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Abstract

This paper introduces a new shape-matching methodol-

ogy, combinative matching, to combine interlocking parts

for geometric shape assembly. Previous methods for ge-

ometric assembly typically rely on aligning parts by find-

ing identical surfaces between the parts as in conventional

shape matching and registration. Specifically, we explicitly

model two distinct properties of interlocking shapes: ‘iden-

tical surface shape’ and ‘opposite volume occupancy.’ Our

method thus learns to establish correspondences across re-

gions where their surface shapes appear identical but their

volumes occupy the inverted space to each other. To facili-

tate this process, we also learn to align regions in rotation

by estimating their shape orientations via equivariant neu-

ral networks. The proposed approach significantly reduces

local ambiguities in matching and allows a robust combi-

nation of parts in assembly. Experimental results on ge-

ometric assembly benchmarks demonstrate the efficacy of

our method, consistently outperforming the state of the art.

1. Introduction

Geometric shape assembly, the task of reconstructing a tar-

get object from multiple fractured parts, plays a crucial role

in diverse fields such as archaeology [26, 28, 36], medical

imaging [16, 24, 51], robotics [9, 38, 50], and industrial

manufacturing [2, 3]. Reliable assembly requires not only

identifying common interfaces where parts align (e.g., mat-

ing surfaces) but also establishing robust feature correspon-

dences that account for how different parts combine with

each other. This combinative process involves challenges in

analyzing parts such as incomplete semantics, shape ambi-

guity, variations in orientation, and complexity in matching.

To address the challenges, prior work [5, 14] has pre-

dominantly relied on aligning parts by finding identical

surfaces between parts as in conventional shape matching

and registration. The methods typically extract visual fea-

tures and maximize similarity for positive matches at in-
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Figure 1. Combinative matching. In contrast to conventional

approaches to matching solely based on shape similarity, our com-

binative matching explicitly models two distinct properties of in-

terlocking shapes, ‘identical surface shape’ and ‘opposite volume

occupancy,’ and learns to establish correspondences across regions

where their surface shapes appear identical but their volumes oc-

cupy the inverted space to each other. The figure shows the as-

sembly of source (gray) and target (blue & red) parts, with a true

match shown by green dots (•) connected by line. The color gra-

dient on target points indicates correlation scores with the green

source point, ranging from red (high) to blue (low). Incorporat-

ing the volume occupancy (shown in this example), reduces visual

ambiguities, achieving accurate assembly.

terfaces under the assumption of their high visual resem-

blance. While technically sound, this approach often suf-

fers from local ambiguities, where visually similar shapes

from different parts are incorrectly matched, as shown in

Fig. 1. This conventional matching on pure shape similarity

often results in incorrect matching and pose estimations, as

it overlooks intrinsic properties between matching for reg-

istration and that for assembly1. This naturally raises the

question: What do we miss in matching to address the chal-

lenges of geometric shape assembly?

Drawing inspiration from construction and civil engi-

neering, where male and female components combine to

form stable structures, techniques such as mortise and

tenon joints, tongue and groove connections, and dovetail

1In this manuscript, we use term “matching” to denote local pairwise-

compatibility test, reserving “assembly” for global placement of all parts.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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joints [13, 25, 30] demonstrate how stability and preci-

sion are achieved not merely through visual resemblance

but through combinative properties between parts. Un-

like surfaces designed to mirror each other, as in general

scene/object alignment or registration tasks [11, 32], the

mating parts in geometric assembly [35] are to be combined

with each other, requiring attention to their mutual relation-

ship. Let us assume two corresponding points on the mat-

ing surfaces of two interlocking parts. The two points share

identical surface shapes in their vicinities, but have opposite

volume occupancy, i.e., the volume around one point occu-

pies the inverted volume around the other point and vice

versa. This observation reveals two distinct properties of

interlocking shapes: identical surface shape and opposite

volume occupancy. Reliable shape assembly thus needs to

reflect both of the two properties in matching.

To this end, we introduce a new shape-matching method-

ology for geometric assembly, dubbed combinative match-

ing, which learns to match interlocking regions of parts.

Unlike conventional matching for registration and assem-

bly [11, 14, 32, 46–48], which commonly relies on shape

similarity, combinative matching establishes correspon-

dences across regions where their surface shapes appear

identical but their volumes occupy the inverted space to

each other. Specifically, we train our model to learn:

(1) shape orientations for consistent directional alignment,

(2) surface shape descriptors for identical-shape match-

ing, and (3) volume occupancy descriptors for inverted-

volume matching. These three objectives jointly help the

model reduce local ambiguities, enhance its understanding

of interlocking structures, and improve the overall accu-

racy of assembly. Central to this approach is the use of

equivariant and invariant descriptors, allowing both occu-

pancy and shape descriptors to recognize orientation rela-

tionships through equivariance, while maintaining robust-

ness to absolute pose through invariance. Experimental

results validate that our multi-faceted matching enables a

robust, interlocking-aware geometric assembly, addressing

the limitations of conventional matching.

2. Related Work

Shape assembly from parts. A common approach to re-

constructing a target shape from its parts involves point

cloud registration [11, 32, 47], i.e., object or scene align-

ment tasks, which focus on localizing overlapping inter-

faces and establishing dense feature correspondences to pre-

dict alignment poses. Shape assembly can be viewed as

a challenging registration problem under extremely low-

overlap conditions, i.e., surface overlap. Existing as-

sembly approaches can be broadly divided into two cat-

egories: (1) first category includes methods that rely on

direct pose regression using global embeddings for each

part [5, 10, 15, 18, 34, 43, 44]. While efficient, these meth-

ods often lack fine-grained local detail, leading to inaccu-

racies. Addressing this limitation, (2) methods such as Jig-

saw [22] and PMTR [14] employ dense feature matching

to identify reliable correspondences, predicting poses based

on the dense matches rather than direct regression, similar

to those used in registration approaches [11, 32, 47]. The

dense matching methods [11, 14, 22, 32, 47] are built on the

assumption that mating interfaces exhibit high visual resem-

blance, leading to employ training objectives that maximize

feature similarity for positive matches. However, unlike

general scene alignment, the assembly task requires more

than resemblance-based matching alone: Mating interfaces

are shaped to interlock rather than mirror each other, de-

manding a deeper, context-aware understanding of struc-

tural complementarity beyond naïve feature similarity.

Civil engineering and construction. A combinative de-

sign plays an essential role in creating durable assem-

blies as demonstrated by civil engineering techniques such

as mortise and tenon joints [20, 29, 30, 45], tongue and

groove connections [4, 25, 27], dovetail joints [13], rab-

bet joints [42, 49, 52], and bridle joints [1]. These meth-

ods share two key properties of combining parts: surface

resemblance that ensures that mating parts align smoothly,

and volumetric complementarity that reflects the design in-

tention for parts to interlock in a structurally sound manner.

Although existing shape assembly methods [14, 22] incor-

porate visual resemblance learning in their objectives, they

typically lack the necessary learning to model the volumet-

ric aspects of interlocking parts, which is essential for com-

binative matching for reliable assembly.

Equivariance and invariance learning. Equivariance and

invariance are essential properties in feature learning, espe-

cially for tasks involving spatial transformations, where un-

derstanding the relative pose relationship between parts is

critical. Equivariance ensures transformations applied to the

input are reflected in the output, allowing models to retain

key orientation information [7, 19, 31] and individual point

orientations [12, 23], resulting in structure-aware represen-

tations. Invariant descriptors, on the other hand, are widely

used for maintaining consistent feature representations re-

gardless of transformations. In geometric matching tasks,

many efforts [39, 40, 46, 48] incorporate these descriptors to

achieve rotation-invariant matching and alignment, demon-

strating strong empirical performance. Inspired by comple-

mentary geometric design in civil engineering, our study

goes further beyond invariance-based simple visual match-

ing, underscoring that capturing structural complementar-

ity requires equivariant learning to enable models to under-

stand the relative orientations of parts and their interdepen-

dency. Our experiments show that leveraging both equivari-

ance and invariance enhances the model’s ability to capture

essential features for combinative matching.

Complementary matching for assembly. A recent work
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by Lu et al. [22] presents the concept of a primal-dual de-

scriptor to reflect viewpoint-dependent characteristics for

surface matching. Similarly to our motivation, they intend

to capture the essence of complementary geometry arising

from fracture assembly. However, focusing on the charac-

teristics of a local surface from two different directions, in-

ward and outward, they separate a descriptor into primal

and dual ones, and train them to align by intercrossing in

matching, i.e., encouraging the primal descriptor of one part

to resemble the dual descriptor of the other part in match-

ing. Despite a similar motivation, the primal-dual match-

ing method implements the geometric complementarity of

mating parts simply by switching two distinct descriptors in

matching, and train them to resemble in the primal-dual pair

between mating parts; there is no clear distinction between

the primal and dual descriptors in terms of their roles and

effects. This is clearly different from our approach that dis-

tinguishes the descriptor for surface shape, which is to be

identical between mating parts, from that for volumetric oc-

cupancy, which is to be opposite between mating parts. As

will be discussed in our experimental section and supple-

mentary, the primal-dual descriptors fail to capture the in-

terlocking properties of mating parts, and our combinative

matching clearly outperforms in matching performance.

3. Proposed Approach

Problem setup. Following previous shape assembly meth-

ods [5, 10, 14, 15, 18, 22, 34, 43, 44], our method adopts

a self-supervised learning approach: Given a holistic tar-

get object, we decompose it into multiple parts, each repre-

sented as a point cloud and each undergoing a random rigid

transformation. The model takes this set of randomly trans-

formed point clouds as input and predicts a corresponding

set of transformation parameters, which are then applied to

each part to reconstruct the original target object. Model

performance is evaluated by measuring the distances be-

tween the ground-truth and predicted assembly configura-

tions, as well as the accuracy of transformation parameters.

3.1. Combinative Matching

In this section, we introduce Combinative Matching, a novel

approach that addresses the dual requirements of geomet-

ric assembly: identical surface shape and opposite volume

occupancy. To ensure consistent assembly despite random

transformations, our method first aligns local orientations

between surface points, establishing a common reference

frame. Within this frame, shape descriptors align to match

identical surface shapes, whereas occupancy descriptors are

inversely aligned to ensure opposite volume occupancy, en-

abling parts to interlock properly (Fig. 2).

Orientation alignment. For robust assembly, we require

that surface points from different parts share a consistent

Surface Shape 

Matching (similarity)

+
−+ +
−
+− −

Input

Assembly

Orientation 

Alignment

Volume Occupancy 

Matching (dissimilarity)

Figure 2. Main concept of our combinative matching.

orientation reference. This alignment ensures that subse-

quent shape and occupancy features can be compared mean-

ingfully. To this end, we employ an equivariant network

fd, which takes a point cloud P ∈ R
N×3 or Q ∈ R

M×3

and predicts orientations FP
d = fd(P) ∈ R

N×3×3 and

F
Q
d = fd(Q) ∈ R

M×3×3 with (FQ
d )i, (F

P
d)i ∈ SO(3),

where N and M are the numbers of sampled points for the

respective parts. The training loss for orientation alignment

is defined as the difference between aligned orientations:

Ld =
1

|C|

∑

(i,j)∈C

∥

∥(FP
d)i R

P − (FQ
d )j R

Q
∥

∥

F
, (1)

where C is the set of indices for positive matches, RP and

RQ are the ground-truth rotations of parts P and Q, and

∥ · ∥F is the Frobenius norm. By minimizing this loss, the

network learns to predict orientations that can be used to

extract rigid transformation-invariant occupancy and shape

descriptors in the subsequent matching steps, enabling sta-

ble assembly regardless of initial part positions.

Surface shape matching. For identical-shape matching,

we require shape descriptors that capture identical surface

characteristics. For this purpose, given the learned sur-

face shape embeddings FP
s = fs(P) ∈ R

N×ds and FQ
s =

fs(Q) ∈ R
M×ds and a set of all indices for all points on the

mating surface I, we employ the standard circle loss [37]

without modification as follows:

Ls ∝ E
i∼I



log
(

∑

j∈Ep(i)

e(d
p

ij
−∆p)

2

·
∑

k∈En(i)

e(∆n−dn
ik)

2
)



 ,

(2)

where dp
ij = ∥F̂P

s,i − F̂
Q
s,j∥2 represents the L2 distances be-
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Figure 3. Overall architecture. Here, we show core components of (a) feature embedding network, (b) surface shape matching branch,

(c) volume occupancy matching branch, and (d) transformation estimation. We refer the readers to Sec. 3.2 for details of each component.

tween shape features in the embedding space, where F̂ de-

notes the L2-normalized features, and Ep(i), En(i) are pos-

itive/negative correspondences for index i, and ∆p,∆n are

margin hyperparameters. This formulation encourages dis-

tance for positive matches to be close to the threshold ∆p

while pushing the distance for negative ones to exceed ∆n,

similar to the conventional approaches that identify identi-

cal surface geometries.

Volume occupancy matching. A key insight for inter-

locking parts is that their local volumes must occupy op-

posite spaces at the interface. Specifically, if one region

is occupied, the corresponding region in the mating part

should be unoccupied, and vice versa—creating the inter-

locking relationship necessary for proper assembly. We en-

code this idea by learning volume occupancy descriptors

FP
o = fo(P) ∈ R

N×do and FQ
o = fo(Q) ∈ R

M×do that

are invariant to rigid transformations through the orienta-

tion alignment. To ensure that occupancy descriptors from

corresponding regions have opposite values, we define the

occupancy matching loss using a variant of circle loss [37]:

Lo ∝ E
i∼I



log
(

∑

j∈Ep(i)

e(s
p

ij
−∆p)

2

·
∑

k∈En(i)

e(∆n−sn
ik)

2
)



 ,

(3)

where sp
ij = ∥F̂P

o,i + F̂
Q
o,j∥2 ≈ cos(FP

o,i,F
Q
o,j) represents

the cosine similarity measures in the occupancy embedding

space. It is worth noting that while conventional circle loss

typically uses distance metrics to bring positive pairs closer

together, our approach leverages cosine similarity to explic-

itly encourage opposite occupancy between positive pairs.

This approach treats occupied-unoccupied pairs as positive

matches, encouraging their descriptors to be opposite, while

penalizing non-matching pairs. Thus, the model learns to

identify complementary volumes that interlock, rather than

matching identical geometries.

Consequently, our Combinative Matching effectively

achieves the two essential desiderata for geometric shape

assembly: matching identical surface shapes at interfaces

and ensuring opposite volume occupancy for proper inter-

locking, invariant to initial part orientations.

3.2. Combinative Matching Network

We now present the proposed framework that achieves com-

binative matching through the proposed objectives, captur-

ing the multi-faceted aspects essential for assembly: orien-

tation, shape, and occupancy. Figure 3 illustrates the overall

architecture, which consists of five parts: (a) feature extrac-

tion and orientation alignment, (b) surface shape matching,

(c) volume occupancy matching, (d) transformation estima-

tion, and (e) training objective.

(a) Feature extraction and orientation alignment. For

effective combinative matching, surface shape descriptors

should ideally be rotation-invariant to ensure robustness

across various orientations, while volume occupancy de-

scriptors must retain direction-aligned information within

their embedding space to enable complementary alignment.

Therefore, prior to applying shape and occupancy match-

ing, we require rotation-invariant features that also encode

orientation-consistent information.

To address these requirements, we design a feature em-

bedding network that can embed both clues of orientation-

consistency and invariance into a unified representation. We

employ VN-EdgeConvs [7], which takes as input a pair of

point clouds P and Q and provides rotation-equivariant fea-

tures FP
eqv,F

Q
eqv ∈ R

K×D×3 for each input where K cor-

responds to N or M depending on the input point cloud,

P and Q, respectively. Next, an orientation hypothesizer,

implemented with VN-Linear [7], processes the equivari-

ant features, followed by Gram-Schmidt process with cross-

product operation to provide orientations for each point, de-

noted as FP
d ,F

Q
d ∈ R

K×3×3. We obtain rotation-invariant
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features by taking the dot-product between the equivariant

features and the orientation matrices: FP
inv = FP

eqv·F
P
d

2, with

the same calculation for F
Q
inv. To ensure these invariant fea-

tures are aligned consistently with orientation information,

we employ the orientation training objective Ld from Eq. 1,

which encourages the features to encode orientation-aligned

information while maintaining rotation-invariance, thus en-

suring complementary alignment and visual consistency for

both shape and occupancy descriptor learning.

(b) Surface shape matching branch. Similar to the way

mating surfaces of male and female parts exhibit compatible

appearance, we require a distinct feature representation that

effectively encodes appearance information to learn shape

compatibility. To achieve this, we introduce a dedicated

branch that takes the rotation-invariant features FP
inv,F

Q
inv

to embed them into surface shape descriptors FP
s ,F

Q
s ∈

R
K×ds , using a three-layer MLP, followed by LeakyReLU.

Applying the surface shape matching objective Ls from

Eq. 2 ensures that matching surfaces with similar appear-

ance are correctly aligned, forming a reliable basis for the

subsequent transformation estimation for assembly.

(c) Volume occupancy matching branch. To capture oc-

cupancy, we introduce another dedicated branch to learn-

ing occupancy descriptors, allowing the model to recog-

nize complementary alignment requirements. This branch

begins by taking the FP
inv,F

Q
inv which encode orientation-

consistency information in their representations and provide

occupancy descriptors FP
o ,F

Q
o ∈ R

K×do , using a three-

layer MLP with parameters distinct from those in shape

matching branch, followed by a Tanh activation. To enforce

correct alignment of complementary surfaces, we apply the

volume occupancy matching objective Lo from Eq. 3 which

penalizes similarity between descriptors of complementary

(occupied vs. unoccupied) regions, thereby ensuring corre-

sponding surfaces interlock stably.

(d) Transformation estimation. With the surface shape

and volume occupancy descriptor pairs obtained, we con-

struct a cost matrix C ∈ R
N×M that encodes unified cor-

relations across both shape and occupancy characteristics:

C = (FP
s · F

Q⊤
s − FP

o · F
Q⊤
o )/Z, (4)

where Z is a normalization constant. In this formulation,

the shape descriptors are learned to be similar for positive

matches, meaning that their dot product reflects a direct

measure of ‘similarity’ while the occupancy descriptors are

trained with the opposite objective, implying their dot prod-

uct instead represents the ‘dissimilarity’. By negating the

dissimilarity, C becomes a similarity measure, integrating

the visual similarity with the volumetric complementarity,

forming a comprehensive, combinative cost matrix.

2We refer the readers to the supplementary for a detailed proof.

To obtain a reliable set of correspondence indices Ĉ, we

first apply an Optimal Transport (OT) layer [33] to encour-

age one-to-one correspondence, then collect the top-k cor-

respondences (k = 128), resulting in |Ĉ| = 128. Finally, we

estimate the transformation between the pair of point clouds

using weighted SVD [6], formulated as follows:

R∗, t∗ = argmin
R,t

∑

(i,j)∈Ĉ

wij∥RPi + t−Qj∥
2
2, (5)

where wij represents the weight, e.g., the output of OT, for
match (i, j). For multi-part assembly, we adopt the same

transformation estimation method as used in [14], of which

implementation details are provided in the supplementary.

(e) Training objective. Following previous point cloud

matching methods [14, 32, 46], we incorporate a point

matching loss Lp [32], cross-entropy loss between ground-

truth and predicted match probabilities. By integrating

orientation, shape, and occupancy losses along with point

matching loss, the final training objective is formulated as:

L = λdLd + λsLs + λoLo + Lp, (6)

where λd = 0.1, λs = 0.5, and λo = 0.5 are weighting co-

efficients, balancing contributions of different matchings.

4. Experiments

4.1. Dataset and Evaluation Metrics

Dataset. For our experiments, we use the large-scale, stan-

dard geometric assembly dataset, Breaking Bad [35], con-

sisting of multiple fractured parts of target objects, catego-

rized into two main subsets: everyday and artifact.

For pairwise shape assembly, we focus specifically on its

2-part subset, while we utilize the entire dataset for multi-

part assembly, which consists of objects with 2 to 20 parts.

Our experiments are conducted on the volume-constrained

Breaking Bad dataset in which the volume of every piece

is at least 1/40 of the total shape volume, reducing extreme

point density imbalance. For vanilla Breaking Bad bench-

mark evaluation results, we refer to the supplementary.

Evaluation Metrics. We use the evaluation metrics used

in PMTR [14] to validate our method: (1) RMSE between

ground truth and predicted rotation and translation parame-

ters, (2) CoRrespondence Distance (CRD), the average dis-

tance between positive matches on mating surfaces, and

(3) Chamfer Distance (CD) between the input and model-

predicted assemblies. Note that CRD provides a more re-

liable measure than RMSE(R,T) as CRD directly assesses

assembly quality while RMSE(R,T) measures relative pose

differences without explicitly considering alignment accu-

racy. Following Lee et al. [14], our evaluation is performed

with relative poses between parts instead of absolute ones

to solely focus on the assembly, not absolute positioning.
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Assembly

Figure 4. Visualization of learned orientations. We visualize

learned vectors of {xi}i∈I (left, red arrows) and {yi}i∈I (middle,

green arrows). The assembly result is shown on the right.

Shape

Correlation
Occupancy

Correlation
Combined

high

low

Source

Figure 5. Visualization of correlation distribution. A green dot

(•) on the left point cloud marks the source’s i-th point, with cor-

responding true match points marked with green dots and arrows.

Point colors represent correlation score magnitudes for the i-th

point’s similarity to each target point, with red and blue indicat-

ing high and low correlation scores, respectively.

4.2. Implementation Details

We implement our model using PyTorch Lightning [8].

All experiments were conducted on 4 NVIDIA GeForce

RTX 3090 GPUs. We utilize the AdamW [21] optimizer

with an initial learning rate of 1 × 10−2, employing a co-

sine scheduler set for 90 and 120 epochs on the respective

everyday and artifact subsets. Following previous

work of [14, 22], we uniform-sample approximately 5,000

points on the surface per holistic object, with each part al-

located a subset of points proportional to its surface area.

4.3. Experimental Results and Analyses

Analysis on learned orientation FP
d ,F

Q
d . We begin by an-

alyzing the learned orientations (FP
d)i, (F

Q
d )i ∈ SO(3) to

observe the types of information captured through com-

binative matching, such as the directionality of occu-

pied/unoccupied regions, magnitudes of local concavity or

convexity, surface normal, and other relevant geometric

properties. For the analysis, we represent each orientation

(Fd)i = [xi,yi, zi] for all i, where xi,yi ∈ R
3 are or-

thonormal vectors, and zi given by xi × yi. We focus on

visualizing the scaled3 vectors xi and yi, omitting zi as it

is redundant for interpretative purposes.

3They are scaled by the magnitudes of the input vectors for the Gram-

Schmidt process, specifically for analysis purposes.

Figure 4 visualizes the vectors {xi}i∈I and {yi}i∈I for

both the source FP
d and target F

Q
d . Through this visualiza-

tion, we observe several notable patterns: For both xi and

yi, (1) source and target orientations are aligned in parallel,

as enforced by our training objective Ld (Eq. 1). For xi,

we observe that (2) The learned xi vectors are consistently

directed toward the center of the mating surface, (3) staying

parallel to the 2D plane of the mating surface lies, indicat-

ing our model has learned a stable orientation that respects

the geometry of mating surfaces. For yi, we observe that:

(4) vectors on convex regions (where the surface extends

outward into occupied space) point outward, while those on

concave regions (where the surface recedes) point inward.

(5) The magnitudes of yi correlate with the degree of con-

vexity or concavity at each point, indicating an awareness

of surface curvature. These results imply that the learned

orientations not only differentiate between convex and con-

cave structures but also capture complementarity and direc-

tional alignment without any explicit supervisions dedicated

to these aspects from (2) to (5), highlighting the efficacy of

the proposed combinative matching in intuitive learning of

integral properties for ‘combining’ elements.

Analysis on learned correlations. To validate how the pro-

posed combinative matching resolves a limitation of con-

ventional shape-based matching (e.g., local ambiguity), we

compare correlation matrices for shape, occupancy, and

the combined cost matrix: specifically, Cs = FP
sF

Q⊤
s ∈

R
N×M , Co = FP

oF
Q⊤
o ∈ R

N×M , and C. For this analy-

sis, we select a single point on the source’s mating surface

(index i) and examine its similarity distributions of these

correlations: (Cs)i, (Co)i,Ci ∈ R
M . These distributions

are visualized as heatmaps, with red and blue colors indi-

cating high and low similarities, respectively (we invert the

color for Co to reflect its representation of dissimilarity).

Figure 5 presents the visualized distributions.

Based solely on the surface shape distribution, the best

target match for the i-th source point is located in a broad

area due to the similar appearance of surrounding points,

resulting in local ambiguity. The volume occupancy dis-

tribution, on the other hand, shows large scores are nearly

uniformly spread across the surface, with a slightly higher

score near the true match, indicating it provides comple-

mentary information yet lacks distinct localization. By

combining shape and occupancy information, the local am-

biguity and match confidence uncertainty are resolved; the

score at the true match is significantly higher, enabling pre-

cise alignment of the source point with its correct match on

the target, verifying that the combinative matching effec-

tively enhances precision by resolving the local ambiguity.

Ablation studies. To assess the contributions of key com-

ponents in our method, we conduct ablation studies on

everyday subset. First, Tab. 1 (a) examines the choice

of affinity metric (sp and sn in Eq. 3) and the impact of ori-
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Invariant Feature Shape Descriptor Occupancy Descriptor

Figure 6. Feature visualization via t-SNE. Mating surface points are displayed in blue (•) for the source and orange (•) for the target,

while non-mating surface points are colored in skyblue (•) for the source and yellow (•) for the target.

Occupancy Orientation CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓
Affinity Loss (Ld) (10−2) (10−3) (◦) (10−2)

L2 dist ✗ 0.42 0.31 14.88 4.31

cosine ✗ 0.31 0.21 14.58 4.44

L2 dist ✓ 0.38 0.30 13.29 3.81

cosine ✓ 0.28 0.17 12.88 3.78

(a) Ablation study on combinative matching.

Equivariant Shape Occupancy CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓
Embedding Matching Matching (10−2) (10−3) (◦) (10−2)

✗ ✓ ✓ 0.74 0.53 38.74 11.88

✓ ✗ ✓ 0.38 0.28 13.17 3.86

✓ ✓ ✗ 0.35 0.25 14.01 4.24

✓ ✓ ✓ 0.28 0.17 12.88 3.78

(b) Ablation study on model components.

Table 1. Ablation studies of the proposed approach.

Method
CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓
(10−2) (10−3) (◦) (10−2)

everyday→ artifact

NSM [5] 19.95 6.88 84.16 21.74

Wu et al. [44] 19.13 7.98 85.27 22.96

GeoTransformer [32] 1.01 0.78 33.14 9.75

Jigsaw [22] 10.36 2.48 56.98 10.36

PMTR [14] 0.82 0.59 29.63 9.21

CMNet (Ours) 0.74 0.54 25.67 7.73

artifact→ everyday

NSM [5] 21.34 8.52 85.46 23.58

Wu et al. [44] 20.70 11.67 85.81 22.96

GeoTransformer [32] 0.80 0.53 41.65 13.23

Jigsaw [22] 11.00 3.04 70.88 10.75

PMTR [14] 0.64 0.44 33.23 10.97

CMNet (Ours) 0.62 0.46 26.91 8.30

Table 2. Transferability experiments on Breaking Bad [35].

entation loss Lo. Using L2 distance instead of cosine simi-

larity, or omitting orientation loss during training, results in

consistent performance drops, implying the importance of

both complementarity and orientation learning in assembly.

Second, Tab. 1 (b) evaluates the impact of equivariant net-

work [7] and surface shape & volume occupancy matching

branches. When the equivariant backbone is replaced with a

standard point embedding network, e.g., DGCNN [41], we

observe a substantial drop in CRD, verifying the importance

of learning orientation-awareness and rotation-invariance in

assembly. Consistent accuracy drops in the absence of ei-

ther shape or occupancy matching branch demonstrate that

both branches work synergistically to enhance alignment.

Learned descriptor analysis. In the proposed network, Fs

and Fo are optimized through the opposing objectives: Ls

clusters mating surface features for positive matches while

separating negative ones, whereas Lo penalizes features

for positive matches, each within its respective embedding

space. To examine their clustering behavior, we project the

invariant features Finv, shape descriptors Fs, and occupancy

descriptors Fo into a 2D space using t-SNE and visualize

the results in Fig. 6.

For invariant features of mating surface, we observe nei-

ther separation nor adhesion in their embedding space, im-

plying that the invariance property alone does not provide

significant feature distinction. In contrast, the shape de-

scriptors lying on mating surface are tightly clustered as en-

forced by Ls, supported by the visual resemblance of the

interface. Meanwhile, the occupancy descriptors on mating

surface are more widely dispersed, guided by Lo. The re-

sults collectively highlight the efficacy of proposed learning

objectives in shaping the embedding space, reflecting both

visual and volumetric properties of mating surfaces.

4.4. Model generalizability

To demonstrate the generalizability of our approach, we

conduct transferability experiments within the Breaking

Bad dataset [35]. Specifically, we evaluate our model,

trained on the everyday subset, on the artifact sub-

set, and vice versa. The everyday subset primarily con-

sists of common objects relevant to computer vision and

robotics applications, whereas the artifact subset fo-

cuses on archaeological objects, representing a notable do-

main shift between the two subsets.

Table 2 summarizes the transferability results. The

proposed method consistently outperforms state-of-the-art

baselines, achieving higher CRDs across cross-subset eval-

uations. This highlights the robustness of our model in

adapting to different data domains, underscoring its efficacy

in capturing task-oriented features of orientation, shape, and

occupancy generalizable across distinct object categories.
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Method
CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓
(10−2) (10−3) (◦) (10−2)

everyday

NSM [5] 21.71 11.09 83.38 23.71

Wu et al. [44] 20.65 11.66 84.58 22.90

GeoTransformer [32] 0.61 0.51 22.81 7.28

Jigsaw [22] 5.48 1.34 38.73 2.73

PMTR [14] 0.39 0.25 17.14 5.53

CMNet (Ours) 0.28 0.17 12.88 3.78

artifact

NSM [5] 19.44 6.33 83.22 21.41

Wu et al. [44] 19.17 7.97 85.04 20.90

GeoTransformer [32] 0.89 0.70 33.23 10.30

Jigsaw [22] 6.36 1.45 39.71 3.02

PMTR [14] 0.60 0.42 23.28 7.27

CMNet (Ours) 0.49 0.34 18.77 5.57

Table 3. Pairwise shape assembly results. Numbers in bold indi-

cate the best performance and underlined ones are the second best.

GeoTr Jigsaw PMTR Ours GT

Figure 7. Qualitative comparison for pairwise shape assembly.

4.5. Comparison with State of the Arts

To validate the efficacy of the proposed method, we com-

pare it with recent baselines on pairwise assembly in Tab. 3

and Fig. 7. In terms of CRD and CD, our method outper-

forms all the baselines in both everyday and artifact

subsets, achieving relative CRD improvements of 28% and

18%, respectively, over the previous state of the art [14].

We further evaluate our method on multi-part assembly

with additional metrics, Part Accuracy (PA) [14, 17], and

compare the results in Tab. 4 and Fig. 8, where ours consis-

tently shows superior numbers compared to baselines. The

results confirm that, unlike methods that rely solely on vi-

sual cues [14, 32], our combinative matching enables more

reliable shape assembly, as evident from Figs. 7 and 8. We

refer to the supplementary for additional qualitative results.

5. Limitations and Future Work

While our method demonstrates robust performance in most

assembly scenarios, it still fails in certain challenging sce-

narios, as illustrated in Fig. 9. First, given extremely low

overlap between mating surfaces (a,b), the occupancy cues

become too weak to provide reliable guidance. Second,

Method
CRD ↓ CD ↓ RMSE(R) ↓ RMSE(T) ↓ PACRD ↑ PACD ↑
(10−2) (10−3) (◦) (10−2) (%) (%)

everyday

Global [15, 34] 27.79 15.30 55.42 15.31 36.42 37.90

LSTM [43] 27.69 15.23 54.78 15.24 36.74 38.97

DGL [10] 27.90 13.23 55.76 15.33 36.99 39.70

Wu et al. [44] 28.18 19.70 54.98 15.59 35.66 36.28

Jigsaw [22] 14.13 11.82 41.12 11.74 52.48 60.26

PMTR [14] 6.51 5.56 31.57 9.95 66.95 70.56

CMNet (Ours) 5.18 3.65 27.11 8.13 73.88 77.88

artifact

Global [15, 34] 26.42 14.92 54.41 14.48 36.67 36.97

LSTM [43] 28.15 14.61 53.59 15.49 36.67 37.25

DGL [10] 27.48 13.91 54.66 15.10 36.66 37.40

Wu et al. [44] 26.02 15.81 54.35 14.27 36.63 37.02

Jigsaw [22] 16.10 9.53 42.01 17.47 56.93 65.58

PMTR [14] 5.67 4.33 31.58 10.08 66.96 71.61

CMNet (Ours) 4.56 3.04 29.21 8.99 71.02 76.32

Table 4. Multi-part assembly results. Numbers in bold indicate

the best performance and underlined ones are the second best.

Wu et al. Jigsaw PMTR Ours GT

Figure 8. Qualitative comparison for multi-part assembly.

when fracture surfaces are visually indistinguishable (b,c),

the pairwise matching scores become less discriminative,

often resulting in incorrect part permutations. Integrating

additional information such as texture & color cues, or en-

forcing cycle-consistency, could address such ambiguities.

(b)(a) (c)

Figure 9. (a-b) Representative failure cases on Breaking Bad. (c)

Visualization of top-k matches on a toy example (k = 128).

6. Conclusion

We have introduced combinative matching that incorporates

the multi-faceted, task-oriented properties, which demon-

strated the superiority over recent baselines by capturing

intrinsic properties of assembly, such as degrees of con-

vexity/concavity and orientation of mating surfaces, even

without explicit supervision. Although this paper explores

learning orientation, shape, and occupancy matching, the

method can be further expanded to incorporate properties

like physical compatibility or functional constraints, paving

the way for more versatile assembly frameworks.
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