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Abstract

Most existing diffusion models have primarily utilized refer-
ence images for image-to-image translation rather than for
super-resolution (SR). In SR-specific tasks, diffusion meth-
ods rely solely on low-resolution (LR) inputs, limiting their
ability to leverage reference information. Prior reference-
based diffusion SR methods have shown that incorporat-
ing appropriate references can significantly enhance recon-
struction quality; however, identifying suitable references in
real-world scenarios remains a critical challenge. Recently,
Retrieval-Augmented Generation (RAG) has emerged as
an effective framework that integrates retrieval-based and
generation-based information from databases to enhance
the accuracy and relevance of responses. Inspired by
RAG, we propose an image-based RAG framework (iRAG)
for realistic super-resolution, which employs a trainable
hashing function to retrieve either real-world or gener-
ated references given an LR query. Retrieved patches
are passed to a restoration module that generates high-
fidelity super-resolved features, and a hallucination filter-
ing mechanism is used to refine generated references from
pre-trained diffusion models. Experimental results demon-
strate that our approach not only resolves practical diffi-
culties in reference selection but also delivers superior per-
formance over existing diffusion and non-diffusion RefSR
methods. Code is available at https://github.com/
ByeonghunLee12/iRAG.

1. Introduction
Single image super-resolution (SISR) aims to reconstruct
a high-resolution (HR) image from a low-resolution (LR)
input, presenting a long-standing challenge in computer vi-
sion. Recent deep learning methods [6, 10, 17, 32, 40, 62]
have significantly improved the performance of SISR, but
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Figure 1. Concept of image-based RAG (iRAG). Our frame-
work comprises two key components: image restoration and data
retrieval. The image restoration process is facilitated by two
modules—the Reference-Aware Restoration Module and the RAG
Restoration Module. The data retrieval component manages inter-
nal communication through hash keys, enabling efficient and rapid
retrieval. Additionally, the database is constructed using a subset
of real datasets combined with synthetically generated data pro-
duced by a pre-trained generative model.

often result in over-smoothed details when optimized only
for fidelity metrics (e.g., PSNR, SSIM [61]). To address
this limitation, leveraging adversarial training emphasizes
perceptually plausible high-frequency details, often lever-
aging adversarial training [4, 59, 67]. However, GAN-based
models can be unstable during training and can introduce
unnatural artifacts [34], spurring interest in alternative gen-
erative formulations such as diffusion probabilistic models
[22, 46].

Diffusion probabilistic models have gained prominence
by capturing complex, multimodal data distributions with-
out the mode collapse problems often associated with
GANs [20, 51]. By modeling a forward noise-adding
and reverse-denoising process, these models excel in high-
quality image generation [13, 23] and have been extended
to inpainting, colorization, and super-resolution [47, 52].
Although operating in pixel space achieves state-of-the-art
fidelity, it demands substantial computational resources in
both training and inference [13]. To address these con-
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Figure 2. Flowchart of image-based RAG. (a) A database of high-resolution references is hashed for efficient querying, and retrieved
references are used to generate additional training samples via a diffusion model. (b) The low-resolution input is fused with the retrieved
reference patches through a dedicated restoration module, leveraging spatial feature transform (SFT) layers. (c) The final stage refines the
intermediate reconstruction to produce high-fidelity outputs.

straints, latent diffusion models (LDMs) [30] project im-
ages into a lower-dimensional latent space, enabling effi-
cient training and sampling while retaining high-quality re-
constructions. This approach democratizes large-scale dif-
fusion training and broadens its applicability to various con-
ditional image-to-image transformations [38, 68].

In parallel, reference-based super-resolution (RefSR)
utilizes HR auxiliary images with semantically or textu-
rally similar regions to guide the reconstruction of the LR
input. Early RefSR methods relied on optical flow [71]
or patch similarity [48, 70] to align and transfer relevant
textures from the reference image. Contemporary tech-
niques employ attention mechanisms [65] or contrastive
learning [24, 63] to handle complex alignments and im-
prove texture fidelity. While existing RefSR methods assign
HR auxiliary images that are semantically or structurally
similar to LR input images, they face two key challenges:
(1) matching difficulty, especially when the reference im-
age differs substantially from the input LR image in illumi-
nation or pose [24, 41]; and (2) robust texture transfer, to
ensure that only relevant high-frequency details are mapped
to the LR input while minimizing artifacts from mismatched
regions.

Recently, the Retrieval-Augmented Generation (RAG)
framework has been widely used to enhance the quality of
retrieved responses in NLP tasks [19, 33]. In the text-to-
image generation domain, Re-Imagen [9] leverages cross-
attention with retrieved images from an image database
to improve semantic fidelity. We observe the analogy be-
tween retrieval-augmented systems and reference-based SR
in terms of using additional retrieved patches for their own
tasks.

In this work, we propose a novel reference-based super-
resolution diffusion model follows RAG that unites the rich
generative priors of latent diffusion [30] with the targeted
detail enhancement strategy of RefSR [24, 41] which fol-

lows RAG [33] dedicated to the image domain such as [9].
Our approach tackles the reference selection and matching
challenges by:

• We introduce a hashing code vector strategy to efficiently
retrieve relevant references within a compact latent space,
making it robust against illumination and style variations
between LR and HR images.

• We integrate additional modules within our diffusion-
based super-resolution framework to refine domain align-
ment between the LR input and the selected reference,
thereby efficiently leveraging reference information.

• Extensive experiments show that our diffusion-based
RefSR framework outperforms previous methods and
provides a robust real-world RAG-based solution even
when exact references are absent.

2. Related Works

Diffusion Probabilistic Models Diffusion probabilistic
models have emerged as powerful generative frameworks
for high-fidelity image synthesis. Earlier generative mod-
els such as variational autoencoders and flow-based mod-
els [14, 15, 28] focused on likelihood-based training and ef-
ficient sampling, yet they often fell short of the visual qual-
ity achieved by Generative Adversarial Networks (GANs)
[20]. Autoregressive models [7, 11] offered strong density
estimation, but were hampered by slow sampling.

Diffusion models [51] have since demonstrated excel-
lent sample quality [13] and robust density estimation [27].
However, directly operating in pixel space is computation-
ally expensive. Latent diffusion models (LDMs) [30] ad-
dress this challenge by projecting images into a compressed
latent space, reducing computational demands while pre-
serving the quality of the synthesis. This approach supports
a wide range of conditional and unconditional image gener-
ation tasks, including applications like super-resolution.
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Realistic Image Super-Resolution Realistic image
super-resolution (Real-ISR) targets high-fidelity, percep-
tually convincing, and artifact-free outputs in real-world
settings. Conventional methods [16, 36] optimizing fidelity
metrics (e.g., PSNR, SSIM) tend to produce over-smoothed
details, whereas adversarial approaches [20, 31, 58] en-
hance texture sharpness via discriminative training, albeit
with potential instability and artifacts [34]. Recently,
diffusion models [22, 46] have been employed to capture
the natural image distribution more effectively, resulting in
finer textures and improved training stability. By integrat-
ing diffusion priors with tailored degradation models and
objectives, these methods demonstrate superior restoration
performance under challenging conditions.

Reference-Based Image Super-Resolution and RAG
Reference-based image super-resolution (RefSR) improves
reconstruction quality by transferring high-frequency de-
tails from an auxiliary high-resolution (HR) reference im-
age to the low-resolution (LR) input. Traditional meth-
ods align the reference to the LR image using optical
flow [71] or patch matching [48, 70], while advanced tech-
niques employ attention mechanisms, contrastive learning,
or teacher-student distillation for more robust texture align-
ment [24, 63, 65]. Recently, Retrieval-Augmented Genera-
tion (RAG) [19, 33] has emerged as a promising paradigm
that dynamically sources and integrates external references,
addressing the challenges of precise matching in real-world
scenarios and further enriching the reconstruction process.
RAG has been applied across multiple task domains: text-
to-image generation [9], vision–language models [21], au-
tonomous driving [60], etc.

Data Retrieval via Neural Hash Network Neural hash-
ing has advanced data retrieval by learning compact binary
codes that capture both semantic and structural information.
Supervised methods [18, 43, 64, 66] leverage label informa-
tion to ensure similar images yield similar codes, preserv-
ing fine details for various vision tasks. Meanwhile, unsu-
pervised approaches [37, 44] derive representations directly
from the data distribution, revealing intrinsic patterns.

Hallucination in Diffusion Models Diffusion models are
well-known for generating high-fidelity images; however,
they can also produce anomalous outputs—often termed
hallucinations—such as images where hands exhibit extra
fingers. These irregularities not only compromise image
quality but may also undermine model robustness. Prior
works [49, 50] have demonstrated that training on recur-
sively generated data can erode critical, rare features, poten-
tially leading to model collapse. Other works [2, 26] have
examined the origins of these hallucinations and proposed
various strategies for mitigation.

3. Methodology

In the context of image super-resolution (SR), an auxiliary
high-resolution (HR) image, containing semantically or tex-
turally similar information to the input low-resolution (LR)
image, is often leveraged to guide the restoration of fine
details and structural integrity. However, obtaining such
a reference image for real-world datasets is challenging.
Large datasets, such as ImageNet [12], typically consist
of single-view images, making it difficult for direct use as
reference patches. Furthermore, the process of curating a
reference image from these extensive datasets is computa-
tionally onerous. To address this challenge, we propose a
reference-based SR method that involves three key steps:
(i) augmenting the existing dataset by enriching it with aux-
iliary HR images, (ii) retrieving a relevant HR image from a
large database to match the target LR image, and (iii) gener-
ating a high-quality HR image by integrating LR and refer-
ence features into a diffusion model, as illustrated in Fig. 2.

3.1. Data Augmentation
The collection and annotation of real-world data can in-
cur significant expenses, pose privacy concerns, and be
subject to bias, potentially compromising the diversity of
auxiliary data useful for LR image super-resolution [3,
45]. To address these challenges, we employ a diffusion
model [46, 54] for data augmentation, thereby expanding
the available dataset. Specifically, we sample latent noise σ
from N (0,1) and use a pre-trained diffusion editing model,
G [42], to generate a synthesized image Igen conditioned on
a real image IHR as follows:

Igen = G
(
z̃HR

)
, z̃HR ≜ zHR + α · σ, (1)

where z̃HR is noisy latent obtained by adding noise σ to
zHR, an encoded latent of IHR.

Recent analyses indicate that generative models are
prone to producing out-of-distribution artifacts, commonly
referred to as “hallucinations.” These hallucinations can de-
grade downstream performance if used naively as training
data [49, 50]. To mitigate these risks, we have incorpo-
rated a variance-based filtering method [2] to remove ex-
treme hallucinations from the Igen. This method is based
on the assumption that the high variance of a sampling tra-
jectory can lead to the generation of hallucinated samples.
Suppose {x̂(i)

0 }T2

i=T1
denotes the sequence of predicted im-

ages at timestep i during the reverse diffusion process, and
¯̂x0 denotes their mean. We leverage the hallucination metric
proposed in [2]:

Hal(x) =
1

|T2 − T1|

T2∑
i=T1

(x̂
(i)
0 − ¯̂x0)

2. (2)
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Training Loss Pixel Loss GAN Loss Diffusion Loss

Using References ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Benchmarks Metrics TTSR [65] DATSR [5] Real-ESRGAN [59] BSRGAN [67] DASR [35] LDM [46] StableSR [56] Ours

DIV2K
Valid [1]

PSNR ↑ 27.560 27.843 23.499 23.861 24.746 22.629 22.044 22.323
SSIM ↑ 0.783 0.788 0.686 0.683 0.707 0.661 0.626 0.632
LPIPS ↓ 0.264 0.257 0.239 0.253 0.172 0.228 0.248 0.228

CLIP-IQA ↑ 0.451 0.452 0.534 0.580 0.612 0.618 0.672 0.702
MUSIQ ↑ 58.702 59.036 63.387 64.817 65.340 66.910 67.066 68.248

RealSR [4]

PSNR↑ 31.144 31.546 25.347 26.349 28.021 24.228 23.702 23.951
SSIM↑ 0.902 0.906 0.789 0.799 0.838 0.773 0.721 0.717
LPIPS↓ 0.176 0.129 0.194 0.199 0.140 0.223 0.262 0.263

CLIP-IQA↑ 0.458 0.454 0.526 0.574 0.554 0.657 0.664 0.678
MUSIQ↑ 64.292 63.493 67.536 69.660 67.964 69.902 70.196 70.524

DRealSR

PSNR↑ 36.426 37.090 29.893 30.418 34.532 24.228 27.049 27.144
SSIM↑ 0.949 0.952 0.865 0.865 0.905 0.773 0.765 0.776
LPIPS↓ 0.110 0.105 0.199 0.221 0.116 0.223 0.305 0.300

CLIP-IQA↑ 0.425 0.422 0.516 0.573 0.455 0.657 0.687 0.682
MUSIQ↑ 49.237 47.575 60.056 63.027 52.984 69.902 64.338 64.861

Table 1. Quantitative comparison on test benchmarks. The best and second results are in red and orange . All the models on the
table are trained with Flickr2K , DIV2K-train and OST.

This metric ensures that latent codes exhibiting unusually
high variance are flagged as hallucinations and excluded
from the augmentation set. As illustrated in Sec. 4.2, the
method successfully filters out hallucinated samples (i.e.,
unrealistic data), enabling robust data augmentation.

3.2. Hashing for Data Retrieval
To search for the HR exemplar relevant to the input LR im-
age from an external database, our pipeline incorporates
a retrieval mechanism [44]. Specifically, for each input
ILR, we retrieve Iref from ref.DB, the database of refer-
ence images, that best matches the content or style of ILR
under a compact hashing scheme. To achieve this, we first
project the image into an embedding space, where image I
is mapped to vector h = Hϕ(I). We then retrieve the refer-
ence image Iref from ref.DB whose hash code is closest to
the encoded query image’s hash code hLR = Hϕ

(
ILR

)
, as

follows:

Iref = arg min
IDB∈ref.DB

(dist(hLR, Hϕ(IDB))) .

To facilitate contrastive learning, we construct positive
pairs by generating correlated views for each image. Fol-
lowing standard convention, we apply arbitrary transforma-
tions (e.g., rotation, reflection, etc.) to each image, thereby
producing two correlated views for the k-th image x(k) in
the database:

v
(k)
i := T (x(k)), i ∈ {1, 2},

where T denotes an arbitrary transform operator. Next,
these views are passed through a pre-trained VGG encoder
network f(·) to obtain the corresponding latent representa-
tions:

z
(k)
i = f(v

(k)
i ), h

(k)
i = gϕ(z

(k)
i ),

where z
(k)
i represents the encoded latent vector of the i-th

view of the k-th image and h
(k)
i denotes the corresponding

binary hash code generated by the learnable function gϕ(·).
The primary objective of our learning process is to mini-
mize the distance between the binary hash codes h

(k)
1 and

h
(k)
2 derived from the same image. We quantify the similar-

ity between binary hash codes [8] using a cosine similarity
function C. To amplify the differences between positive and
negative pairs, we exponentiate the cosine similarity, yield-
ing:

S(h(k)
1 , h

(k)
2 ) := eC(h

(k)
1 ,h

(k)
2 )/τ,

where τ is a normalization term. Next, we compute the log-
likelihood of correctly identifying the positive match among
all candidate pairs:

ℓ
(k)
1 := − log

S(h(k)
1 , h

(k)
2 )

S(h(k)
1 , h

(k)
2 ) +

∑
i,n ̸=k S(h

(k)
1 , h

(n)
i )

.

The summation in the denominator aggregates the similar-
ities between the anchor hash code h

(k)
1 and all negative

samples. To symmetrize the objective, we also compute an
analogous term ℓ

(k)
2 for the second view. The final con-

trastive loss is defined as the average over all instances:

Lcl :=
1

N

N∑
k=1

(
ℓ
(k)
1 + ℓ

(k)
2

)
.

By minimizing Lcl, the model learns an embedding space
where semantically related samples cluster together.

3.3. Reference-based Latent Diffusion Model
To reconstruct the LR image using a retrieved reference, we
proceed in two stages. First, we generate an intermediate re-
construction, Iinter, using a transformer-based reference SR
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Figure 3. Qualitative comparison on the test benchmarks with respect to our reference DB (Sec. 4.1). We compare DATSR [5],
DASR [35], LDM [46], StableSR [56], and our method. Zoomed-in regions highlight differences in detail preservation.

module [5, 65], which contains enriched features from the
ILR. Then, we feed both the ILR and Iinter into a diffusion-
based refinement module to guide the final reconstruction.

3.3.1. Intermediate Reference-based SR
Given ILR and its retrieved reference Iref , we employ a
reference-based SR network, [5, 65] Rϕ, to produce an in-
termediate super-resolved image:

Iinter = Rϕ(ILR, Iref). (3)

We minimize a combined loss that incorporates both L1 loss
and a perceptual loss to ensure that the network captures the
global structure and texture of the reference image. The re-
sulting image, Iinter, enriches the feature representation of
ILR, ensuring that the diffusion model benefits from faithful
structural and texture cues.

Next, we feed both ILR and Iinter into a feature encoder
εφ. Specifically, we adapt SFT layers [56] to condition the
reverse diffusion process on the features extracted from ILR
and Iinter. Formally, let:

F cond ≜ concat
(
εφ(ILR), εφ(Iinter)

)
, (4)

be the condition features encoded from both images, which
are injected into each diffusion block through the SFT lay-
ers. We integrate the pre-cleaned features into the diffusion
process via SFT layers, which perform affine transforma-
tions on the diffusion model’s intermediate features. Let
F n

dif be the feature map in the n-th residual block of the
Stable Diffusion U-Net. The SFT layer computes two affine

parameters, αn and βn, based on both the LR feature F n
LR

and the reference feature F n
inter. Formally, these parame-

ters are computed as:

αn(F n
LR,F

n
inter), β

n(F n
LR,F

n
inter) = Kn

θ

(
F n

LR,F
n
inter

)
,

where Kn
θ (·) is a small network (e.g., a series of convolu-

tional and activation layers) that learns to predict the affine
parameters. The transformed diffusion feature map F̂

n

dif is
then given by:

F̂
n

dif = αn(F n
LR,F

n
inter) ⊙ F n

dif + βn(F n
LR,F

n
inter),

where ⊙ denotes element-wise multiplication. By inject-
ing F n

inter and F n
LR into the diffusion process, the net-

work can selectively emphasize or suppress certain fea-
tures, effectively leveraging the intermediate features ex-
tracted from the reference image to guide super-resolution.
During reverse diffusion, we iteratively denoise a latent
xT ∼ N (0, I) down to x0, guided by the condition features
F cond. The final super-resolved output is:

Ifinal = D
(
U(xT ,F cond)

)
, (5)

where U and D denote the pre-trained denoising U-Net and
the latent decoder from [46], respectively.

3.3.2. Training Objectives
We supervise both the intermediate and final outputs using
the following losses. Specifically, we define the loss for
intermediate reconstruction as:

Linter = ∥Iinter − IHR∥1 + λ · GAN (Iinter, IHR) ,
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Figure 4. Qualitative comparison on the CUFED5 dataset with respect to CUFED5 references. We compare TTSR [65], DATSR [5],
DASR [35] and our method against the ground truth.

Quant. Result: Evaluation on CUFED5 (i.e., Reference-Provided setting)

Metrics Models for Eval

TTSR [65] DATSR [5] DASR [35] Ours

PSNR↑ 25.224 26.71 20.69 20.56
SSIM↑ 0.782 0.838 0.649 0.686
LPIPS↓ 0.222 0.152 0.183 0.219

CLIP-IQA↑ 0.372 0.435 0.536 0.693
MUSIQ↑ 66.329 69.149 68.355 73.573

Table 2. Model performance comparison on reference-provided
settings to assess the intrinsic performance of the models. All
models were trained on DF2K-OST.

and the final loss as:

Lfinal = ∥Ifinal − IHR∥2 . (6)

The overall loss is a weighted sum of the intermediate and
final losses:

L = Linter + α · Lfinal, (7)

where α is a hyperparameter that balances the importance
of intermediate reconstruction versus final refinement. By
jointly optimizing these two stages, the network learns to
leverage both reference-based SR cues and diffusion refine-
ment to produce high-quality high-resolution outputs.

4. Experiments

4.1. Experiment and Evaluation Settings
We trained our model using the Adam optimizer [29]. All
experiments were performed on NVIDIA RTX 3090 GPUs.

Figure 5. Composition of the database. We partition the real-
domain dataset into a training set (75% of the data) and a reference
set (25%). We then augment the reference set at a 1:1 ratio.

Reference Database (ref. DB) and Training Detail
Fig. 5 illustrates the configuration of the dataset. We split
the DF2K-OST dataset [1, 57] such that 75% of the images
form the training set for image restoration. The remaining
25% is used to build the reference database, which is further
augmented with synthetic images. To enrich this reference
database, we add synthetic images in a one-to-one ratio with
the real patches. Specifically, from each reference image,
we extracted 512 × 512 patches (using reflective padding
if needed) and trained an unsupervised hashing model on
these patches using positive pairs generated via standard
data augmentation [8]. Synthetic images were generated us-
ing the diffusers pipeline [54] and SDEdit [42], with guid-
ance scales randomly chosen from [7, 10] and noise scales
from [0.55, 0.65]. A hallucination threshold (average vari-
ance of 0.03) was applied; if exceeded, the generation was
repeated up to 10 times, retaining the sample with the low-
est variance. All processes utilized SD2.1 [46].
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Evaluation Settings We evaluated the performance of
our model on three benchmark datasets: the DIV2K val-
idation set [1], the RealSR dataset [4], and the DRealSR
dataset. For each dataset, we computed quality met-
rics—including PSNR, LPIPS [69], SSIM [61], CLIP-
IQA [55], and MUSIQ [25]—to assess performance. These
metrics comprehensively assess both the pixel-level fidelity
and the perceptual quality of the generated images.

Quantitative & Qualitative Results We validated our
proposed approach using two distinct datasets: (i) a
reference-provided dataset and (ii) a real-world image
dataset as described in Fig. 5. As illustrated in Tab. 2,
our method demonstrates superior perceptual quality in the
matched dataset compared to other baselines. In particu-
lar, as shown in Fig. 4, fine details and realistic textures are
preserved more effectively. Furthermore, as demonstrated
in Fig. 3 and Tab. 1, our method consistently outperforms
baseline models in real-world scenarios, thereby confirm-
ing its robustness and practical applicability.

Ablation Study In Tab. 3, we compare our full method
(Ours) with three ablated variants on the RealSR dataset.
In Ours (-H), we remove hashing-based reference match-
ing during training and instead use random pairing. This
leads to a noticeable drop in performance (e.g., PSNR from
23.957 to 23.614, SSIM from 0.715 to 0.698), underscoring
the importance of accurate reference selection. In Ours (-
RM), the reference restoration module is removed, causing
further degradation in visual quality (e.g., PSNR decreases
to 23.374, SSIM to 0.680), indicating that this module is
essential for effectively leveraging reference patches. Fi-
nally, in Ours (-R), hashing-based reference retrieval is re-
placed with random patch selection during inference, which
also impairs reconstruction quality (PSNR drops to 23.709,
SSIM to 0.708). As shown in Tab. 4, varying the loss-
balancing weight α indicates that α = 1.0 strikes the best
trade-off between distortion metrics and perceptual quality.

Quant. Result: Evaluation on each modules

Ablation PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑
Ours 23.957 0.715 0.264 0.677 70.521

Ours (-H) 23.614 0.698 0.302 0.639 66.146
Ours (-RM) 23.374 0.680 0.289 0.645 68.122
Ours (-R) 23.709 0.708 0.276 0.661 69.182

Table 3. Ablation study on different variants of the proposed
method on the RealSR dataset.

Quant. Result: Ablation study on weight α

Ablation PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑
Ours (α = 0.7) 22.431 0.637 0.229 0.665 67.102
Ours (α = 1.0) 22.323 0.632 0.228 0.702 68.248
Ours (α = 1.3) 22.007 0.617 0.239 0.716 67.913

Table 4. Impact of the loss-balancing weight α (Eq. (7)) on
distortion and perceptual quality.

High variance Samples (High Hallucinations)

Low variance Samples (Low Hallucinations)

Figure 6. Effectiveness of variance (Hallucination) in diffusion
trajectories during sampling [39]. Our empirical results indicate
that the effect shown in [2] is also observed in the latent domain.
Furthermore, the high variance sampling process even shows the
oscillation in trajectory.

4.2. Robust Data Augmentation via Generation

We apply rejection sampling, as described in Eq. (2), to gen-
erate robust image samples. As illustrated in Fig. 6, higher
variance in the sampling trajectory tends to yield unreal-
istic images (e.g., faces appearing on mountains), whereas
lower variance produces images that preserve the core re-
alistic attributes while incorporating desired edits. Further-
more, samples generated with high variance tend to exhibit
persistently high variance values and lack a decaying trend
during the initial timesteps. In contrast, samples generated
with low variance exhibit an almost monotonic decrease in
the trajectory, indicating smooth sampling in the vector field
that likely guides the sample toward the proper mode.

4.3. Augmented Data Improves Hashing

We evaluate our approach by measuring the hit rate of the
hash function, a key retrieval indicator. For each real im-
age, augmented samples are generated as in Fig. 5; each
CUFED query is paired with four references ranked by
similarity. As shown in Tab. 5, generated-only training
underperforms real-only training, but combining the two
(Real+Gen) yields the highest hit rates and retrieves the cor-
rect patches in proper order (Fig. 7). These results show
that training with diverse patches strengthens invariant rep-
resentations and overall retrieval performance. Crucially,
even when we restrict the real set to just 10% of its original
size, augmenting it with a nine-fold amount of generated
patches (Reallim+Gen) almost restores—and in some ranks
surpasses—the full-data baseline, highlighting generation’s
value in data-scarce scenarios.

10770



Quant. Result: Hit rate (%) of correct CUFED ref. patch retrieval

Train Configuration Rank of the ref. patch Similarity

Train. DB #samples R1 R2 R3 R4 R5

Real 13K 45 59 64 70 75
Gen 13K 40 52 59 63 66

Real+Gen 26K 52 60 66 71 73

Reallim 1K 48 55 60 63 67
Reallim +Gen 10K 52 62 63 67 71

Table 5. Effectiveness of generated samples. Evaluation is con-
ducted on the CUFED dataset to compare the hit rate for models
trained on Real vs. Gen patches, as well as a combination of both.
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Figure 7. Effectiveness of generated samples. Hash trained with
both (Gen+Real) dataset retrieves the most similar patches.

4.4. Hashing Time and Resource Usage
Tab. 6 shows that our hashing-based retrieval approach re-
duces both storage memory and matching cost compared to
VGG-based feature matching. We assume 26,500 reference
images (3×512×512), where each reference feature or hash
code is precomputed, and 80,000 query images are matched
in batches of 64. By compressing the code length from 4096
to just 16, we shrink the memory footprint from more than
800 MB to less than 52 KB while also cutting the retrieval
time from 4338.2 ms to 67.8 ms.

Quant. Result: Computational Cost

Algorithm Evaluation Metric
Code Length Storage Memory Cost

VGG Matching 4096 828.13 M 4338.2 ms
Hashing 16 51.76 KB 67.8 ms

Table 6. Effectiveness of Hash on computational cost. Com-
parison conducted with VGG-based matching and our hashing
method. We assume 26,500 reference images with precomputed
codes, and 80,000 query images matched.

4.5. Integrating Hashing into Existing Ref-SR
As described in Tab. 8 and Fig. 8, integrating hashing into
conventional Ref-SR models [65] efficiently retrieves struc-
turally correlated regions from references, enabling more

precise alignment and fusion for higher-fidelity reconstruc-
tions. In diffusion-based Ref-SR, CoSeR [53] first gener-
ates a reference from the LR input; replacing or augment-
ing it with our hash-selected references yields consistent
gains in PSNR/SSIM and no-reference IQA (CLIP-IQA,
MUSIQ), as shown in Tab. 7.

Quant. Result: Reference adaptation in CoSeR

Ref. Type PSNR↑ SSIM↑ LPIPS↓ CLIP-IQA↑ MUSIQ↑

Gen 20.23 0.517 0.405 0.562 56.419
Hash 20.30 0.519 0.408 0.566 57.686

Table 7. Impact of hash-retrieved references on diffusion-based
RefSR [53]; metrics compare generated (Gen) and hash-selected
(Hash) reference strategies.

Quant. Result: PSNR/SSIM

model: TTSR Ref. at Eval

Dataset Ref. at Train Random Hash

DIV2K Random 28.26 / 0.771 28.25 / 0.770
Hash 29.08 / 0.793 29.16 / 0.794

CUFED Random 24.74 / 0.736 24.73 / 0.736
Hash 25.34 / 0.748 25.65 / 0.762

Table 8. Effectiveness of Hash for conventional RefSR [65].
Evaluation was conducted using different reference-selection
strategies on DIV2K and CUFED. Each cell shows the average
PSNR/SSIM under two factors: reference selection (Random vs
Hash) at training and evaluation.
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Figure 8. Effectiveness of Hash. The two groups on the left com-
pare reference patches selected randomly or those retrieved using a
hashing. Hashing mechanism enables the RefSR model to perform
effectively even when an exact reference patch is unavailable.

5. Conclusion
We proposed a novel image-based Retrieval Augmented
Generation framework that combines latent diffusion mod-
els with an efficient hashing code vector strategy achieving
robust reference matching and realistic reference-based SR.
Operating in a compact latent space by short binary hash
codes, our method addressed the challenges of reference
selection and improves domain consistency between
low-resolution inputs and high-resolution references.
Experiments on real-world datasets demonstrate that our
approach outperforms existing diffusion-based super-
resolution methods and reference-based methods in terms
of fidelity, perceptual quality, and computational efficiency.
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