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Abstract

Federated learning (FL) enables collaborative model train-
ing across distributed clients without centralizing data.
However, existing approaches such as Federated Aver-
aging (FedAvg) often perform poorly with heteroge-
neous data distributions, failing to achieve personaliza-
tion owing to their inability to capture class-specific in-
formation effectively.  We propose Class-wise Feder-
ated Averaging (cwFedAvg), a novel personalized FL
(PFL) framework that performs Federated Averaging for
each class, to overcome the personalization limitations of
FedAvg. cwFedAvg creates class-specific global models
via weighted aggregation of local models using class distri-
butions, and subsequently combines them to generate per-
sonalized local models. We further propose Weight Distri-
bution Regularizer (WDR), which encourages deep networks
to encode class-specific information efficiently by align-
ing empirical and approximated class distributions derived
from output layer weights, to facilitate effective class-wise
aggregation. Qur experiments demonstrate the superior
performance of cwFedAvg with WDR over existing PFL
methods through efficient personalization while maintain-
ing the communication cost of FedAvg and avoiding addi-
tional local training and pairwise computations.

1. Introduction

Deep networks demand large-scale training data for su-
perior performance [15]; however, data collection faces
significant challenges due to prohibitive costs and pri-
vacy constraints [11]. This limitation necessitates devel-
oping communication-efficient and privacy-preserving ap-
proaches to effectively utilize distributed data from sources
such as data silos and edge devices [16, 27]. Federated
learning (FL) addresses this challenge by enabling client
collaboration through model aggregation without collect-
ing client data [11, 18]. A foundational approach, Fed-
erated Averaging (FedAvg) [18], creates a single global
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model by aggregating local models weighted by client sam-
ple sizes. However, this approach performs poorly with
non-independent and identically distributed (non-IID) data
due to its lack of personalization capability [9, 16, 32]. This
limitation stems from how deep networks encode informa-
tion. Deep networks develop pathways, where a pathway
represents a union of weights from input to output [13],
and encode class-specific information in these pathways
[1, 12, 13]. Pathways demonstrate distinct patterns across
different classes based on the class proportion [19, 25, 28].
However, FedAvg’s aggregation weighting factor, which
only considers client sample sizes, fails to reflect class-
specific pathways, limiting its personalization capability.

This study addresses the personalization limitation of
FedAvg, motivated by class-specific pathways. We change
the aggregation weighting factor of FedAvg using the class
distributions of clients and create multiple global models
specialized for each class using an adapted weighting fac-
tor. Based on this, we propose Class-wise Federated Aver-
aging (cwFedAvg), a class-wise extension of FedAvg that
performs Federated Averaging separately for each class.
cwFedAvg implements a two-step aggregation process:
first, we create class-specific global models by aggregating
local models weighted by their respective client and class
sample proportions; then, we generate personalized local
models by aggregating these class-specific global models
weighted by the class distribution of each client.

We identify two requirements to further improve the
effectiveness of cwFedAvg: model weights (pathways)
must strongly correlate with empirical class distributions to
capture class-specific information effectively, and privacy-
sensitive class distributions must be securely shared with
the server. We analyze how empirical class distribution af-
fects pathways and propose Weight Distribution Regular-
izer (WDR) to address these requirements. WDR strength-
ens the correlation between empirical class distributions and
model weights by minimizing the distance between the em-
pirical and approximated class distributions derived from
the /5-norms of output layer weight vectors. Additionally,
it enables privacy-preserving sharing of class distributions
using the approximated distribution as a proxy. Finally, we



extend the proposed approach by applying cwFedAvg se-
lectively to upper layers, thereby reducing memory require-
ments while maintaining high performance.

Our work focuses on learning individualized models, one
of the main approaches in personalized FL (PFL) [23]. This
approach achieves personalization by modifying the model
aggregation process, enabling adaptation to the unique data
distribution of each client without post-training steps—a
crucial advantage for resource-constrained devices [30]. Al-
though the proposed method is a straightforward extension
of FedAvg, it effectively addresses key limitations of exist-
ing learning individualized model approaches. Specifically,
current methods either incur substantial overhead, such as
weighted model aggregation [17, 31] and client-pair col-
laboration [10], or rely on strong assumptions about client
group structures [2, 6, 7, 20]. Our proposed cwFedAvg de-
livers efficient personalization without requiring additional
model downloads, pairwise computations, or clustering as-
sumptions.

Our contributions and benefits of our approach are sum-
marized as follows:

Our Contributions.

We propose cwFedAvg, a novel PFL framework that
performs Federated Averaging per class to create person-
alized models through class-specific global models.

We develop WDR to enable effective class-wise model ag-
gregation and ensure secure class distribution estimation.
Our extensive experiments on four datasets and various
levels of data heterogeneity demonstrate cwFedAvg’s
superior performance over existing PFL methods and
provide insights into personalization through visualiza-
tion of output layer weight distributions and pathways.

Benefits of Our Approach.

Efficient Personalization: cwFedAvg with WDR achieves
personalization while maintaining the communication ef-
ficiency of FedAvg without requiring pairwise model
collaborations or additional local training, making it par-
ticularly suitable for resource-constrained devices.
Enhanced Privacy: Our distribution estimation method
with WDR enables privacy-preserving class distribution
sharing, making this approach applicable beyond person-
alization to other FL contexts, such as client selection.

2. Related Work

Personalized Federated Learning. Among PFL ap-
proaches, our work aligns with recent methods that per-
sonalize models through modified aggregation techniques.
FedFomo [31] encourages FL among relevant clients by
utilizing an optimally weighted combination of models.
FedAMP [10] uses attention-based techniques to promote
stronger collaboration between clients with similar data dis-
tributions. However, these methods often require heavy
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computation for weight learning or additional communica-
tion to download other clients’ models. Clustering-based
FL methods address this issue by performing FL within
client clusters. CFL [20] employs hierarchical clustering
using cosine similarity of clients’ gradient updates as a post-
processing step. IFCA [7] assigns clients to pre-determined
clusters and performs model aggregation within each clus-
ter. Regularization-based methods eliminate both extensive
computation and clustering assumptions. FedNH [4] adds
normalization layers to ensure the uniformity and seman-
tics of class prototypes. FedUV [21] introduces weight and
representation regularization to emulate IID settings. Like
these approaches, cwFedAvg leverages relevant clients for
personalization with weight regularization. However, it
avoids complex client collaboration and does not require as-
suming clients can be grouped into discrete clusters.
Correlating Model Parameters and Class Distribution.
In centralized machine learning, several studies have ob-
served relationships between gradients or weights of deep
networks and empirical class distribution [I, 12]. Anand
et al. [1] revealed a correlation between the number of class
samples and the magnitude of gradients associated with that
class. They proposed an algorithm to accelerate learning by
exploiting this correlation. Kang et al. [12] observed the
positive proportional relationship between class and weight
distribution. In the realm of FL, utilizing class distribution
is pivotal as it can be employed for client selection [26] and
loss function modification on clients [24, 29]. However, ow-
ing to privacy concerns, directly transmitting class distribu-
tion information to the server is typically prohibited. Con-
sequently, several proxy methods have been proposed to es-
timate class distribution from a deep network. Yang et al.
[26] utilized the gradient magnitude as a proxy to estimate
the class distributions of clients and employed it for client
selection. Wang et al. [24] developed a monitoring scheme
that estimates class distribution based on the work of [1].
Our distribution estimation is motivated by Anand et al. [1]
but uses weights instead of gradients and incorporates WDR
to strengthen the class-weight distribution correlation.

3. Problem Formulation and Motivation

This section presents the problem formulation and motiva-
tion based on theoretical and empirical analysis.

3.1. Problem Formulation

The objective of traditional FL can be summarized as fol-
lows.
M
min fg(w) = min Y~ p;Fy(w), (1)
where f(+) and F;(-) denote the global objective and the

local objective of client i, respectively. The global objec-
tive fo(w) is the weighted sum of M local objectives, with



M being the number of clients. The weight p; for each
client is defined as the ratio of the number of data sam-
ples n; on that client to the total number of data samples
Zf\il n; across all clients, thus p; i The lo-
cal objective F;(-) for each client i can be defined as the
expected loss over the data distribution D; specific to that
client. We approximate this expected loss using the empiri-
cal risk calculated over the local training data D!" available
to the client. This empirical risk minimization is expressed
asE,.p,[L(;2)] ~ an > .eper L£(+; 2), where z represents
the data under local distribution D;.

In PFL, the global objective can take a more flexible
form. The goal is to optimize a set of personalized mod-
els, one for each client, rather than a single global model.
This objective can be expressed as follows.

= min
w; € [M

,'UJM), (2)

H‘}‘i/_ﬂfP(W) ]fP (wy,...

where fp(W) denotes the global objective for the PFL al-
gorithm, and w, denote personalized models. The goal is to
find the optimal set of personalized models W™ that mini-
mizes the global objective function fp(W).

3.2. Motivation

The extension from FedAvg to cwFedAvg is made pos-
sible by methods to quantify class-specific information en-
coded in deep networks. Our work is motivated by empiri-
cal and theoretical findings showing that deep networks en-
code class-specific information in their weights and gradi-
ents [1, 12, 13]. A deep network develops pathways, where
a pathway represents a union of paths (weights) from in-
put to output [13]. Critical pathways, consisting of large-
magnitude weights, demonstrate distinct patterns across dif-
ferent classes [19, 25, 28].

A Motivational Example. We first analyze how path-
ways diverge across clients due to non-IID data distributions
through an example. We construct a synthetic dataset with
two centers in R? space generated from a Gaussian distri-
bution for a binary classification task. The dataset contains
6000 samples: 3400 for class £ = 0 and 2600 for class
k = 1. The data are partitioned across three clients with
distinct distributions. Client 1 exhibits a high imbalance,
with 2700 samples of class £ = 0 and 300 samples of class
k = 1. Client 2 presents an inverse distribution, with 200
samples of class £ = 0 and 1800 samples of class k = 1.
Client 3 maintains a balanced distribution, with 500 sam-
ples per class. We employ a single-layer neural network
with four neurons and ReLLU activation functions.

We visualize the network architecture, where green and
red lines represent positive and negative weights, respec-
tively, and line width indicates magnitude. We draw critical
pathways created from the top 8 out of 20 weights and de-
note w? as the i-th local model and w® as a global model
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Figure 1. Pathway comparison of FedAvg and cwFedAvg. W
denotes the model trained with WDR, and * denotes the local mod-
els updated using class-specific global models (h) and (i).

of FedAvg. Figures la—lc show the learned pathways of
local models for clients 1, 2, and 3, respectively. Notably,
we observe that both output neurons contribute critical path-
ways in the three figures, and pathways in Figures 1b and
lc remain similar regardless of data imbalances. Figure 1d
shows the pathways of the global model after the aggre-
gation of FedAvg. This demonstrates why FedAvg fails
to personalize, as the single averaged global model cannot
capture the unique patterns of each client.
Theoretical Background and Observations. Although the
magnitude of the weights in critical pathways varies with
class proportions, its relationship with class distribution re-
mains partially understood. The analysis of Anand et al.
[1] revealed a correlation between gradients of weights in
the output layer and class sample sizes. Let w; ; denote
the weight vector from penultimate layer neurons to output
neuron j of client 7. Anand et al. [1] formalized the cor-
relation through a theorem: for a neural network classifier,
the squared ¢5-norms of the gradients of the weight vectors
satisfy:
2 2
EIVE Wil ™

E[VL(wirl; i

; 3)

where n; ; denotes the number of samples belonging to
class j on client i.

Based on the theorem, we found a positive correlation
between ||w; ;|, and n; ;. We further extend this relation-
ship to demonstrate that the distribution derived from nor-
malized />-norms of the weight vectors p; ; correlates with
the empirical class distribution p; ; = “-L. In this work, for

Uz

K -class classification, p; ; is defined as:

_ [will,
Dij=—xg - 4)
Zk:l Hwi,kHQ
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Figure 2. Evolution of p; ; and its correlation with p; ;.

Indeed, we found that a correlation exists between them.
We observed the evolution of p; ; for a client during the
first FL round’s epoch on CIFAR-10, where each color rep-
resents a different class in Figure 2a. Classes 6 and 9 with
larger samples exhibit higher p; ; values than the others.
The triangular markers in Figure 2c indicate a positive cor-
relation.

However, proving Eq. (3) and (4) for all network weights
remains challenging. Unlike weights in the output layer that
directly correspond to specific classes, weights in other lay-
ers lack this explicit class association. Nevertheless, we ar-
gue that these weights correlate with class proportions due
to the cascading effect of backpropagation from the output
layer. Based on this, we hypothesize that the contribution
of each class to the trained model can be quantified as the
product of weights and the class proportion p; jw;. This is
analogous to the quantification of the contribution of each
client to the global model in FedAvg, quantified as p;w;.

4. The cwFedAvg Algorithm

In this section, we describe cwFedAvg with WDR and con-
clude by analyzing its relationship to FedAvg.

4.1. Class-Wise Aggregation

Class-Wise Local Model Aggregation. We denote w? as
the ¢-th local model and ij as the j-th class-specific global
model for M clients in a K-class classification task. The
server aggregates local models by creating class-specific
global models as follows (Figure 7c in the supplementary
materials).

®)

M
= Z g jwf
= Z

i=1

_ Dbi'Pij

i
1 1pz Di,j

where ¢; ; is a weighting factor. After expressing ¢; ; in
terms of sample counts in Eq. (6), we get ¢; ; = Z;}#’
i=1""%7
which represents client 7’s proportion of total class j sam-
ples. Therefore, we consider this term as client ¢’s contribu-
tion to class 7 in the system, and this aggregation becomes

analogous to FedAvg performed separately for each class.

(6)
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Class-Wise Global Model Aggregation. In contrast to
FedAvg, where a single global model is copied to each lo-
cal model, cwFedAvg performs a weighted summation of
K class-specific global models as follows (Figure 7d in the
supplementary materials).

K
=3 pijw§
= Pijw; -
j=1

This weighted aggregation based on the class distributions
of each client leads to personalization.

)

4.2. Weight Regularization for cwrFedavg

In this section, we argue that cwFedAvg requires two
key conditions for effectiveness and privacy protection: (1)
model weights that strongly correlate with the empirical
class distribution to enable effective personalization, and
(2) secure sharing of privacy-sensitive class distribution p; ;
without compromising client information n; ;. We present
a method that simultaneously addresses both.

Regarding the first condition, we observed that p, =
[Di1,Di2, - Dii| correlates with the empirical distribu-
tion p; = [pi1,Pi2,---» Dik|, but they differ significantly
as shown in Figure 2c (triangular markers). Notably, even
when class j has zero or near-zero samples, p; ; maintains
a non-negligible value approximately 0.1 (the leftmost tri-
angles). To strengthen the correlation between p; and p;,
we propose WDR, which minimizes the Euclidean distance
between them:

®)

With the regularization term, the total cost function Ei is
denoted as £; = L£; + \R;, where \ € [0, 00) is the regu-
larization coefficient. When training with WDR (Figure 2b)
Di,; evolves distinctly from the patterns in Figure 2a, with
more apparent separation between classes. This improved
separation is further illustrated in Figure 2¢ (circular mark-
ers), where WDR enables p; ; to accurately approximate p; ;.
This precise approximation enables replacing p; ; with p; ;
as a reliable substitute, addressing our second condition.
Clients, therefore, do not need to directly share n; ;.

The pathway analysis provides additional validation of
applying cwFedAvg with WDR. Figures le—1g show how
WDR aligns weight patterns with the dominant class of each
client, unlike Figures 1a—Ic. For example, Figure le shows
pathways connecting to the first output neuron with most
samples from class 0, whereas Figure la shows pathways
connecting to both output neurons. Through the class-wise
aggregations, class-specific global models (Figures 1h and
11) mirror the pathways of clients with the majority of sam-
ples for each respective class (Figures le and 1f). The up-
dated client models (Figures 1j—11) maintain their original
pathway structures, showing minimal deviation from their
pre-update models, thus indicating personalization.

Ri=|p; — i)i||2 .



Algorithm 1 cwFedAvg with WDR

Input: M clients, regularization coefficient A
Server executes:

1: Initialize local model w! and global model w]G

2: Initialize p; j to

3: foriterationt =1,...,7 do

Sample a client subset C?

for client i € C! in parallel do
Compute w’ via Eq. (7) replacing p; j with p; ;
w! + ClientUpdate (i, w})

»

Compute p; ; via Eq. (4)
Compute wJG via Eq. (6) replacing p; ; with p; ;

ClientUpdate (i, w’):
for each local epoch do
for batch b € B; do

1:
2:
3: Update w¥ according to the loss via Eq. (8)
4:

return w’ to the server

Algorithm 1 presents the complete FL process of
cwFedAvg with WDR. Building upon the FedAvg frame-
work, the proposed method introduces two key features:
class-wise aggregation (lines 6 and 9 on server side) and
class distribution estimation using WDR (line 8 on server
side and line 3 on client side).

4.3. Comparative Analysis with Fedavg

Insight on Relation between Global Models. We analyze
class-specific global models of cwFedAvg compared with
the global model of FedAvg under two scenarios. (1) In the
IID case, one can prove that ij = w%, where w® is the
global model of FedAvg if all clients have the complete
set of classes in their local datasets and maintain uniform
class distribution. This implies that cwFedAvg performs
similarly to FedAvg as data heterogeneity decreases. (2)
In the extreme non-IID case, when each client 7 has data
from exactly one class k;, we demonstrate that

G _
“’j*Z

itki=j

n;
—_w

Zl:kl:j n

L

i -

€))

This equation indicates that the j-th class-specific global
model is equivalent to the global model created by FedAvg
of local models containing only class j. Both cases can
be trivially proven through straightforward mathematical
derivations. Although most practical scenarios fall between
these two cases, theoretically proving how the differences
between global models impact performance remains chal-
lenging.

Personalization by cwFedAvg. We visualize heatmaps
of both the empirical data distribution and the ¢5-norms of
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Figure 3. Heatmaps depicting the data distribution and ¢2-norms
of output layer weight vectors for the CIFAR-10 pathological set-
ting. (a) Each cell represents the number of data samples belong-
ing to class j for client 7. (b)—(f) Each cell shows the {2-norm of
output layer weight vector, ||w; ;

lo-

output layer weight vectors (||w; ;{|,) to demonstrate how
cwFedAvg achieves effective personalization. Figure 3a
presents the class-wise sample distribution across 20 clients
for the CIFAR-10 pathological setting, where each client
only has data from two classes. Next, Figures 3b (FedAvg)
and 3c (fine-tuned FedAvg with local dataset) do not show
any distinctions between local models in contrast to Figure
3a and are visually similar. However, a closer inspection re-
veals subtle differences between the two at positions corre-
sponding to the diagonal darker areas in Figure 3a. Figure
3d visualizes the difference between the two heatmaps to
highlight this distinction, where the diagonal areas appear
darker, indicating that personalized models with local data
(fine-tuned FedAvq) can induce changes in the norms. In
contrast, Figure 3e (cwFedAvg with WDR) exhibits a pat-
tern similar to Figure 3a, suggesting that each model has
undergone personalization tailored to its possessed classes.
As designed, each global model in Figure 3f specializes in
specific classes, as each client possesses data from only
two classes in this setting. Consequently, the norm can
be a quantitative measure for assessing model personaliza-
tion. Additional visualizations for more practical settings
are provided in the supplementary materials.

Communication and Resource Requirements.
cwFedAvg maintains identical communication over-
head to FedAvg, as all class-wise aggregations are
performed on the server-side. This can be verified by
comparing the dotted arrows in Figures 7a and 7c for
local model aggregation, and Figures 7b and 7d for global
model aggregation in the supplementary materials. The



Pathological setting

Practical setting (o« = 0.1)

Algorithm "
CIFAR-10  CIFAR-100 MNIST CIFAR-10  CIFAR-100 Tiny ImageNet Tiny ImageNet
FedAvg 60.68+0.84  28.224+0.32  98.70£0.04 61.94+0.56 32.4440.42 21.354+0.12 24.71+£0.15
FedProx 60.65+0.92  28.5940.28 98.68+£0.09 62.48+0.86 32.26+0.26 20.65+0.12 24.06+0.16
FedAMP 88.824+0.15 63.29£0.49 99.26+0.01 89.46+0.11 47.65+0.62 29.95+0.10 31.38+0.18
FedFomo 90.76+0.59  63.12£0.59  99.13+£0.04 88.05+0.08  44.62+0.37 26.22+0.25 26.121+0.31
CFL 60.58+0.15  28.554+0.30 98.70£0.01 61.40+0.51 44.1940.69 29.624+0.43 33.4740.68
IFCA 72.84+4.80  58.98+2.38  99.10+£0.06  70.12+0.13  34.86%1.02 19.93+0.59 26.68+0.16
FedNH 50.82+0.33  26.264+0.36  98.85+£0.29  56.38+0.17  32.98+0.88 17.04+0.07 24.24+0.76
Feduv 88.11+0.13  62.72+£0.28  99.25+0.09  88.59+0.09  46.80+0.20 28.09+0.06 25.45+0.03
cwFedAvg (Output) 91.23+0.04 67.50+£0.14 99.521+-0.03 88.65+0.19 56.29+0.18 41.38+0.12 43.51+0.14

Table 1. Classification accuracy (%) across datasets. Tiny ImageNet" indicates experiments using ResNet-18. cwFedAvg (Output) denotes

cwFedAvg selectively applied to the output layer.

client-side operations in cwFedAvg preserve the same
memory and computational requirements as FedAvg.
When coupled with WDR, the only additional cost is the
negligible computation for regularization. On the server
side, although cwFedAvg requires more extensive storage
to maintain multiple global models, its runtime memory
allocation during aggregation matches FedAvg (Figure 7a
and 7c). Memory efficiency can be achieved by applying
cwFedAvg selectively to upper layers, and computational
efficiency can be achieved through parallel execution of
class-wise model aggregations.

Selective Application of cwFedAvg to Upper Layers.
Deep networks exhibit layer-wise characteristics, where up-
per layers tend to learn class-specific features while lower
layers capture more general, class-agnostic features. Based
on this property, we examine a selective application of
cwFedAvg. This approach applies cwFedAvg exclusively
to the upper layers while maintaining FedAvg for the lower
layers. We analyze the impact of this selective application
on performance in the server, with detailed results presented
in Section 5.

5. Experiments

In this section, we comprehensively evaluate cwFedAvg
with WDR across various settings and analyze its conver-
gence behavior against FedAvg.

5.1. Experimental Setup

Datasets. We evaluate our approach on four standard
benchmark datasets: MNIST [5], CIFAR-10/100 [14], and
Tiny ImageNet [3]. Each is partitioned into 75% training
and 25% test splits. We examine two data heterogeneity set-
tings: (1) pathological setting, where each client holds data
from only a subset of classes—specifically two classes for
MNIST and CIFAR-10, 10 classes for CIFAR-100, and 20
classes for Tiny ImageNet—and (2) practical setting, where
client data distributions follow a Dirichlet distribution pa-
rameterized by «, with smaller values of a corresponding
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to higher statistical heterogeneity across clients. We use
o = 0.1 as the default setting. Data distributions varying o
are provided in the supplementary materials.

Evaluation Protocol. We measure performance using aver-
age test accuracy across all clients per FL round and report
results from the best-performing round [10, 22, 30]. We
compare our method against eight baselines across four cat-
egories: (1) traditional methods: FedAvg and FedProx,
(2) aggregation-based methods: FedAMP and FedFomo,
(3) clustering-based methods: CFL and IFCA, and (4)
regularization-based methods: FedNH and FedUV.
Implementation. Our experiments employ two model ar-
chitectures: a 4-layer CNN with ReLU activation func-
tions (for MNIST, CIFAR-10/100, and Tiny ImageNet)
and ResNet-18 [8] (for Tiny ImageNet). Following the
settings of FedAvg [18], we set the training configu-
ration to 20 clients as the default participating in each
round, learning rate of 0.005, batch size of 10, and 1 lo-
cal epoch. For regularizing clients with WDR, we set A
to 10 for MNIST and CIFAR-10, 1000 for CIFAR-100,
and 2000 for Tiny ImageNet. Each experiment runs for
1,000 communication rounds to ensure convergence. All
results are averaged over three independent runs with dif-
ferent random seeds. Experimental details are provided
in the supplementary materials, and code is available at:
https://github.com/regulationLee/cwFed Avg

5.2. Performance Comparison and Analysis

Classification Performance. Table | illustrates that PFL
methods typically outperform traditional FL. methods on
non-IID data owing to the poor personalization ability of the
global model. Among the PFL methods, cwFedAvg con-
sistently outperforms all other settings except for one case
in the CIFAR-10 practical setting, where the performance
gap is minimal. Notably, cwFedAvg exhibits significant
improvements over the others when the class count is large,
typically indicating high data heterogeneity. The results for
a text dataset are provided in the supplementary materials.



Number of clients

Data heterogeneity

Algorithm Comm. Cost

50 Clients 100 Clients a=0.01 a=0.5 a=1.0
FedAvg 2-% 32.63£0.34 32.32+0.30 28.00£0.92 36.18+0.28 36.75+£0.34
FedProx 2-% 33.22+0.20 32.64+0.21 27.89+0.24 35.93+0.31 36.65+0.39
FedAMP 2-% 44.974+0.27 41.37+0.35 73.46+0.40 25.41+£0.14 21.23+0.40
FedFomo (1+M)-% 42.624+0.62 38.6240.08 71.30£0.03 25.43+0.58 18.95+0.34
CFL 2.3 32.831+0.78 32.884+0.23 27.674+0.17 38.324+0.47 36.804+0.07
IFCA (1+C)-% 29.174£0.20 26.561+0.45 53.89+3.58 25.87+0.57 22.27+1.14
FedNH 2-% 33.14£0.46 32.73£0.24 25.48+0.25 37.13+0.41 20.4140.15
Feduv 2.3 44.30+0.14 40.911+0.22 72.67+£0.12 27.234+0.25 37.41£0.34
cwFedAvg (Output) 2-% 55.90+£0.35 53.544+0.79 75.20+0.21 40.78+0.93 37.50+0.10

Table 2. Communication cost formulation and classification accuracy (%) across different settings for CIFAR-100. X denotes total model
parameters, and C' denotes the number of clusters. cwFedAvg (Output) denotes cwFedAvg selectively applied to the output layer.

Applied algorithm and layer

Pathological setting

Practical setting (o = 0.1)

FedAvg cwFedAvg CIFAR-10  CIFAR-100 CIFAR-10  CIFAR-100  Tiny ImageNet
- Conv1-Conv2-FC-Output  90.98£0.15 65.91£0.29 88.40£0.13  54.99+0.27 38.94+0.38
Convl Conv2-FC-Output 90.99£0.11 65.71£0.19  88.55£0.07 55.01£0.25 38.76+0.51
Conv1-Conv2 FC-Output 90.93£0.06 65.22+£0.16 88.45+£0.06 54.98+0.28 38.78+0.68
Conv1-Conv2-FC Output 91.23+0.04 67.50+£0.14 88.65+£0.19 56.29+0.18 41.38+0.12
Conv1-Conv2-FC-Output - 60.68+0.84 28.22+0.32 61.94+0.56 32.44+0.42 21.35£0.12

Table 3. Classification accuracy (%) with selective application of cwFedAvg to a 4-layer CNN (Input-Conv1-Conv2-FC-Output).

Communication Cost. Table 2 presents the communi-
cation cost formulation per iteration. cwFedAvg main-
tains the same communication overhead as FedAvg as ex-
plained in Section 4. In contrast, other PFL approaches of-
ten incur larger communication costs: FedFomo and IFCA
require downloading additional models, which increases
downstream communication.

Client Scalability. Table 2 demonstrates the performance
scaling to the number of clients. All PFL methods ex-
hibit performance degradation as the number of clients in-
creases. However, cwFedAvg maintains high performance
even with larger client counts compared with other meth-
ods, thus beneficial for large-scale deployments of devices.

Data Heterogeneity and Convergence Analysis. We eval-
uate the model accuracy under non-IID data distributions
controlled by the Dirichlet distribution parameter o. Ta-
ble 2 shows that cwFedAvg maintains robust performance
across different «v values. In contrast, several PFL methods
underperform compared with traditional approaches as data
becomes more IID (larger o). Moreover, the performance
of cwFedAvg converges to that of FedAvg as « increases,
which validates our analysis of global model relationships
in Section 4.3. Figure 4 shows the average training loss
for 20 clients under varying data heterogeneity. The results
demonstrate that cwFedAvg converges significantly faster
than FedAvg on both CIFAR-10 and CIFAR-100 datasets
when data are highly heterogeneous (¢ = 0.01 and 0.1).
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Figure 4. Convergence comparison of cwFedAvg and FedAvg.

This aligns with our pathway analysis in Figure 1, as lo-
cal models in cwFedAvg adapt to their class distributions.
However, when data is nearly IID (o = 1.0), FedAvg con-
verges faster. We provide per-client training loss compar-
isons in the supplementary materials.

Selective Application of cwFedAvg. Unlike FedAvg,
PFL methods often require additional memory for storing
multiple models, such as cluster models in IFCA and class-
specific global models in cwFedAvg. We selectively apply
cwFedAvg to upper layers only to reduce memory over-
head. Across various datasets, applying cwFedAvg solely
to the output layer achieves optimal performance (Table 3).
This result aligns with the conventional understanding that
upper layers capture class-specific features. Memory cost
comparison is provided in the supplementary materials.



Distribution WDR  CIFAR-100  Tiny ImageNet
Empirical (p) X 48.274+0.74 31.0940.14
Approximation (p) X 32.2540.56 20.084+0.96
Approximation (p) v 54.99+0.27 38.94+0.38

Table 4. Ablation study results showing classification accuracy
(%) of cwFedAvg under practical settings.

Accuracy (%)
llpi = Bill2
Accuracy (%)
[lpi = Bill2

0 1 10 10? 10° 10* 0 1 10 10% 10° 10*
Regularization coefficient (A) Regularization coefficient (A)

(a) CIFAR-10 (b) CIFAR-100

Figure 5. Influence of regularization coefficient (\) on accuracy
and regularization term (||p, — P,||2) in practical settings.

Ablation Study. We examine the effect of empirical data
distribution p, approximated distribution p, and WDR in
practical settings when cwFedAvq is applied to all layers.
First, as expected, with p and without WDR, cwFedAvg
(the second row of Table 4) shows performance compara-
ble to FedAvg (the first row of Table 1) as it fails to en-
code and extract class-specific information properly. No-
tably, cwFedAvg with p and WDR significantly outper-
forms cwFedAvg with p without WDR when the class count
is large. This result suggests that WDR effectively approxi-
mates p while regularizing pathways to be class-specific.
Impact of Regularization Coefficient. Figure 5 illus-
trates the impact of regularization coefficient (\) on accu-
racy and the regularization term (||p; — P;||,) for CIFAR-
10/100 practical heterogeneous settings. Increasing A re-
duces the regularization term, enabling cwFedAvg to ef-
fectively utilize p; for class-wise aggregation. Based on
these results, we select the optimal A that maximizes regu-
larization strength while maintaining accuracy.

5.3. Personalization for Many-Class and Highly Im-
balanced Data

Figure 6 shows heatmaps of the empirical data distribution
and the ¢5-norms of output layer weight vectors (||w; ;||2)
for the CIFAR-100 practical setting. The results demon-
strate similar patterns observed in the CIFAR-10 patholog-
ical setting (Figure 3). Notably, Figure 6c (FedAMP) ex-
hibits a pattern similar to Figure 6e (cwFedAvg with WDR),
which aligns with their shared personalized aggregation-
based approach, without FedAMP’s explicit regularization
of output layer weights. Figure 6d (IFCA), a clustering-
based method, reveals distinct cluster formations but does
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Figure 6. Heatmaps depicting the data distribution and £2-norms
of output layer weight vectors for the CIFAR-100 practical setting.
(a) Each cell represents the number of data samples belonging to
class j for client 7. (b)—(f) Each cell shows the £2-norm of output
layer weight vector, ||[wy,;]|,.

not show personalization patterns. Figures 6e and 6f con-
firm that our class distribution estimation with WDR works
appropriately even for many-class and highly imbalanced
data settings. Additional visualizations for other settings
are provided in the supplementary materials.

6. Limitation and Conclusion

The cwFedAvg method requires storing multiple global
models on the server, equal to the number of classes. This
requires more server memory than FedAvg, but the over-
head can be significantly reduced by applying cwFedAvg
to only upper layers with higher performance.

Despite its simplicity, cwFedAvg achieves efficient per-
sonalization and provides significant advantages over exist-
ing algorithms in cross-device PFL scenarios. cwFedAvg
eliminates the overhead of additional client-side training or
downloading other clients’ models that conventional PFL
methods often require. The computational complexity of
the algorithm scales linearly with the number of clients,
whereas other PFL methods often require quadratic com-
plexity owing to pairwise information exchange. This scal-
ability makes cwFedAvg particularly suitable for large-
scale deployments, as real-world applications typically in-
volve a fixed number of classes while the number of partic-
ipating clients grows. Furthermore, as an aggregation mod-
ule, cwFedAvg with WDR can be integrated into existing
PFL frameworks as a replacement for FedAvg, offering
potential performance enhancements.
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