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Abstract

Existing methods for image alignment struggle in cases in-
volving feature-sparse regions, extreme scale and field-of-
view differences, and large deformations, often resulting in
suboptimal accuracy. Robustness to these challenges can
be improved through iterative refinement of the transform
field while focusing on critical regions in multi-scale image
representations. We thus propose Auto-Regressive Transfor-
mation (ART), a novel method that iteratively estimates the
coarse-to-fine transformations through an auto-regressive
pipeline. Leveraging hierarchical multi-scale features, our
network refines the transform field parameters using ran-
domly sampled points at each scale. By incorporating guid-
ance from the cross-attention layer, the model focuses on
critical regions, ensuring accurate alignment even in chal-
lenging, feature-limited conditions. Extensive experiments
demonstrate that ART significantly outperforms state-of-
the-art methods on planar images and achieves comparable
performance on 3D scene images, establishing it as a pow-
erful and versatile solution for precise image alignment.

1. Introduction

Image alignment is a fundamental problem in computer vi-
sion that involves registering images captured from different
perspectives, times, or modalities. The process is essential
for achieving seamless integration and analysis of images.
However, scale variations, structural deformations, and in-
distinct features complicate accurate alignment, requiring
robust and adaptive methods.

Existing methods for image alignment often fail when
(1) feature-based methods [24, 34, 35, 52, 59] struggle to
detect keypoints due to homogeneous textures, low con-
trast, or weak features; (2) intensity-based methods [2, 11,
21, 28, 29, 42] cannot handle large scale differences or
deformations beyond their effective range; or (3) iterative
refinement-based methods [5, 12, 14, 30, 39, 43, 64-66] suf-
fer from poor initialization, leading to slow convergence or
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Figure 1. Alignment Results in Challenging Scenarios. For
image pairs with sparse features, scale differences, deformations,
degradations, and domain shifts, our method performs coarse-
to-fine auto-regressive transformation refinement, achieving accu-
rate alignment even in challenging scenarios where state-of-the-art
methods struggle. The zoomed-in boxes show the local alignment
results, and the highlighted vessel image below illustrates the in-
tersection (yellow) between the two images (red and green).

suboptimal alignment results.

To reduce reliance on local feature matching, which pri-
marily depends on tentative one-to-one correspondences,
matching can be performed over larger appearance regions.
This can be addressed by jointly estimating correspon-
dences for sets of points. To handle large scale differences,
it is crucial to search across a wide range of scales. This
can be achieved by learning to infer transform field param-
eters within a coarse-to-fine framework, enabling the net-
work to iteratively refine its estimates. To improve robust-
ness against poor initialization in iterative pipelines, non-
parametric conditions should guide the refinement process.
This can be done by incorporating global appearance cues
from the input image pair into the sampling process.

Auto-Regressive Transformation (ART) is a novel im-
age alignment framework robust to image pairs with large
scale and field-of-view differences, deformations, and lim-
ited distinctive features, as shown in Fig. 1. ART employs
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Figure 2. Method Overview. Auto-Regressive Transformation (ART) iteratively refines the transformation D for image pairs Z in a
coarse-to-fine manner. Its sampling strategy enables effective operation across diverse domains and datasets.

an auto-regressive approach, iteratively sampling and refin-
ing local transform parameters by joint estimation for a set
of points in a coarse-to-fine manner guided by multi-scale
representations from a pyramid feature extraction network,
as depicted in Fig. 2. Moreover, by leveraging global ap-
pearance cues from the entire image pair as conditioning
signals, ART achieves robustness to initialization. Exten-
sive evaluations demonstrate that ART significantly outper-

forms existing feature-based [10, 16, 24, 34, 35, 47, 49, 50,

52, 55], intensity-based [7, 14], and iterative refinement-

based methods [7, 35, 50, 65, 66] across various datasets.

Our contributions are as follows:

» Coarse-to-fine auto-regressive modeling enables ART to
handle substantial transformations between images.

* ART demonstrates state-of-the-art performance for a
wide range of datasets with limited features, scale differ-
ence, large deformation, and considerable domain shift.

e ART can adapt to different complexity requirements by
controlling the number of inference iterations.

2. Related Works

Feature-based methods align images by detecting and
matching keypoints to estimate transformations. Traditional
approaches [4, 6, 37, 48] are widely used for their robust-
ness, while deep learning-based methods [16, 35, 46, 55]
improve keypoint detection and description.

Further advancements enhance alignment performance.
SuperGlue [49] introduces graph neural networks for robust
correspondence, while LightGlue [33] improves efficiency

with a lightweight design. However, these methods struggle
in feature-sparse regions and under extreme distortions.

Detector-free methods estimate transformations directly
from image pairs. Deep homography estimation [15] pio-
neered this approach, followed by NCNet [47], which op-
timizes efficiency with sparse convolutions. Optical flow-
based models [26, 60] estimate dense correspondences.
Transformer-based methods such as LoFTR [52], Geo-
Former [34], and RoMa [ 18], as well as diffusion-based ap-
proaches like RetinaRegNet [50] built on DIFT [53], further
enhance spatial reasoning. However, these models often de-
mand substantial computational resources and large-scale
datasets for effective generalization.

Intensity-based methods align images by optimizing a
transformation that minimizes pixel intensity differences
using similarity metrics [56, 67]. Traditional methods re-
fine transform field parameters iteratively [40, 54].

Deep learning improves these approaches by directly
predicting transformations, as seen in Deep Image Ho-
mography Estimation [15] and Spatial Transformer Net-
works [27], while ISTN [30] and REMPE [24] enhance
flexibility and robustness. These methods are widely ap-
plied in optical flow estimation [26, 60, 62] and medical
image registration [2, 9, 25, 28, 41, 61]. However, they
struggle with brightness variations, contrast differences,
and modality changes, and can be computationally expen-
sive for high-resolution images or complex transformations.
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Figure 3. Overall Framework. ART first extracts multi-scale features F, and F4 from the input image pair Z, and Z4. At each sampling
step k, the corresponding features, F* and F¥, are passed through the Cross-Attention Layer (CAL) to identify the correlated features
that guide the network’s focus on regions requiring refinement. The attentive feature map F% ., is then used to refine the transform field
parameters D%, and D to Dﬁj{l and DZH through multiple convolutional neural networks. This auto-regressive process continues until
the initialized transform field parameters D% and DY reach the full resolution of the input image pair Z, and Z.

Iterative refinement-based methods progressively ad-
just transformations to improve alignment, inspired by tra-
ditional frameworks like RANSAC [20] and ICP [5]. Early
methods, such as Lucas-Kanade [38], employed gradient-
based optimization but struggle with large deformations.
Deep learning models [7, 65, 66] refine alignment by em-
ploying multi-stage or recurrent processes. Diffusion-based
approaches [57, 63] further improve accuracy.

3. Proposed Method

3.1. Problem Formulation

Given a source image Z, and a destination image Z;, both
with spatial resolution (H, W), we denote their respective
set of point coordinates as Ps = {(z1,¥1),---, (Tn,Yn)}
and Py = {(z1,v1),- - -, (z,, y,,)}, respectively.

We can then define the locally linear point-wise transfor-
mations between P, and Py as:

Pa=Dp - Ps+ Da, (1)

where D and D4 represent the multiplicative and addi-
tive transform field parameters for point-wise scaling and
translation, and the operations - and + denote element-wise
multiplication and addition, respectively. Both D4 and
D 4 have shape (H,W,2), where the last dimension cor-
responds to the = and y-axis components of the transforma-
tion. That is, a point (z;,y;) in Ps is mapped to its corre-
sponding point (z7, y) in Py as follows:

Jj; = DM[J,‘“y],O] X T; +DA[$i,yj70]7

2)
yi = Dalzi,yj, 1] X y; + Dalai, y;, 1)
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While each point transform is individually simple, the field
as a whole can represent complex and flexible free-form de-
formations.

3.2. Auto-Regressive Transformation

To accurately estimate the transform field parameters D x4
and D4 between Z; and Z;, ART employs an auto-
regressive coarse-to-fine refinement strategy, where trans-
form field parameters are progressively updated through
multiple steps, as was depicted in Fig. 2.

In the most coarse level, the (Hy, Wy, 2) shaped trans-
form field parameters D%, and DY are initialized to
Lr,xwyx2 and Op,xw,x2, respectively. Every iteration
doubles the spatial resolution, so after k steps, Df\,l and Dﬁ
reach a spatial size 2" times larger than D9 and DY, en-
abling the estimation of finer details. This iterative refine-
ment process enables the model to incrementally improve
precise estimation at each sampling step k until reaching
the final step K, as follows:

(Dlj\jl_lap_];l_‘_l) = ART(D”XA,ID'I?”IS,Id) 3

3.3. Architectural Details

ART consists of two main components: (1) A multi-scale
feature extractor that captures details from coarse to fine
levels; (2) A transformation updater module that autoregres-
sively refines transform field parameters. The entire net-
work structure is depicted in Fig. 3. Further details will be
discussed in the following sections.

Multi-Scale Feature Extractor The network &£, as in
[1, 66] extracts multi-scale features with progressively in-
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Figure 4. Point-based Image Warping. At sampling step k, the
extracted source points set P¥ is warped to ’ﬁf_m by sequentially
multiplying with the corresponding values of the transform field
parameter D%, and adding D for each point. These point pairs

are then used to compute the warped image Z,—, 4.

creasing spatial resolutions from Z, and Z, as follows:
(FO, . FE L FE) = £4(T),
(FQ,y s Fi o FIO) = E4(Ta),

where k is the current and K is the maximum transform
field parameters sampling step. Each output’s spatial reso-
lution doubles from the previous one, while the number of
channels remains fixed. At each scale, feature maps from
the previous resolution are progressively integrated, ensur-
ing effective multi-scale feature fusion. This process en-
ables the network to capture both fine-grained details and
broader contextual information across resolutions.

4)

Transformation Updater Module At sampling step k,
the Cross-Attention Layer (CAL) first extracts the corre-
sponding attentive feature map F Sk ", 4 by using the source
feature map F* as the query and the destination feature map
FP as the key and value as follows:

ﬁf—)d:concat[‘/—:faftlicaCAL(‘/—.ZC"F;C)L (5)

where Concat represents concatenation of tensors. To en-
sure computational efficiency with respect to the spatial size
of the feature map, CAL applies a downsampling convolu-
tion to the query, key, and value features, followed by an
upsampling deconvolution at the final stage.

The extracted attentive feature map fsk ", 4 guides the
subsequent network in determining where to focus, en-

abling the iterative update of D" and D% based on D,

and Dfﬁl, which were derived from the previous step k£ — 1.
This process can be expressed as follows:

Dﬁ;"{l = Conv(ConCat[XzDﬁ/p-ﬁfad])’

Di;rl = Conv(Concat [*?DY, FF . ]),

(6)

Here, Conv denotes multiple convolutional layers with
Leaky ReLU, Concat denotes tensor concatenation, and
*2 indicates bilinear upscaling by a factor of 2.

This iterative process is repeated in a coarse-to-fine man-
ner to obtain the final transform field parameters fo,l and
Dfi , having the same spatial resolution as the input image.

3.4. Image Warping

At any k-th sampling step during autoregressive estimation,
a set of source points P” selected by a point sampler can be
warped as P¥ , , = Dk - PF 4+ D% as depicted in Fig. 4.

We can utilize these sets of source points P and the
corresponding points P¥  , to model the transform function
from the source image Z, to the destination image 7 to get
warped image Z,_q. This can be represented either as a
linear warp [22] for global changes or a quadratic warp [29]
for both global and local deformations.

3.5. Training ART
The end-to-end training loss £ of ART is defined as:
L = Lp + LR, @)

where Lp and Ly are the pixel matching loss, and regular-
ization loss, respectively. Ar controls the relative impor-
tance of the regularization loss.

Stochastic Pixel Matching Loss  £p computes the differ-
ence of warped source points set P, , with ground-truth
destination points set P* for all 0 < k < K as follows:

Lp =Ey Hﬁ‘fﬁd_,})};Hz' (®)

Note that we can utilize the point sampler used for im-
age warping to stochastically select the source points set
PE. This stochastic sampling, instead of using regular grid
points or conventional keypoint detection techniques [37],
plays a key role in enabling the network to learn to robustly
estimate the transforms at any particular scale.
Regularization Loss To complement the pixel match-
ing loss, we define a regularization term to ensure that all
warped points converge to their appropriate positions us-
ing homography matrix H, shaping the distribution of esti-
mated correspondence points rather than directly predicting
ground-truth coordinates, for all 0 < k < K as follows:

Lo = By |[HF — |, ©)

where HF is computed from differentiable RANSAC [19]
with inlier threshold 2 and HE.. is the ground-truth with
sampling step k.
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Table 1. Datasets for Evaluation.

Category Type Dataset Image Content Training Type

KBSMC of SFI and UWFI FS

Retinal HR FIRE [23] of SFI and SFI ss

FLORI21 [17] Image pairs of UWFI and UWFI SS

HPatches [3] Planar images under varying illumination and viewpoint ss
HR  MegaDepth-1500 [31] Outdoor scenery images under different lighting and perspective conditions ss

s ScanNet-1500 [13]  Indoor scenery images with real-world viewpoint and lighting variations ss
Scene

GoogleEarth [65]  Satellite images of the carth’s surface FS

LR GoogleMap [65] Navigation map with satellite images FS

MSCOCO [32] Common images in natural context FS

FS and SS denote fully-supervised and self-supervised, respectively.
HR and LR denote high-resolution and low-resolution, respectively.

4. Experiments
4.1. Datasets

Evaluation of ART is performed across retinal and scene
categories, as described in Tab. 1.

For retinal images, we evaluate ART on three datasets,
comprising standard fundus images (SFI) and ultra-wide
fundus images (UWFI). For cross-domain alignment, we
use a private dataset from the Kangbuk Samsung Medical
Center (KBSMC) Ophthalmology Department, collected
between 2017 and 2019', consisting of 3,744 SFI-UWFI
pairs with scale differences of approximately x1 ~ x4,
where ground truth transformation was manually annotated.
Additionally, we utilize the public datasets FIRE [23] and
FLORI21 [17] for in-domain alignment of SFI-SFI and
UWFI-UWFI pairs.

For scene categories, we evaluate ART on HPatches [3]
(planar images), MegaDepth-1500 [31] (outdoor images),
ScanNet-1500 [13] (indoor images), GoogleEarth [65]
(satellite images), GoogleMap [65] (navigation maps), and
MSCOCO [32] (common images).

4.2. Implementation Details

Here, we define high-resolution (HR) and low-resolution
(LR) images as 768 x 768 and 192 x 192, respectively,
based on their spatial dimensions. KBSMC, FIRE [23],
FLORI21 [17], HPatches [3], MegaDepth-1500 [31],
and ScanNet-1500 [13] are assigned as HR type, while
GoogleEarth [65], GoogleMap [65], and MSCOCO [32] are
LR, respectively. The original images may be resized to
meet these definitions. The number of inference steps K is
set to 6 for HR and 4 for LR images, respectively. The point
sampler selected 100 points, randomly for training and via
a feature detector [37] for consistent testing.

Common Setup We used the AdamW [36] optimizer
with a learning rate of 0.001, 5; = 0.9, 82 = 0.999, and
€ = 107% to train ART, applying weight decay every 100K

I'This study adhered to the tenets of the Declaration of Helsinki and was
approved by the Institutional Review Boards (IRB) of Kangbuk Samsung
Hospital (No. KBSMC 2019-08-031). The study is a retrospective review
of medical records, and the data were fully anonymized prior to processing.
The IRB waived the requirement for informed consent.

iterations with a decay rate of 0.01. The model was trained
for more than 1K epochs using an NVIDIA A100 GPU. We
set A to 0.5. For the fully-supervised (FS) training strategy
in Tab. 1, we apply data augmentation by introducing ran-
dom rotations and random photometric distortions, includ-
ing variations in illumination, contrast, blur, and noise. For
the self-supervised (SS) training strategy in Tab. 1, we ad-
ditionally apply random transformations to the training im-
age, along with the aforementioned augmentation. We nor-
malize the points in P, to have values in the range [—1, 1].
We set the spatial dimensions of the initialized transform
field parameters D}, and DY to Hy = 12 and Wy = 12.

4.3. Evaluation on Retinal Categories

Baselines for Comparison We compare ART with Su-
perPoint [16], GLAMpoints [55], ISTN [30], NCNet [47],
SuperGlue [49], REMPE [24], DLKFM [65], LoFTR [52],
IHN [7], SuperRetina [35], ASPanFormer [10], MC-
Net [66], GeoFormer [34], and RetinaRegNet [50].

Evaluation Metrics To evaluate alignment performance,
we use the CEM approach [51] to calculate the median error
(MEE) and maximum error (MAE). The results are catego-
rized as follows: i) Acceptable IMAE < 50 and MEE < 20),
ii) Inaccurate (others). We also calculated the Area Under
Curve (AUC) score [23], with mean AUC (mAUC).

Discussion We randomly split the KBSMC dataset into
3,370 training and 374 test pairs and trained the model in a
FS manner. For the FIRE [23] and FLORI21 [17] datasets,
ART was trained in a SS manner using SFIs from KBSMC
and FIRE, as well as UWFIs from KBSMC and FLORI21,
with warped pairs synthesized via random transformations.

The results in Tab. 2 clearly demonstrate the superior-
ity of the proposed ART method across multiple retinal
datasets. Compared to state-of-the-art methods, ART con-
sistently achieves the highest Acceptable rate and mAUC,
confirming its effectiveness in retinal image alignment.

On the challenging KBSMC dataset, ART achieves an
Acceptable rate of 64.71% and an mAUC of 40.1, outper-
forming GeoFormer [34]. These results highlight the capa-
bility of ART to handle complex retinal image transforma-
tions. On the FIRE and FLORI21 datasets, ART achieves
near-perfect Acceptable rates of 99.25% and 100%, and
state-of-the-art mAUCs of 78.5 and 92.5, respectively.

Although methods such as DLKFM [65] and MC-
Net [66] adopt iterative point refinement, their reliance on
only four points for homography estimation limits their per-
formance, especially on complex, high-resolution pairs like
SFI-UWFI. In contrast, ART uses a more expressive trans-
formation model, achieving accurate and reliable alignment
in challenging scenarios.

Fig. 5 presents qualitative results, further demonstrating
the effectiveness of ART compared to state-of-the-art meth-
ods such as GeoFormer [34] and RetinaRegNet [50].
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FIRE [23] KBSMC

FLORI2I [17]

SuperRetina [35] GeoFormer [34] RetinaRegNet [50] ART (ours)

Figure 5. Qualitative Evaluation on Retinal Datasets. Across various domains, ART robustly identifies sufficient matches compared to
SuperRetina [35], GeoFormer [34], and RetinaRegNet [50]. Correct and incorrect matches are shown in green and red, respectively. The
zoomed-in boxes highlight overlaid local regions.

Table 2. Quantitative Evaluation on Retinal Datasets.

Methods KBSMC FIRE FLORI21
Acceptable; (%) mAUC; Acceptable; (%) mAUC; Acceptable; (%) mAUC;

SuperPoint [16] 9.09 8.7 94.78 67.3 40 39.1
GLAMpoints [55] 9.89 8.4 93.28 61.9 33.33 34.4
ISTN [30] 20.86 12.1 86.57 60.9 53.33 52,5
NCNet [47] 12.30 9.6 86.57 61.4 53.33 50.8
SuperGlue [49] 24.06 15.3 95.52 68.7 80 59.8
REMPE [24] 22.46 15.0 97.01 72.1 73.33 60.0
DLKFM [65] 22.73 13.5 86.57 61.4 40 40.1
LoFTR [52] 26.20 16.9 97.01 71.5 66.67 51.5
IHN [7] 23.80 14.5 88.81 63.5 60 50.0
SuperRetina [35] 34.76 22.3 98.51 75.5 80 65.0
ASPanFormer [10] 24.87 16.2 92.54 70.4 73.33 62.8
MCNet [66] 32.89 20.9 92.54 69.3 60 48.6
GeoFormer [34] 36.10 24.1 98.51 75.6 93.33 71.4
RetinaRegNet [50] 31.28 20.3 99.25 77.9 100 86.8
ART w/o CAL (ours) 51.87 372 99.25 78.2 100 92.3
ART w/ CAL (ours) 64.71 40.1 99.25 78.5 100 92.5

The bold and underline values denote the best and second best results, respectively.
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Figure 6. Qualitative Evaluation on Scene-HR Datasets. To
evaluate our method under diverse conditions, we visualize cor-
respondences on the Scene-HR datasets, including HPatches [3],
MegaDepth-1500 [31], and ScanNet-1500 [13]. Correct and in-
correct matches are shown in green and red, respectively.

Table 3. Quantitative Evaluation on Scene-HR Datasets.

mAUC?T
Methods HPatches MegaDepth-1500 ScanNet-1500
LoFTR [52] 754 67.7 40.7
LightGlue [33] 71.5 72.3 48.2
MatchFormer [58] 78.1 68.2 43.2
RoMa [18] 78.4 75.2 52.0
ART w/o CAL (ours) 75.3 68.8 45.8
ART w/ CAL (ours) 78.6 74.9 51.1

The bold and underline values denote the best and second best results, respectively.

4.4. Evaluation on Scene Categories

Baselines for Comparison We compare ART with
LoFTR [52], LightGlue [33], MatchFormer [58], and
RoMa [18] for HR datasets and DLKFM [65], IHN [7], and
MCNet [66] for LR datasets.

Evaluation Metrics For 2D geometric transformation
datasets, we follow prior works [52, 65] and report
the average corner error (ACE) on GoogleEarth [65],
GoogleMap [65], and MSCOCO [32], and the mAUC of
ACE on HPatches [3] at thresholds of 3, 5, and 10 pix-
els. For two-view transformations (MegaDepth-1500 [31],
ScanNet-1500 [13]), we follow prior works [18, 52] and re-
port the mAUC of pose error at 5°, 10°, and 20°, defined as
the maximum angular deviation in rotation and translation.

Discussion For the HR datasets, we pretrained the ART
using images from the Oxford-Paris datasets [44, 45] and
finetuned it in a SS manner on the HR datasets. For the LR
datasets, we trained the model in a FS manner.

Tab. 3 and 4 present comparative quantitative evalua-
tions, demonstrating the effectiveness of the proposed ART
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GoogleEarth [65]

MSCOCO [32]

Figure 7. Qualitative Evaluation on Scene-LR Datasets. On the
GoogleEarth [65], GoogleMap [65], and MSCOCO [32] datasets,
ART successfully finds the correct transformation between input
image pairs, even with sparse features from low resolution, domain
gaps, and scale differences.

Table 4. Quantitative Evaluation on Scene-LR Datasets.

ACE]
Methods GoogleEarth GoogleMap MSCOCO
DLKFM [65] 3.88 4.41 0.55
IHN [7] 1.60 0.92 0.19
MCNet [66] 0.60 023 0.03
ART w/o CAL (ours) 0.65 0.96 0.05
ART w/ CAL (ours) 0.17 0.19 0.03

The bold and underline values denote the best and second best results, respectively.

across HR and LR datasets with varying characteristics.

For the HR datasets, ART achieves state-of-the-art per-
formance on HPatches [3], which features mostly planar
surfaces with rich structural details and minimal domain
shifts. ART also achieves performance comparable to
state-of-the-art on estimating two-view 3D geometric trans-
formations from the MegaDepth-1500 [31] and ScanNet-
1500 [13] datasets. We believe the lack of improvement
compared to RoMa [18] is due to challenges like limited
overlap, repetitive structures, and severe degradations that
are hard to fully simulate despite extensive training aug-
mentations (Sec. 4.2). Fig. 6 shows challenging cases where
ART accurately estimates correspondences across datasets.

In contrast to HR datasets, LR datasets introduce addi-
tional challenges including significant feature loss and res-
olution discrepancies. GoogleMap [65] images also ex-
hibit domain shift, adding to the alignment difficulty. As
shown in Tab. 4, traditional iterative deep homography es-
timation methods [7, 65] struggle under these conditions.
ART achieves the lowest ACE across all datasets, demon-
strating superior adaptability to low-resolution and cross-
domain alignment tasks. This suggests that our method’s
contextual feature refinement contributes to robust align-
ment, even in scenarios with large-scale variations and do-
main mismatches. Fig. 7 further highlights these capabil-
ities, depicting cases where ART successfully estimates
transformations for LR datasets.
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Figure 8. Ablation Study on Sampling. ART performance varies
with (a) the number of sampling steps and (b) different initializa-
tion strategies, across HR (left) and LR (right) datasets.

4.5. Understanding ART

Here, we present ablation studies to gain a deeper under-
standing of the key components that constitute ART.

Sampling Efficiency The aforementioned number of iter-
ation steps, 6 for HR images and 4 for LR images, can be
reduced to improve efficiency during inference.

For instance, starting with the initialized transform field
parameters D(/)v( = 112x12x2 and D?A = 012x12x2, only a
few model inference steps are needed, followed by upsam-
pling to achieve the full resolution of the transform field
parameters DX and DX . The results in Fig. § (a) show that
the network estimates the transform field parameters early
in the autoregressive process for both HR and LR datasets
without requiring the full number of refinement steps. This
suggests that, compared to other iterative refinement-based
approaches [7, 8, 66], our autoregressive process is not only
more effective but also adaptable to accelerated sampling.

Alternatively, increasing the spatial size of the initial-
ized transform field parameters D?\/t and D?L\ can also al-
low ART to estimate the final parameters D/I\(A and Dﬁ at
full resolution with fewer sampling steps. In Fig. 8 (b), the
transform field parameters are initialized at resolutions of
DY = Ly r)xwy@s)x2 and DY = 0 on) 1w/ (2k) x 25
where H and W denote the spatial resolution of the input
image. It is evident that this limits the model’s capacity for
wide-range coarse estimation as well as fine-grained local
refinements, resulting in poor performance.

Importance of CAL Comparative results with and with-
out the use of CAL are reported in Tab. 2, 3, and 4
across all datasets. Without CAL, ¥, is computed as
Concat[F¥, Fk], lacking the attention necessary for refin-
ing the transform field parameters.

For image pairs in datasets such as FIRE [23],
FLORI21 [17], or HPatches [3], which contain rich details
and abundant features, CAL offers only marginal improve-
ment. In contrast, for LR datasets with sparse features, such
as GoogleEarth [65], MSCOCO [32], and GoogleMap [65],
CAL significantly improves performance. In the challeng-
ing KBSMC dataset, characterized by ambiguous features,
large scale variation, and a significant domain gap, CAL
notably improves the Acceptable rate.

Computational Cost ART offers markedly better run-
time efficiency compared to coarse-to-fine baselines such
as LoFTR [52] (1.101s) and GeoFormer [34] (1.150s), due
to its lightweight multi-scale design. On an NVIDIA A100
GPU, ART runs in 0.16s using 261MB of memory.

Transform Field Representation We empirically ob-
served that predicting only additive parameters for trans-
lation degrades performance due to their wide dynamic
range. Introducing multiplicative parameters for scaling
stabilizes model optimization by normalizing spatial dis-
placements, reducing translation variance, and ultimately
enhancing performance. In contrast, directly predicting full
affine or projective transform parameters often resulted in
non-convergence due to the model’s excessive complexity.

Limitations In this paper, we have considered only two
types of datasets: HR and LR, with spatial resolutions of
768 x 768 and 192 x 192, respectively. This setting inher-
ently constrains the input image size, and the required re-
sizing can directly degrade the network’s performance. For
example, when estimating correspondences between larger
images, the predefined 6 sampling steps may be insufficient
to determine the transformation parameters accurately. Fu-
ture research should explore adaptive sampling strategies
that adjust dynamically to the input resolution.

5. Conclusion

ART tackles the challenging problem of image alignment,
where existing methods struggle due to homogeneous tex-
tures, large scale differences, and weak feature regions.
ART effectively mitigates issues related to poor initial-
ization and scale dependency, achieving precise alignment
even in difficult scenarios. Through extensive evaluations
across diverse datasets, we demonstrated that ART signif-
icantly outperforms existing feature-based, intensity-based,
and iterative refinement-based approaches. We believe that
ART provides a strong foundation for future research in im-
age alignment, particularly for applications such as medical
imaging, remote sensing, and scene analysis.

13576



Acknowledgements This work was supported in part
by the IITP grants [N0.2021-0-01343, Aurtificial Intelligence
Graduate School Program (Seoul National University), No.
2021-0-02068, No0.2023-0-00156, and No.RS-2025-02219317],
the NRF grant (RS-2025-00521972, Al Star Fellowship (Kook-

min

Project [No.

University)), and the Industrial Technology Alchemist
RS-2024-00432410] funded by MOTIE, Korea.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

[11]

[12]

(13]

Yechao Bai, Ziyuan Huang, Lyuyu Shen, Hongliang Guo,
Marcelo H. Ang Jr, and Daniela Rus. Multi-scale feature
aggregation by cross-scale pixel-to-region relation operation
for semantic segmentation. /EEE Robotics and Automation
Letters, 6(3):5889-5896, 2021. 3

Guha Balakrishnan, Amy Zhao, Mert R Sabuncu, John Gut-
tag, and Adrian V Dalca. Voxelmorph: a learning framework
for deformable medical image registration. /EEE Transac-
tions on Medical Imaging, 38, 2019. 1, 2

Vassileios Balntas, Karel Lenc, Andrea Vedaldi, and Krys-
tian Mikolajczyk. Hpatches: A benchmark and evaluation of
handcrafted and learned local descriptors, 2017. 5,7, 8
Herbert Bay, Tinne Tuytelaars, and Luc Van Gool.
Speeded up robust features. In ECCV, 2006. 2

PJ. Besl and Neil D. McKay. A method for registration of
3-d shapes. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 14, 1992. 1, 3

Michael Calonder, Vincent Lepetit, Christoph Strecha, and
Pascal Fua. Brief: Binary robust independent elementary
features. In ECCV, 2010. 2

Si-Yuan Cao, Jianxin Hu, Zehua Sheng, and Hui-Liang Shen.
Iterative deep homography estimation. In CVPR, 2022. 2, 3,
5,6,7,8

Si-Yuan Cao, Runmin Zhang, Lun Luo, Beinan Yu, Zehua
Sheng, Junwei Li, and Hui-Liang Shen. Recurrent homog-
raphy estimation using homography-guided image warping
and focus transformer. In CVPR, 2023. 8

Xiaohuan Cao, Jianhua Yang, Jun Zhang, Dong Nie, Min-
jeong Kim, Qian Wang, and Dinggang Shen. Deformable
image registration based on similarity-steered cnn regres-
sion. In MICCAI, 2017. 2

Hongkai Chen, Zixin Luo, Lei Zhou, Yurun Tian, Mingmin
Zhen, Tian Fang, David McKinnon, Yanghai Tsin, and Long
Quan. Aspanformer: Detector-free image matching with
adaptive span transformer. In ECCV, 2022. 2, 5, 6

Junyu Chen, Eric C. Frey, Yufan He, William P. Segars, Ye
Li, and Yong Du. Transmorph: Transformer for unsuper-
vised medical image registration. Medical Image Analysis,
82:102615, 2022. 1

Timothy F Cootes, Christopher J Taylor, David H Cooper,
and Jim Graham. Active shape models-their training and ap-
plication. Computer Vision and Image Understanding, 61,
1995. 1

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Niefner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In

Surf:

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

[27]

(28]

13577

Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017. 5,7

Bob D De Vos, Floris F Berendsen, Max A Viergever, Hes-
sam Sokooti, Marius Staring, and Ivana ISgum. A deep learn-
ing framework for unsupervised affine and deformable image
registration. Medical Image Analysis, 52,2019. 1,2

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Deep image homography estimation. arXiv preprint,
2016. 2

Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabi-
novich. Superpoint: Self-supervised interest point detection
and description. In CVPRW, 2018. 2, 5,6

Li Ding, Tony Kang, Ajay Kuriyan, Rajeev Ramchandran,
Charles Wykoff, and Gaurav Sharma. Flori21: Fluorescein
angiography longitudinal retinal image registration dataset,
2021. 5,6, 8

Johan Edstedt, Qiyu Sun, Georg Boékman, Marten
Wadenbick, and Michael Felsberg. RoMa: Robust Dense
Feature Matching. IEEE Conference on Computer Vision
and Pattern Recognition, 2024. 2,7

Brachmann et al. Dsac* - differentiable ransac for camera
localization. In CVPR, 2019. 4

Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381-395, 1981. 3

Morteza Ghahremani, Mohammad Khateri, Bailiang Jian,
Benedikt Wiestler, Ehsan Adeli, and Christian Wachinger.
H-ViT: A Hierarchical Vision Transformer for Deformable
Image Registration . In 2024 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
11513-11523, Los Alamitos, CA, USA, 2024. IEEE Com-
puter Society. |

Richard Hartley and Andrew Zisserman. Multiple view ge-
ometry in computer vision. Cambridge, 2003. 4

Carlos Hernandez-Matas, Xenophon Zabulis, Areti Tri-
antafyllou, Panagiota Anyfanti, Stella Douma, and Anto-
nis A Argyros. Fire: Fundus image registration dataset. Jour-
nal for Modeling in Ophthalmology, 1, 2017. 5, 6, 8

Carlos Hernandez-Matas, Xenophon Zabulis, and Antonis A
Argyros. Rempe: Registration of retinal images through eye
modelling and pose estimation. /EEE Journal of Biomedical
and Health Informatics, 24, 2020. 1,2, 5,6

Yipeng Hu, Marc Modat, Eli Gibson, Wenqi Li, Nooshin
Ghavami, Ester Bonmati, Guotai Wang, Steven Bandula,
Caroline M Moore, Mark Emberton, et al.  Weakly-
supervised convolutional neural networks for multimodal
image registration. Medical Image Analysis, 49, 2018. 2
Zhaoyang Huang, Xiaoyu Shi, Chao Zhang, Qiang Wang,
Ka Chun Cheung, Hongwei Qin, Jifeng Dai, and Hongsheng
Li. Flowformer: A transformer architecture for optical flow.
In ECCV, 2022. 2

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. arXiv
preprint, 2016. 2

Boah Kim, Dong Hwan Kim, Seong Ho Park, Jieun Kim,
June-Goo Lee, and Jong Chul Ye. Cyclemorph: cycle con-



[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

sistent unsupervised deformable image registration. Medical
Image Analysis, 71,2021. 1,2

Boah Kim, Inhwa Han, and Jong Chul Ye. Diffusemorph:
unsupervised deformable image registration using diffusion
model. In ECCV, 2022. 1,4

Matthew C.H. Lee, Ozan Oktay, Andreas Schuh, Michiel
Schaap, and Ben Glocker. Image-and-spatial transformer
networks for structure-guided image registration. In MIC-
CAIL 2019. 1,2,5,6

Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In Computer
Vision and Pattern Recognition (CVPR), 2018. 5,7
Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dolldr. Microsoft
coco: Common objects in context, 2015. 5,7, 8

Philipp Lindenberger, Paul-Edouard Sarlin, and Marc Polle-
feys. LightGlue: Local Feature Matching at Light Speed. In
ICCV,2023. 2,7

Jiazhen Liu and Xirong Li. Geometrized transformer for
self-supervised homography estimation. In /CCV, 2023. 1,
2,5,6,8

Jiazhen Liu, Xirong Li, Qijie Wei, Jie Xu, and Dayong Ding.
Semi-supervised keypoint detector and descriptor for retinal
image matching. In ECCV, 2022. 1,2, 5, 6

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019. 5

David G Lowe. Distinctive image features from scale-
invariant keypoints. International Journal of Computer Vi-
sion, 60, 2004. 2,4, 5

Bruce D. Lucas and Takeo Kanade. An iterative image reg-
istration technique with an application to stereo vision. In
Proceedings of the 7th International Joint Conference on Ar-
tificial Intelligence (1JCAI), pages 674—679, 1981. 3

Tai Ma, Suwei Zhang, Jiafeng Li, and Ying Wen. lirp-net: It-
erative inference residual pyramid network for enhanced im-
age registration. In 2024 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11546—
11555, 2024. 1

Frederik Maes, André Collignon, Dirk Vandermeulen, Guy
Marchal, and Paul Suetens. Multimodality image registration
by maximization of mutual information. /EEE Transactions
on Medical Imaging, 16(2):187-198, 1997. 2

Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, and
Jinman Kim. Non-iterative Coarse-to-Fine Transformer Net-
works for Joint Affine and Deformable Image Registration,
page 750-760. Springer Nature Switzerland, 2023. 2
Mingyuan Meng, Lei Bi, Michael Fulham, Dagan Feng, and
Jinman Kim. Non-iterative Coarse-to-Fine Transformer Net-
works for Joint Affine and Deformable Image Registration,
page 750-760. Springer Nature Switzerland, 2023. 1
Mingyuan Meng, Dagan Feng, Lei Bi, and Jinman Kim.
Correlation-aware coarse-to-fine mlps for deformable med-
ical image registration, 2024. 1

James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Object retrieval with large vocabularies
and fast spatial matching. In 2007 IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 1-8, 2007. 7

13578

[45]

[46]

[47]

(48]

(49]

(50]

[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

James Philbin, Ondrej Chum, Michael Isard, Josef Sivic, and
Andrew Zisserman. Lost in quantization: Improving partic-
ular object retrieval in large scale image databases. In 2008
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1-8, 2008. 7

Jerome Revaud, Cesar De Souza, Martin Humenberger, and
Philippe Weinzaepfel. R2d2: Repeatable and reliable detec-
tor and descriptor. arXiv preprint, 2019. 2

Ignacio Rocco, Mircea Cimpoi, Relja Arandjelovi¢, Akihiko
Torii, Tomas Pajdla, and Josef Sivic. Ncnet: Neighbourhood
consensus networks for estimating image correspondences.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44, 2020. 2, 5, 6

Edward Rosten, Reid Porter, and Tom Drummond. Faster
and better: A machine learning approach to corner detec-
tion. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32, 2008. 2

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz,
and Andrew Rabinovich. Superglue: Learning feature
matching with graph neural networks. In CVPR, 2020. 2,
5,6

Vishal Balaji Sivaraman, Muhammad Imran, Qingyue Wei,
Preethika Muralidharan, Michelle R. Tamplin, Isabella M .
Grumbach, Randy H. Kardon, Jui-Kai Wang, Yuyin Zhou,
and Wei Shao. Retinaregnet: A zero-shot approach for reti-
nal image registration, 2024. 2, 5, 6

Charles Stewart, Chia-Ling Tsai, and Badrinath Roysam.
The dual-bootstrap iterative closest point algorithm with ap-
plication to retinal image registration. I[EEE Transactions on
Medical Imaging, 22, 2003. 5

Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and
Xiaowei Zhou. Loftr: Detector-free local feature matching
with transformers. In CVPR, 2021. 1,2,5,6,7, 8

Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence
from image diffusion. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. 2

Jean-Philippe Thirion. Image matching as a diffusion pro-
cess: an analogy with maxwell’s demons. Medical Image
Analysis, 2(3):243-260, 1998. 2

Prune Truong, Stefanos Apostolopoulos, Agata Mosinska,
Samuel Stucky, Carlos Ciller, and Sandro De Zanet. Glam-
points: Greedily learned accurate match points. In ICCV,
2019. 2,5,6

Paul Viola and William M. Wells III. Alignment by max-
imization of mutual information. International Journal of
Computer Vision, 24(2):137-154, 1997. 2

Jianyuan Wang, Christian Rupprecht, and David Novotny.
Posediffusion: Solving pose estimation via diffusion-aided
bundle adjustment. In /CCV, 2023. 3

Qing Wang, Jiaming Zhang, Kailun Yang, Kunyu Peng, and
Rainer Stiefelhagen. Matchformer: Interleaving attention in
transformers for feature matching. In Asian Conference on
Computer Vision, 2022. 7

Yu Wang, Xiaoye Wang, Zaiwang Gu, Weide Liu, Wee Siong
Ng, Weimin Huang, and Jun Cheng.  Superjunction:



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Learning-based junction detection for retinal image registra-
tion. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 38(1):292-300, 2024. 1

Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, and
Dacheng Tao. Gmflow: Learning optical flow via global
matching. In CVPR, 2022. 2

Zhenlin Xu and Marc Niethammer. Deepatlas: Joint semi-
supervised learning of image registration and segmentation.
In MICCAI 2019. 2

Feihu Zhang, Oliver J] Woodford, Victor Adrian Prisacariu,
and Philip HS Torr. Separable flow: Learning motion cost
volumes for optical flow estimation. In /ICCV, 2021. 2
Jason Y Zhang, Amy Lin, Moneish Kumar, Tzu-Hsuan
Yang, Deva Ramanan, and Shubham Tulsiani. Cameras as
rays: Pose estimation via ray diffusion. In /CLR, 2024. 3
Xiaoran Zhang, John C. Stendahl, Lawrence Staib, Albert J.
Sinusas, Alex Wong, and James S. Duncan. Adaptive corre-
spondence scoring for unsupervised medical image registra-
tion, 2024. 1

Yiming Zhao, Xinming Huang, and Ziming Zhang. Deep
lucas-kanade homography for multimodal image alignment.
In CVPR,2021. 2,3,5,6,7,8

Haokai Zhu, Si-Yuan Cao, Jianxin Hu, Sitong Zuo, Beinan
Yu, Jiacheng Ying, Junwei Li, and Hui-Liang Shen. Mcnet:
Rethinking the core ingredients for accurate and efficient ho-
mography estimation. In CVPR, 2024. 1,2, 3,5,6,7, 8
Barbara Zitova and Jan Flusser. Image registration methods:
a survey. Image and Vision Computing, 21(11):977-1000,
2003. 2

13579



	Introduction
	Related Works
	Proposed Method
	Problem Formulation
	Auto-Regressive Transformation
	Architectural Details
	Image Warping
	Training ART

	Experiments
	Datasets
	Implementation Details
	Evaluation on Retinal Categories
	Evaluation on Scene Categories
	Understanding ART

	Conclusion

