for the
target classification.

These analyses clarify that the parameter κ controls fea-
ture variance on the basis of κ∗ (lower bound) in an explain-
able way; namely, two distinct characteristics of intra-class
compactness and feature diversity are embedded by smaller
and larger κ, respectively. We then explore the utility of
those feature representations in the following sub-sections.
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(a) softmax (b) κ = 5

(c) κ = 10 (d) κ = 12.83(= κ∗)

(e) κ = 30 (f) κ = 60

Figure 3. Feature distribution of the first 10 classes in ImageNet,
which is visualized by applying t-SNE to ResNet-50 features.

Table 3. Feature diversity of ResNet-50 on ImageNet evaluation
set (C = 1000). Angles are measured by degree (◦).

∠(x̃, w̃y) ∠(x̃, span({w̃c}Cc=1)) rank

softmax 65.19 7.54 887

κ = 5 21.65 0.72 526
10 31.03 6.59 1052
κ∗ 37.05 14.14 1597
20 52.74 24.68 1806
30 63.05 31.06 1913
40 68.71 32.91 1922
50 72.16 33.88 1912
60 74.31 34.61 1907

3.2.1. Smaller κ

The small κ ∼ κ∗ given by the LS approach leads to intra-
class compact feature representation, which also contributes
to enhancing fidelity to the target (C-class) classification.
This characteristics can be leveraged to learn models of high
confidence. In other words, the model learned by smaller κ
is capable of detecting less confident samples such as miss-
classified (MISS)2 and out-of-distribution (OOD) samples.
Deep models are expected to provide a classification result
with a confidence score indicating how much confident the
classification output is; they should assign high confidence
to samples that are correctly classified and lower confidence
to the other samples such as of MISS and OOD.

For empirical evaluation, ResNet-50 is trained on Ima-
geNet (Table 2) and then is applied to detect MISS samples

2MISS samples are the ones that are in-distribution but classified into
wrong classes.

AP

Mahalanobis

AP

Mahalanobis

(a) MISS detection (b) OOD detection
Figure 4. Average precision for detecting (a) MISS and (b) OOD
samples by using three types of confidence measures.

in ImageNet evaluation set as well as OOD samples drawn
from Food-101 [4] dataset, compared to the correctly-
classified samples on ImageNet evaluation set where we
exclude a few classes related to food objects. In [31], the
feature norm ∥x∥2 is exploited as a confidence score to
distinguish OOD samples from in-distribution ones, and
it is favorably combined with a measure based on Maha-
lanobis distance [23]. We also applied a classical measure
of maximum logit zmax = maxc zc to this task. Figure 4
shows performance results by computing average precision
of correctly-classified samples in comparison to MISS and
OOD ones based on those three types of confidence scores.

Except for κ = 5 which impedes learning as discussed
above, the smaller κ improves detection scores on all the
measures, outperforming the results of a standard softmax
loss. Even a classical maximum logit zmax works well in
comparison to the others, reaching saturated (maximum)
scores at κ = κ∗(= 12.83). It should be noted that the
small κ is less harmful in terms of the classification per-
formance as shown in Table 2. This result demonstrates
that the smaller κ contributing to compact intra-class feature
representation helps to learn models of high confidence.

3.2.2. Larger κ

On the other hand, the larger κ leads to diverse feature rep-
resentation beyond a classifier subspace. The diversity of
features could contribute to encoding various image charac-
teristics in a general way, not specific to the target task.

To explore the generality of the diverse features pro-
duced by the larger κ, we apply ResNet-50 pre-trained on
ImageNet to the other downstream tasks via transfer learn-
ing. Table 4 shows performances of transfer leaning to
various classification tasks in the two scenarios: (1) linear
probe to freeze the pre-trained model as a fixed feature ex-
tractor followed by training only the linear classifier, and (2)
fine-tuning to train both the pretrained model and the linear
classifier in an end-to-end fashion.

Specifically, classification performance on linear probe
(Table 4a) is significantly improved by enlarging κ; the fea-
tures learnt such as by κ = 60 outperform those pre-trained
by a standard softmax loss with a large margin. The result
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Table 4. Classification performances (%) by transferring ResNet50 pretrained on ImageNet to various tasks.

Dataset CUB-200 [39] Food-101 [4] Car-196 [20] Aircraft-100 [27] SUN-397 [43] DTD [7] Flower-102 [30]

(a) Linear probe: softmax 69.05 67.08 46.42 42.57 58.49 72.02 86.39
Fixed κ = 10 47.13 48.23 23.44 22.29 44.69 59.15 55.47

20 62.89 65.54 43.12 38.70 56.26 69.52 77.35
30 70.33 69.36 53.59 46.77 58.85 72.71 85.40
40 73.80 71.88 56.96 52.51 60.28 74.20 88.79
50 75.27 73.58 60.44 55.99 61.09 72.66 90.05
60 75.63 74.04 61.86 57.16 61.14 74.10 92.19

(b) Fine-tuning: softmax 80.17 86.12 86.08 77.49 61.71 74.20 94.34
Fixed κ = 10 79.76 86.28 85.32 76.71 62.22 73.56 90.57

20 80.64 86.67 86.39 77.10 63.28 75.64 93.45
30 81.68 86.79 86.60 78.84 63.53 76.81 94.64
40 81.33 86.86 86.85 78.30 63.85 76.01 95.30
50 81.59 87.10 86.81 77.76 63.95 76.44 95.71
60 81.18 86.83 86.66 78.12 63.80 76.49 96.36

shows that the larger κ embeds mechanisms of general fea-
ture extraction into the model so as to produce effective fea-
ture representation generalizable toward various tasks, even
without fine-tuning process. Thus, the deviation from the
classifier subspace span({w̃c}Cc=1) shown in Table 3 im-
plies effective features which are not so contributive to the
target classification but applicable to characterize various
objects on the other tasks. In the scenario of fine-tuning
(Table 4b), the larger κ also exhibits favorable performance.
Based on the empirical evaluation, we can conjecture that
the larger κ is useful for (pre-)training generalizable model
which works well in transfer learning.

3.2.3. Summary
In summary, the smaller κ ∼ κ∗ estimated by our LS ap-
proach works for enhancing fidelity to the target classifica-
tion task by embedding high confidence to the learnt mod-
els, while the larger κ contributes to improving general-
ization performance with high transferability across various
tasks. Thus, based on the analyses about these smaller and
larger κ, the middle κ such as 2κ∗ is supposed to exhibit
moderate specialization to the in-distribution samples with
moderate generalization, which is favorable for classifying
in-distribution test samples as shown in Table 2.

We have clarified that the cosine-based softmax loss is
capable of controlling the characteristics of learnt models
by using the softmax temperature (κ) in an explainable way
based on the optimized κ∗; we can use κ∗ to train the model
of high confidence while applying larger κ > 2κ∗ to pre-
train a generalizable model. In that sense, it enhances the
interpretability of the learnt model.

3.3. “Cosify”
As shown above, the cosine-based softmax loss controls
characteristics of models via κ. Then, we have the follow-
ing question; is it possible to embed such mechanism to the

model pretrained on a standard softmax loss?

To answer the question, we simply apply the cosine-
based softmax loss in a fine-tuning manner to re-train the
ResNet-50 that is pretrained on ImageNet by a standard
softmax loss. For analyzing contribution of network depth,
we finetune only a subset of blocks in the ResNet-50 which
is composed of four convolution blocks. In the re-training,
we apply two extreme κ ∈ {10, 60} which induce special-
ization and generalization, respectively, as analyzed above.

The performance results are shown in Table 5 evaluat-
ing the specialization and generalization of the re-trained
(“cosified”) model in similar manners to Figure 4 and Ta-
ble 4. The model is well cosified by κ = 10, exhibiting fa-
vorable performance regarding model confidence, while im-
peding generalization performance as in the model trained
from scratch by the cosine softmax loss with κ = 10. On
the other hand, it seems to be hard to cosify the pretrained
model toward κ = 60 as the cosified model slightly falls be-
hind the scratch model of κ = 60 in terms of generalization
performance of linear probe on CUB200. As shown in Ta-
ble 3, the feature representation of the pre-trained model is
contained in the classifier subspace, thus being rather biased
to that of the smaller κ, which makes it easier to cosify the
model toward κ = 10. Nonetheless, the cosified model by
κ = 60 improves generalization performance over the origi-
nal pre-trained one especially in the scenario of fine-tuning.
Besides, it is noteworthy that the cosification of a pretrained
model can be performed even by retraining only the last
block of ResNet-50 on both cases of κ ∈ {10, 60}; there is
no big performance difference among fine-tuned blocks.

3.4. Other classification tasks

The LS approach (11) estimates κ effectively on the other
classification tasks as follows.
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Table 5. Performance of “cosified” ResNet50 which is originally
pre-trained on a standard softmax loss. These scores are measured
in the same ways as in Table 2, Figure 4 and Table 4.

Specialization Generalization

finetune blocks ImageNet AP for MISS AP for OOD CUB200
1 2 3 4 Acc. Zmax ∥x∥2 Zmax ∥x∥2 linear finetune

softmax (orig.) 77.12 0.9092 0.7804 0.8673 0.7236 69.05 80.17

κ = 10

from scratch 77.09 0.9398 0.9082 0.9006 0.8383 47.13 79.76

✓ ✓ ✓ ✓ 76.50 0.9421 0.9073 0.9039 0.8497 51.28 79.43
- ✓ ✓ ✓ 76.68 0.9413 0.9078 0.9020 0.8466 50.79 80.21
- - ✓ ✓ 76.42 0.9416 0.9019 0.9002 0.8507 51.04 79.62
- - - ✓ 76.47 0.9420 0.9094 0.9019 0.8564 49.91 79.53

κ = 60

from scratch 76.88 0.9125 0.8326 0.8856 0.7185 75.63 81.18

✓ ✓ ✓ ✓ 77.09 0.9154 0.8583 0.8678 0.7679 71.52 82.13
- ✓ ✓ ✓ 76.85 0.9154 0.8584 0.8655 0.7673 71.49 82.59
- - ✓ ✓ 76.86 0.9144 0.8587 0.8664 0.7734 71.54 82.66
- - - ✓ 76.71 0.9144 0.8601 0.8650 0.7841 70.88 82.59

3.4.1. Face recognition
Face images are successfully embedded into the angular-
based feature representation [9, 36, 37] which is learned by
the cosine-based softmax loss with large-margin regulariza-
tion. We train ResNet34 on MS1M-RetinaFace dataset [10]
by using CosFace loss [37] to which the LS approach (11)
and various κ are applied as in Table 2; the LS method based
on softmax projection (10) is applicable to the CosFace
Loss which touches the target logit zy for enhancing large-
margin classification. Table 6 reports verification perfor-
mance (%) on the datasets of LFW [15], CFP-FP [32] and
AgeDB-30 [29] by following the protocol in [9]. Our LS ap-
proach produces favorable κ∗, an effective lower bound of
κ; the middle κ = 2κ∗ produces competitive performance
at in-domain (face) evaluation as discussed in Section 3.2.3.
This experimental result demonstrates that the LS method
works well even on large-scale classes (C = 93431) and
the large-margin loss of CosFace [37].

3.4.2. Imbalanced classification
As analyzed in Section 3.2.1, the smaller κ endows the
model with regularization to enhance intra-class compact-
ness of feature representation. The regularization could be
helpful for improving performance on long-tailed class dis-
tributions which induce imbalanced intra-class feature vari-
ances across head (majority) and tail (minority) classes as
shown in [44]. We apply the cosine-based softmax loss
to train ResNet-50 in the framework of long-tailed learn-
ing [18] on datasets of ImageNet-LT [26], Places-LT [26]
and iNaturalist2018 [16]. Table 7 shows performance re-
sults by various fixed κ and LS-optimized κ∗. In this task,
the smaller κ close to our lower bound κ∗ produces bet-

Table 6. Face verification performance (%) of ResNet-34 trained
by CosFace [37] loss.

Dataset MS1M-RetinaFace (C = 93431)
Model ResNet34 (d = 512)

Eval. dataset Age30 CFP/FP LFW

LS (κ∗ = 16.56) 97.88 98.54 99.80

Fixed κ = 10 97.00 97.99 99.72
20 97.75 98.50 99.70
30 98.08 98.64 99.73
40 98.15 98.70 99.73
50 98.10 98.61 99.77
60 97.98 98.43 99.72

2κ∗ 98.27 98.60 99.73

Table 7. Classification accuracy (%) on long-tailed datasets.

Dataset ImageNet-LT iNat2018 Places-LT
C 1000 8142 365

Model ResNet50 ResNet50 ResNet50
d 2048 2048 2048

softmax 48.51 66.76 27.19

LS 49.16 67.75 28.00
(κ∗) (12.76) (18.54) (11.8)

Fixed κ = 10 49.00 57.36 27.19
20 49.06 67.21 25.86
30 48.14 67.87 24.80
40 47.26 66.88 24.42
50 46.33 65.87 23.79
60 45.61 64.94 23.72

2κ∗ 48.52 67.16 25.69

ter performance by properly regularizing intra-class feature
distributions. Particularly, in iNaturalist2018, too small κ=
10 significantly degrades performance while our κ∗=18.54
works well; κ=10 is away from κ∗=18.54 in the iNatural-
ist2018, though it is effectively applied to the other datasets
where κ∗ ∼ 10. In ImageNet-LT derived from ImageNet,
the LS approach produces κ∗ = 12.76 which is almost the
same value as κ∗ = 12.83 on ImageNet (Table 2), demon-
strating the robustness of the LS-based estimation.

4. Conclusion
We have proposed a novel method to adaptively estimate
temperature in a cos-softmax loss. The method is formu-
lated in a least-square manner by exploiting geometrical re-
lationships between features and classifiers. In addition, we
thoroughly analyze temperature to clarify that feature em-
bedding exhibits diverse characteristics which are control-
lable by the temperature in an explainable way. The exper-
imental results demonstrate that the optimized temperature
works as lower bound of feasible temperature range while
providing favorable performance such as on OOD detection
and imbalanced classification.
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