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Abstract

Video-to-video moment retrieval (Vid2VidMR) is the task
of localizing unseen events or moments in a target video
using a query video. This task poses several challenges,
such as the need for semantic frame-level alignment and
modeling complex dependencies between query and target
videos. To tackle this challenging problem, we introduce
MATR (Moment Alignment TRansformer), a transformer-
based model designed to capture semantic context as well
as the temporal details necessary for precise moment lo-
calization. MATR conditions target video representations
on query video features using dual-stage sequence align-
ment that encodes the required correlations and dependen-
cies. These representations are then used to guide fore-
ground/background classification and boundary prediction
heads, enabling the model to accurately identify moments
in the target video that semantically match with the query
video. Additionally, to provide a strong task-specific initial-
ization for MATR, we propose a self-supervised pre-training
technique that involves training the model to localize ran-
dom clips within videos. Extensive experiments demon-
strate that MATR achieves notable performance improve-
ments of 13.1% in R@ 1 and 8.1% in mloU on an absolute
scale compared to state-of-the-art methods on the popular
ActivityNet-VRL dataset. Additionally, on our newly pro-
posed dataset, SportsMoments, MATR shows a 14.7% gain
in R@I and a 14.4% gain in mloU on an absolute scale
over strong baselines. We make the dataset and code public
at: https://github.com/vI2g/MATR.

1. Introduction

Video moment retrieval is the task of temporally localiz-
ing the start and end times of a moment' in a target video
described by a given query. Although text-based video mo-
ment retrieval has been extensively explored [25, 28, 32,
33, 57], it often poses challenges for users attempting to

“Equal Contribution
' A moment is a continuous segment of frames within a target video that
best represents the actions, events, or interactions described by the query.
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Figure 1. (Top): Activity where text falls short to explain com-
plex action or events, such as bicycle kick, necessitating the need
for a more intuitive query modality for localizing semantically
matching moments. (Bottom): Shows the Vid2Vid moment re-
trieval setting, which is the goal of this work.

describe specific moments verbally. For example, consider
a spectacular bicycle kick in soccer (Fig. 1 top). Although
an expert can search by naming or describing it in detail,
a beginner in soccer may struggle to describe this impres-
sive move accurately. They might say something like “The
player kicked the ball while in the air”, which lacks the
nuance needed to convey the athleticism and artistry in-
volved. Further, such a description may lead to poor results
for someone searching for similar moments. In contrast, if
a soccer trainee shows a short video clip of a bicycle kick,
the input is rich and crisp, making it easier for a retriever
to locate similar moments in a target soccer match video.
This approach aligns with how users naturally would prefer
to search content within the same (video) modality, making
it a more effective method for retrieving specific moments.
Fig. 1 (bottom) shows a video bicycle kick query in soccer
that is localized in a target video.

Therefore, in this work, we study video-to-video mo-
ment retrieval (Vid2VidMR) where the aim is to tempo-
rally localize a moment in the target video with a high se-
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mantic match between the moment and the query video.
Vid2VidMR, a task formally introduced by Feng et al. [14],
has many potential application areas, such as sports video
analytics, educational content creation and e-learning, and
surveillance systems. This task is challenging and requires
semantic frame-level alignment and modeling complex de-
pendencies between query and target videos. The need for
a semantic understanding of video content and variety in
video length, context, and action speed calls for adaptive
models capable of generalizing across diverse scenarios.
Addressing these challenges demands advanced temporal
video modeling techniques.

To address the aforementioned challenges, we propose
MATR (Moment Alignment TRansformer) — a method that
uses explicit ‘dual-stage sequence alignment’ to capture the
required correlation and temporal details essential for ac-
curate moment localization. By conditioning target video
representations on query features, MATR produces query-
aligned representations that encode the necessary correla-
tions and temporal dependencies between the two videos.
We use differentiable dynamic time warping loss [9] for
aligning the query and target videos, and represent the tar-
get video by conditioning it on the query video to focus on
correlated temporal features. These representations guide
a classification head to discriminate relevant moments from
the irrelevant background and a boundary prediction head to
mark the start and end of the identified moment in the tar-
get video. Further, to enhance our model’s generalization
using unlabeled videos, we introduce a self-supervised pre-
training strategy which involves training MATR to localize
randomly sampled clips within the same video, enabling it
to learn the moment localization skill in a self-supervised
manner.

We evaluate MATR on public ActivityNet-VRL [14]
benchmark and on our newly introduced dataset on sports
domain, viz. SportsMoments, covering two of the most
popular sports, namely soccer and cricket. Our approach
achieves significant performance gains, with an improve-
ment of 13.1% and 8.1% in R@1 and mloU, respec-
tively, on ActivityNet-VRL outperforming the state-of-the-
art methods. Furthermore, MATR outperforms the im-
plemented strong baselines on our proposed dataset with
14.7% gains in R@1 and 14.4% gains in mloU, all on an
absolute scale.

Our contributions are as follows: (i) We introduce
MATR, which uses explicit dual-stage sequence alignment
within a transformer framework between target and query
video to capture temporal correlations and dependencies
for accurate moment localization. (ii) We propose a self-
supervised pre-training objective that enhances model ini-
tialization by understanding rich video structure without
requiring any labeled data. (iii) We conduct extensive
experiments and ablations to study the efficacy of our

framework against competitive baselines and state-of-the-
art methods. Our findings offer valuable insights into our
design choices, and our approach advances the state-of-the-
art on Vid2VidMR.

2. Related Work

Video Moment Retrieval (VMR): VMR has recently
gained significant interest in the research community [1,
15, 18, 24, 25, 28, 29, 32-34, 53, 55, 57]. Unlike
video action understanding tasks such as action classifi-
cation [6, 13, 27, 44, 47, 54, 56, 60] or temporal ac-
tion localization [43, 59, 64], VMR focuses on identifying
segments that semantically align with a broader range of
queries, which may describe complex and context-specific
moments. Based on the query modality, existing VMR
methods can be broadly grouped into (i) textual query-based
approaches like Moment-DETR [25], QD-DETR [33], Uni-
VTG [28], and (ii) video query-based approaches like
GDP [7], FFI+SRM [19], SRL [51]. Our work falls under
video query-based VMR (Vid2VidMR). However, in addi-
tion to developing a new approach tailored for video query,
we also adapt several text-query-based methods to make
them suitable for Vid2VidMR and compare our method
against both text and video query-based methods.
Alignment in Videos: Alignment has been a thrust area in
the video understanding community. It has been applied
to a wide range of video understanding tasks, including
video retrieval [52], procedural steps alignment [11], ac-
tion recognition [10], anomaly detection [12], movie un-
derstanding [2] and video synchronization [35, 40]. Re-
searchers have also explored sequence alignment for the
text-VMR task, e.g., Mithun et al. [31] used sequence align-
ment between CNN representation of frames and GRU rep-
resentation of text query to perform text-VMR. Jung et
al. [20] used alignment to enhance semantic understanding
between query and target video at the abstract level for the
text-VMR task. However, their alignment is not at the se-
quence level.

Compared to the existing literature, MATR goes beyond
traditional sequence alignment by introducing a dual-stage
alignment mechanism, leveraging transformer-based fea-
ture fusion, and maintaining flexibility with multiple align-
ment strategies. These innovations enable it to achieve more
accurate and context-aware video moment retrieval com-
pared to existing approaches.

3. The MATR Model

Our objective is to temporally localize a moment in a tar-
get video V; using a query video V;,. We represent the tar-
get and query videos as sequences of M and N uniformly
sampled frames, respectively. We refer to this problem as
Vid2VidMR. In this work, we present Moment Alignment
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Figure 2. Moment Alignment TRansformer (MATR) Architecture. We represent the target video as a query-aligned representation
capturing the required correlation and dependencies with query video at the abstract level (output of encoder) and finer level (output of
decoder). These features are used to extract foreground target frames, as well as localize the relevant moment in terms of start and end
times via two prediction heads. The alignment is computed using representations both before and after the encoder (shown using blue

dotted and red dashed lines, respectively). [Best viewed in color].

TRansformer (MATR) — a transformer-based architecture
that leverages explicit alignment for precise moment local-
ization. MATR transforms the target video into a query-
aligned representation via a transformer framework to ex-
ploit finer-level correlation and dependencies for precise
moment localization.

3.1. Motivation behind MATR Architecture

Video moments vary significantly in duration, motion pat-
terns, and visual appearance, making their retrieval inher-
ently challenging. Additionally, preserving the correct tem-
poral order of events is crucial for accurate localization,
as moments often involve complex interactions that unfold
over time. A robust Vid2VidMR model must, therefore, cap-
ture both high-level semantic relationships and fine-grained
frame dependencies to ensure precise alignment between
the query and target video.

To address these challenges, MATR incorporates an
explicit dual-stage sequence alignment strategy within a
transformer-based encoder-decoder framework. This strat-
egy enables MATR to learn a query-aligned representation
of the target video by combining the abstract representation
from the encoder with the refined fine-grained features from
the decoder. In doing so, it facilitates precise moment local-
ization by leveraging both global semantic alignment and
fine-grained temporal dependencies between the query and
target videos. Figure 2 illustrates the overall architecture of
MATR, which we discuss in detail in the following.

3.2. Architecture Details

Input Representation. We uniformly sample frames every
2 seconds to obtain M and N frames from the target and
query videos, respectively. We encode these frames using
a frozen CLIP [39] (ViT-B/32) encoder along with a lin-
ear projection module. CLIP is applied separately to both
videos to obtain target video embeddings E; € RM*4 and
query video embeddings E, € R4, The linear projection
module is a two-layer perceptron, each with layer normal-
ization and dropout. It maps 512-dimensional CLIP em-
beddings to d-dimensional outputs. The resulting projected
features (E; and E,) are concatenated along the sequence
length dimension to form the input to the transformer en-
coder, denoted as E, = [E;; E,] € RIMFN)xd,

Encoder. The combined target and query video representa-
tion (E.) is processed through a series of k standard Trans-
former [48] encoder layers, each comprising a multi-head
self-attention mechanism and a feed-forward network. Fur-
ther, following the prior works [3, 5, 36], fixed positional
encodings are added to the input of each attention layer to
preserve temporal order. The encoder generates a fused rep-
resentation [ES; Eg] of the target video conditioned on the
query video. Here Ef € RM*4 and E§ € RV <4 represent
the target and query parts respectively.

Dual-stage Sequence Alignment. The transformer en-
coder computes effective features by performing a joint un-
derstanding (or fusion) of target and query video frames.

20217



The final goal of Vid2VidMR is to localize a moment in
the target video that semantically matches the content of
the query video. In other words, we would prefer the fea-
tures of the moment in the target to align strongly with the
features of the query video. Therefore, we perform dual-
stage sequence alignment, i.e, before and after the encoder.
For alignement, we choose soft-DTW [9]” and perform the
alignment as follows.

Pre-fusion alignment: Before encoder fusion, given the
target and query video feature sequences, E; =
lel,...,el] € RM*dand B, = [e],..., e} ] € RV*9,
soft-DTW outputs a binary alignment matrix AP and an
alignment cost matrix CP. AP® € {0, 1}M*¥ s an align-
ment matrix such that:

,j

pre _ )1 if e; is matched to e,
0 otherwise.

further, soft-DTW finds the optimal alignment by minimiz-
ing the pre-fusion alignment loss L} . defined as:
L, = soft-DTW,, (AT, C7'5),

such that aligned frames in the target are contiguous. Here
« is a smoothing factor for soft-min operator. The value of ~y
in Soft-DTW is selected empirically to balance smoothness
and alignment fidelity. Note that CP™ is the alignment cost
matrix with elements defined by cosine similarity:

(€7, €5)

il

lezllle]

Cij=1-

Pre-fusion alignment enhances the semantic representation
of target and query video. These enhanced representations
are further processed by the encoder. The encoder outputs
the fused representation of the target and query.

Post-fusion alignment: Given the post-fusion target and

query video feature sequences, Ef € RM*? and Ef €
RN X4 soft-DTW outputs a binary alignment matrix APt
and an alignment cost matrix CP°, soft-DTW achieves op-
timal alignment between Ef and EZ by minimizing the post-

. . it
fusion alignment loss L5, defined as:

Lhfen = soft-DTW (AT, C77Y).
Post-fusion alignment refines target video features by lever-
aging fused query-target representations, ensuring fine-
grained semantic matching for precise moment localization.
Decoder. The decoder in MATR further refines the target
video representation by processing aligned query-target fea-
tures, enabling fine-grained temporal matching and enhanc-
ing frame-level precision for accurate moment localization.

2Soft-DTW allows non-linear alignments between sequences of differ-
ent lengths, is differentiable, robust to variations in speed, and can handle
noise and outliers, though other alignment algorithms, such as TCC [12]
and DropDTW [11] can also be used in our model.

To this end, the post-fusion alignment matrix AP*' defines
a contiguous sub-sequence Ef[s : e] which aligns best
with the query video. These aligned target features, cap-
turing query-aligned fine-grained information, are passed
as input to the decoder for further refinement. The de-
coder consists of k Transformer layers, each containing a
multi-head self-attention layer, a multi-head cross-attention
layer, and a feed-forward network. The input to the decoder
comprises fixed size ! learnable query vectors denoted by
Q € [q1,...,q] € R¥9, These queries guide the extrac-
tion of refined features relevant to moment localization. As
these queries are processed through each decoder layer, they
are refined to capture intricate temporal dependencies, with
positional encodings applied at each attention layer. The
cross-attention layers enable interaction between Ef[s : €]
from the encoder (which serve as keys and values) and rep-
resentations of moment queries (which serve as queries).
The final decoder output, E} € R!*?, provides a refined
fine-grained set of target video features conditioned on the
query video.

Finally, the encoder and decoder representations are

combined as E; = [Ef; E!], making the final target video
representation query-aligned. The final query-aligned rep-
resentation, combining the abstract and fine-grained seman-
tics, serves as input for the prediction heads.
Prediction Heads. The prediction heads consist of three
(c = 3) sequential convolutional layers each having d, 1 x 3
kernels followed by a ReLU activation. Finally, a sigmoid
activation function is applied to produce the foreground pre-
dictions fl The model is trained using the following binary
cross-entropy loss Ly, to distinguish foreground (relevant
moment) from background predictions:

Ly =— (fi log f; + (1 — f;) log(1 — fz)) ;

where f; is the ground truth label, with f; = 1 and f; = 0
indicating foreground and background, respectively.

In addition to foreground classification, the boundary
prediction head is designed to estimate the start and end
boundaries for the moment at every position. This head
shares the same initial structure as the classification head
but differs in the final output, producing two channels for
left and right boundary offsets relative to the current posi-
tion. Specifically, given E¢, the boundary prediction head
outputs predicted offsets d; = {d~, dR} for each position
i € [0,M — 1], where d} and ch represent the left and
right boundary offsets, respectively. The boundary predic-
tion head is trained with a combination of smooth L1 and
generalized intersection over union (IoU) loss [42], specifi-
cally applied to foreground positions (f; = 1), defined as:

Log = 1y—1 {)\Llﬁu (Cii; di) + AouLiou (Ciu di)} .

Here, d; denotes the ground truth offset. The parameters
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Figure 3. Proposed self-supervised pre-training strategy:
Given a target video, a query clip is randomly sampled from it
and processed by the model. The model then predicts the bound-
aries of the selected clip within the target video, highlighting the
corresponding frames with a green border. (Best viewed in color)

ALr and Ay weigh the contributions of the smooth L1 and
IoU losses, ensuring that boundary localization focuses on
the predictions identified as foreground.

Convolutional layers operate along the temporal axis

over the concatenated encoder query-conditioned and
decoder-aligned target features. This preserves tempo-
ral continuity, enabling fine-grained predictions without
boundary artifacts.
Overall Loss. The overall loss function £ is computed
as a combination of multiple objectives, accounting for
alignment costs (pre- and post-fusion alignment), fore-
ground/background classification, and boundary localiza-
tion. For S training samples, this multi-objective overall
loss is defined as:

1

S
£= 57 (MoLra+ MeeLoucs + Mg Ll + X L)
=1

where the As control the importance of each component.
Inference. During inference, given a target video V; and
a query video V;, we pass both through the model to gen-
erate foreground probabilities { fl} f‘igl and boundary pre-
dictions {d;}M 5 using the two prediction heads. To han-
dle the densely generated boundaries, while predicting d;,
we apply 1-dimensional non-maximal suppression with a
threshold of 0.7, filtering out highly overlapping boundaries
and producing the final set of predictions. We choose d;
corresponding to position ¢ with highest f;

3.3. Self-supervised Pre-training Strategy

The video representation learning community has leveraged
self-supervised pre-training techniques designed for train-
ing effective encoders [22, 23, 37, 38, 45, 49, 50], which
can be finetuned for enhanced performance on downstream
tasks. In this work, we introduce a self-supervised pre-
training objective designed to improve temporal localiza-
tion capabilities without relying on labeled data. Specifi-
cally, given a target video V, a query clip V, is randomly
sampled from V; as shown in Fig. 3. The model is then
trained to localize this query clip in V;. This pre-training
objective closely aligns with the task of Vid2VidMR. To en-

hance generalization capabilities and encourage the model
to become robust to variations in both appearance and tim-
ing, we apply one of the following random augmentations to
each of the query clips: reversing frames, adding gaussian
noise, slowing down or speeding up the action, thereby dou-
bling the number of pre-training samples. These augmenta-
tions introduce temporal and spatial variations, enabling the
model to learn diverse representations.

The overall pre-training loss, L,;, combines the
foreground-background classification loss, the boundary
prediction loss, pre-fusion and post-fusion alignment costs.
The total loss is averaged over P pre-training samples as:

P
1 st St
Lot = 5 D (WhgLte + Mo Laeg + Mo Lo + Mo L)
i=1

where the As control the importance of each component.

4. Datasets

We use the following two datasets to compare our pro-
posed approach with existing Vid2VidMR methods and
other strong baselines:

(i) ActivityNet-VRL Dataset [14]: ActivityNet-VRL is the
popular benchmark dataset shared by Feng et al. [14], based
on the ActivityNet video understanding benchmark [17]
consisting of 200 action classes. The dataset is split into
disjoint 160 classes for training and 20 classes each for the
validation and test splits. Furthermore, the training set com-
prises of ~ 463K query-target video pairs, while the valida-
tion set and the test set have 829 and 978 query-target video
pairs, respectively.

(ii) Our proposed SportsMoments Dataset’: One of the
most promising applications for Vid2VidMR lies in the area
of sports analytics. Although there exist large-scale sports
datasets such as Sports-1M [21], they are primarily tai-
lored for broader sports video classification tasks and do
not contain fine-grained sports actions and moments, such
as “Cover Drive,” “Ducking a Bouncer,” “Goal Kick,” or
“Penalty.” Secondly, although ActivityNet-VRL covers a
wide range of action categories (including sports actions),
it only encompasses broader categories such as “Playing
Polo” and does not focus on capturing higher-granularity
events within a sport. Towards filling this gap, we intro-
duce the SportsMoments dataset, which consists of ~770K
query-target pairs annotated from 176.6 hours of complete
match footage of two of the most popular sports, viz. soccer
and cricket. We obtain a total of 80 full-length cricket and
soccer full-length match videos from YouTube. We then cu-
rate a list of 29 action classes comprising 13 soccer and 16
cricket actions, respectively. Given this list, we employed
two annotators, each with strong knowledge of these sports,

3https://github.com/v12g/MATR/tree/main/sportsmoments
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to mark the start and end timestamps for the specified ac-
tions in the videos. We split SportsMoments into training,
validation and test sets. The training split consists of ap-
proximately 750K pairs spanning 16 classes, while the val-
idation and test splits each contain 10K pairs, covering four
and nine classes, respectively. Action classes are disjoint
across the train, validation, and test sets, ensuring no over-
lap. Additionally, each split includes cricket and soccer ac-
tions for a well-rounded distribution.

Additionally, we leverage the unlabeled videos from the
Kinetics700 [6] dataset for pre-training.

5. Experiments and Results

5.1. Baselines

We experiment with an extensive set of strong baselines
grouped into four categories as follows.

(i) Fully-supervised Vid2VidMR methods: We compare
with Vid2VidMR methods like CGBM [14], GDP [7],
SRL [51], FFI+SRM [19], SST [4] and Video-level
match [14]. Further, Huo et al. [19] adapt text-VMR meth-
ods like VSLNet [61], MABAN [46] and 2D-TAN [63] by
replacing their text encoders with a C3D [47] feature ex-
tractor to extract query video features. All of these models
have been trained on ActivityNet-VRL.

(ii) Vision-Language Models (VLMs): VLMs like Video-
LLaMa [62], Video-LLaVa [26] and TimeChat [41] have
shown promising results for multimodal text-video tasks
like Video VQA, captioning, etc. Unfortunately, they have
not been pre-trained with video-video aligned data. First
we represent the query video using a state-of-the-art cap-
tioner, i.e., mPLUG-OWL [58]. Next, the VLMs are zero-
shot prompted to generate start and end moment timestamps
given query caption and target video tokens.

(iii) Text-VMR methods: Moment-DETR [25], QD-
DETR [33], CG-DETR [32], and UniVTG [28] have been
originally proposed for text-VMR. We compare with five
variants of these methods. The zero-shot variant (a) uses
caption from mPLUG-OWL [58] to represent query video,
and leverages the pretrained checkpoints. Variants (b) and
(c) both use caption from mPLUG-OWL [58] to represent
query video, but train a randomly initialized checkpoint
(variant b) or finetune the pre-trained checkpoint (variant
c), respectively. Variants (d) and (e) are equivalent to (b)
and (c) where their CLIP text encoder is replaced by CLIP
ViT/B-32 vision encoder, and therefore take query video di-
rectly as input along with the target video.

(iv) Image-VMR methods: Our work focuses on video
moment retrieval using ‘video’ queries. As a single im-
age query may not effectively capture the temporal aspects
of a video query, this comparison may not be appropriate.
However, we still design baselines by representing the video
by its key-frame (more precisely, the middle frame) using

Text-VMR methods, namely Moment-DETR, QD-DETR
and UniVTG.

5.2. Implementation Details

We choose hidden dimension of 1024 with k¥ = 4 layers
in both encoders and apply a dropout rate of 0.1 and 0.5
within the transformer and linear projection layers, respec-
tively. Model weights are initialized using Xavier initial-
ization [16]. To optimize the model parameters, we uti-
lize AdamW optimizer [30] with an initial learning rate of
le-4 and a weight decay of le-4. Training was done on
two NVIDIA A6000 GPUs. We trained our model for 200
epochs with a batch size of 1200 while using ActivityNet-
VRL. For SportsMoments, we used 40 epochs with a batch
size of 40. We set number of learnable queries [ = 10 and
all As in both pre-training as well as finetuning losses to 1.
We make our implementation and checkpoints available at:
https://github.com/vI2g/MATR.

5.3. Results and Discussion

Main Results: Table | shows our main results where we
compare MATR with fully-supervised Vid2VidMR methods,
VLMs, image-VMR methods, and five variants of each of
the Text-VMR methods. As mentioned before these vari-
ants correspond to zero-shot, finetuned or trained setup. As
usual, trained setup implies random initialization while fine-
tuned setup implies initialization using a pre-trained check-
point (different for each architecture). Query video can be
represented using text (T) captions obtained using mPLUG-
OWL [58] or as video (V) itself. Since MATR is inherently
designed to take video query as input, experimenting with
text (T) captions and image query is not needed. Follow-
ing previous work, we report the standard mean Intersection
over Union (mloU) and Recall@ 1 IoU=0.5 metrics.
Comparison with fully-supervised Vid2VidMR methods:
For a fair comparison, we directly use the reported re-
sults from original papers for fully-supervised methods on
ActivityNet-VRL. Consequently, we do not report their re-
sults on SportsMoments. As shown in Table 1, MATR out-
performs the best method, FFI+SRM, with an 8.1% gain
in mIoU and achieves a 13.1% improvement in R@1 over
GDP, which had the highest recall. These results underscore
MATR’s superior ability to accurately localize moments us-
ing video queries.

Comparison with VLMs: Table | shows that our method
MATR outperforms all four VLM-based baselines by a
significant margin. In comparison, the best-performing
baseline, TimeChat [41], achieves 26.4 mloU and 23.8
R@1 on ActivityNet-VRL, and 22.6 mloU and 21.3 R@1
on SportsMoments. Other methods, such as Video-
LLaVA [26], Video-LLaMA [62], and Video-LLaMA?2 [8],
perform significantly worse. These results show that task-
specific models for Vid2VidMR are significantly better.
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ActivityNet-VRL  SportsMoments

Methods Variants mloU R@l1 mloU R@I
& Random [14] - 7.3 16.2
2 VideoMatch[14] - 124 243
g SST [4] - 17.1 332
Z  CGBMI[14] ; 257 435
Q
£ aop) - 278
5 SRL[51] ; 406 293 ;
5 2D-TAN[63] ; 453 396 -
2 MABAN [46] ; 428 375 ;
Z  VSLNet[61] ; 272 438
FFI+SRM [19] - 40.6
. Video-LLaVA [26] - 151 147 138 119
2 Video-LLaMA [62] - 147 139 125 112
2 VideoLLaMA2[8] - 176 152 147 134
TimeChat [41] ; 24 238 226 213
Z  Moment-DETR 5] - 356 325 252 185
£ QD-DETR [33] ; 372 381 277 207
% UniVTG [28] ; 388 420 346 372
(a) ZS+T 282 228 37 09
(b) Trained+T 37.1 35.8 314 29.2
.. (c)Finetuned+T 400 389 358 340
_ )
Moment-DETR 251 () Trainedsv 359 347 287 242
(¢) Finetuned+V 400 399 304  25.1
. (a) ZS+T 254 22 63 26
% (b) Trained+T 384 390 298 272
= .
= (c) Finetuned+T 41.6 45.2 36.0 33.5
o -
= QD-DETR[33] (@) Trained+V 397 410 272 25.1
g (e) Finetuned+V ~ 42.5 42.7 354 30.6
~ (a) ZS+T 324 267 114 60
é (b) Trained+T 43.8 45.6 415 36.5
4 (c) Finetuned+T ~ 458 464 448 392
bl
UniVTG [28] (d) Trained+V 484 498 432 305
(e) Finetuned+V ~ 49.1 50.7 43.6 41.8
(a) ZS+T 259 219 33 16
(b) Trained+T 394 384 351 313
. (c) Finetuned+T ~ 410 432 354 325
CG-DETR [32] (d) Trained+V 400 417 366 351
(e) Finetuned+V  40.1 41.7 37.2 34.8
2 Zero-shot 32.6 30.1 31.8 30.7
& maTR Trained+V 532 548 562 527
Finetuned+V 568 571 592 565

Table 1. Comparing MATR with fully-supervised Vid2VidMR
methods, VLMs, image-VMR methods, and variants of Text-VMR
methods. Trained implies random initialization. Finetuned implies
initialization using a pre-trained (respective to each architecture)
checkpoint. Query video can be represented using text (T) cap-
tions or as video (V) itself. Since MATR is inherently designed to
take video query as input, experimenting with text (T) captions is
not needed. For more details of baselines and their variants, please
refer to Section 5.1. Results for the overall best, best among imple-
mented baselines and previously reported SOTA are highlighted in
bold, underline and box, respectively.

Comparison with Text-VMR Methods: Table | shows
that amongst all the five variants, the finetuned variants
are typically better than the trained variants, i.e., variant
(c) is better than (b), and (e) is better than (d). On both
ActivityNet-VRL and SportsMoments, UniVTG achieves
the best results among variants which use video queries.
However, our MATR model outperforms UniVTG by 7.7%
in mloU and 6.4% in R@1 on ActivityNet-VRL. On
SportsMoments, MATR shows a further improvement, sur-

ActivityNet-VRL ~ SportsMoments

Pre-Fusion ~ Post-Fusion ~ mloU R@] mloU R@]I
X X 49.7 50.2 49.1 46.6

X v 523 52.9 53.1 48.2

v X 50.4 51.2 524 46.7

v v 53.2 54.8 56.2 52.7

Table 2. Advantage of explicit dual-stage alignment of MATR.
For this study, experiments were performed without pre-training.

ActivityNet-VRL
Augmentation ~ mloU R@l1 mloU R@l1

SportsMoments

Pre-training

X - 532 54.8 56.2 52.7
' X 54.1 55.6 56.9 53.6
v v 56.8 57.1 59.2 56.5

Table 3. Effect of pre-training and augmentation in MATR.

passing UniVTG by 15.6% in mloU and 14.7% in R@]1.
These gains highlight the superior performance of MATR
compared to the text-VMR methods when used with video
query input. When text captions are used to represent the
query, we observe similar trends as in the video query in-
put case. Among the baselines, UniVTG performs the
best. However, MATR outperforms it by 11% in mloU
and 10.7% in R@1 on ActivityNet-VRL. On SportsMo-
ments, MATR achieves 14.4% higher mloU and 17.3%
higher R@1 than UniVTG. These results demonstrate the
superior performance of MATR compared to the text-VMR
methods when used with text query input for Vid2VidMR.

Comparison with Image-VMR: Table | shows that the
best-performing approach, UniVTG [28], achieves a mloU
of 38.8 and 42.0 R@1 on ActivityNet-VRL and 34.6 mloU
and R@1 37.2 on SportsMoments. Although this is compa-
rable to previous fully supervised methods, it still lags sig-
nificantly behind our MATR. This further goes to show the
importance of temporal dynamics captured by video queries
as compared to static image queries.

Advantage of Dual Sequence Alignment: Table 2 shows
the impact of different alignment strategies in MATR on
both datasets. This study is done without any pre-training.
We evaluate the effect of incorporating alignment at the pre-
fusion and post-fusion stages. Our results indicate that the
combined use of both pre-fusion and post-fusion alignment
achieves the best performance, suggesting that alignment is
important to ensure both before and after the encoder. Mod-
els with alignment either before (pre) or after (post) show
moderate gains over neither. Removing post-fusion align-
ment hurts more than removing pre-fusion alignment, sug-
gesting that post-fusion alignment is more important. Omit-
ting alignment entirely results in the lowest scores. This
highlights the importance of dual alignment for effectively
capturing relevant temporal information for video query-
based moment localization.

Effect of Pre-training: We analyze the impact of pre-
training and data augmentation on model performance in
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Query Video

Ground Truth [2.1, 18.1]
MATR (Ours) [3.2, 16.6]
UniVTG [7.3,18.4]

Moment-DETR [7, 12

QD-DETR [5.9, 12.8]

Target Video

Figure 4. Visualization of Vid2VidMR on a sample from ActivityNet-VRL for calf roping action. Our proposed MATR model shows
improved generalization capabilities over the best-performing baseline methods (variant (e), i.e., finetuned+V). Start and end times for the
ground truth and predicted moments are shown in the brackets. Refer to supplementary material for the videos used in this figure.

ActivityNet-VRL ~ SportsMoments
mloU R@1 mloU R@1
Pre-fusion alignment (AP) 34.1 32.6 31.6 29.8
Post-fusion alignment (AP**") 38.3 352 36.4 335
Prediction-heads 56.8 571 59.2 56.5

Table 4. Advantage of predicting using prediction heads on de-
coder. We observe that directly predicting from fusion matrices is
inferior as it lacks fine-grained refinement.

ActivityNet-VRL ~ SportsMoments

Alignment mloU R@l mloU R@l1

None 50.4 51.8 52.1 48.6
TCC 52.4 52.7 53.9 52.8
Drop-DTW 54.2 54.7 55.6 54.7
soft-DTW 56.8 571 59.2 56.5

Table 5. Ablation on alignment methods.

Table 3. On ActivityNet-VRL, without pre-training, the
model achieves 53.2 mloU and 54.8 R@1. Adding pre-
training without augmentation yields 54.1 mIoU and 55.6
R@1. The best results are obtained by using pre-training
with augmentation, leading to a significant boost to 56.8
mloU and 57.1 R@1. We got similar observations for the
SportsMoments dataset.

Predictions from Heads vs Alignment Matrices: The re-
sults in Table 4 show that prediction from heads outper-
forms the prediction from both pre-fusion alignment (AP™)
and post-fusion alignment (AP°") on both datasets. Notably,
prediction heads improve mloU and R@1 by a large mar-
gin, demonstrating their effectiveness in accurately retriev-
ing temporal moments. Post-fusion alignment provides bet-
ter results than pre-fusion alignment. However, the gains
are modest compared to the substantial boost from predic-
tion heads. This justifies the need for the decoder.

Ablation on Alignment Losses: MATR can incorporate
different alignment methods. Table 5 compares the perfor-
mance of different alignment methods on both ActivityNet-
VRL and SportsMoments datasets. Without any align-
ment (“None”), the model achieves R@1 scores of 51.8%

on ActivityNet-VRL and 48.6% on SportsMoments. TCC
alignment yields an improvement of 0.9% and 4.2% on
ActivityNet-VRL and SportsMoments, respectively. Drop-
DTW is better than TCC. soft-DTW alignment consistently
demonstrates superior performance across both datasets,
achieving the highest gains of 5.3% on ActivityNet-VRL
and 7.9% on SportsMoments.

Qualitative Results: We present moment retrieval results
on a sample from ActivityNet-VRL in Fig. 4, where we
compare our proposed approach to variant (e) (refer Sec. 5.1
for details) of the four best-performing baselines. The video
query is a 5-second clip depicting calf roping*. The tar-
get video, with a duration of 24 seconds, showcases this
event occurring between 2.1 and 18.1 seconds. Our pro-
posed MATR model exhibits the highest overlap with the
ground truth for the given query, accurately identifying the
correct temporal boundaries. Among the baseline methods,
CG-DETR and UniVTG achieve strong overlap, however,
are still outperformed by our approach.

6. Conclusion

We introduced MATR, a robust approach for Vid2VidMR
that combines abstract representation from encoder with
fine-grained features from decoder conditioned on aligned
query features. It captures semantic and temporal cues
for precise moment localization. Our self-supervised pre-
training enhances initialization and boosts performance.
Extensive experiments on ActivityNet-VRL and our new
SportsMoments dataset show that MATR outperforms
strong baselines. Future directions of this work include ex-
ploring multimodal queries and developing scalable archi-
tectures to enhance broader applicability.
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4A rodeo event where a rider on horseback attempts to catch and tie a
calf within a timed competition.
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