
Scheduling Weight Transitions for Quantization-Aware Training

Junghyup Lee1,* Jeimin Jeon2,3,* Dohyung Kim4 Bumsub Ham2,†

1 Samsung Research 2Yonsei University 3Articron Inc. 4 Samsung AI center
https://cvlab.yonsei.ac.kr/projects/TRS/

Abstract

Quantization-aware training (QAT) simulates a quanti-
zation process during training to lower bit-precision of
weights/activations. It learns quantized weights indirectly
by updating latent weights, i.e., full-precision inputs to a
quantizer, using gradient-based optimizers. We claim that
coupling a user-defined learning rate (LR) with these op-
timizers is sub-optimal for QAT. Quantized weights transit
discrete levels of a quantizer, only if corresponding latent
weights pass transition points, where the quantizer changes
discrete states. This suggests that the changes of quantized
weights are affected by both the LR for latent weights and
their distributions. It is thus difficult to control the degree of
changes for quantized weights by scheduling the LR man-
ually. We conjecture that the degree of parameter changes
in QAT is related to the number of quantized weights tran-
siting discrete levels. Based on this, we introduce a transi-
tion rate (TR) scheduling technique that controls the num-
ber of transitions of quantized weights explicitly. Instead
of scheduling a LR for latent weights, we schedule a target
TR of quantized weights, and update the latent weights with
a novel transition-adaptive LR (TALR), enabling consider-
ing the degree of changes for the quantized weights during
QAT. Experimental results demonstrate the effectiveness of
our approach on standard benchmarks.

1. Introduction
Recent neural networks use wide and deep architec-
tures [11, 16, 18, 41, 44] requiring millions of param-
eters and computations. Network quantization converts
full-precision weights and/or activations into low-bit ones.
This reduces storage usage and computational overheads
drastically, but the low-bit models perform worse than the
full-precision ones. To alleviate this problem, many ap-
proaches [5, 9, 20, 31, 36] adopt quantization-aware train-
ing (QAT) that simulates a quantization process during
training. It is not straightforward to optimize discrete

*Equal contribution. †Corresponding author.

quantized weights using gradient-based optimizers (e.g.,
stochastic gradient descent (SGD)) with continuous gradi-
ents. QAT instead exploits full-precision latent weights and
a quantizer involving a discretization function (e.g., a round
function) to update the quantized weights indirectly.

QAT mainly consists of three steps: (1) In a forward
propagation step, full-precision latent weights are converted
to quantized weights using a quantizer, and the quan-
tized weights are used to compute an output; (2) Gradi-
ents w.r.t an objective function are then back-propagated to
the latent weights in a backward propagation step; (3) In
an optimization step, the latent weights are updated with
the gradients. Previous works mostly focus on the for-
ward and backward propagation steps by designing quan-
tizers [4, 5, 9, 20, 26, 36, 45, 47, 48] and addressing a van-
ishing gradient problem, caused by the discretization func-
tion in a quantizer [1, 10, 21, 25, 46], respectively. They do
not pay attention to the optimization step, and simply ex-
ploit gradient-based optimizers with a user-defined learning
rate (LR), such as SGD or Adam [22], to update the latent
weights. This optimization strategy is, however, designed
for training full-precision models, and does not consider
how quantized weights are changed, which is sub-optimal
for QAT.

When training a full-precision model with a gradient-
based optimizer, we typically decay a LR progressively to
update full-precision weights in a coarse-to-fine manner,
which guarantees the convergence of the model [17, 23].
That is, we can control the degree of weight changes man-
ually by scheduling the LR, since the magnitude of a single
parameter change, so-called an effective step size [22], is
highly correlated with the LR (Fig. 1a vs. Fig. 1b). For
example, an average effective step size, which quantifies
the degree of changes in weights, for a small LR is lower
than that for a large one. We have found that this does not
hold, when the optimizers coupled with a LR are applied
to a quantized model in QAT. Since QAT updates quantized
weights indirectly from latent weights and a quantizer, an
average effective step size for quantized weights is less cor-
related with a LR for latent weights (Fig. 1a vs. the blue
curve in Fig. 1c). To be more specific, different from full-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

23466

https://cvlab.yonsei.ac.kr/projects/TRS/


0 100 200 300 400
Epochs

0.00

0.02

0.04

0.06

0.08

0.10

(a) LR decay for SGD.

0 20K 40K 60K 80K
Iterations

0

1e-4

2e-4

3e-4

4e-4

(b) Avg. effective step sizes for FP
weights (16th layer).

0 20K 40K 60K 80K
Iterations

0

1e-3

2e-3

3e-3

4e-3

SGD
SGDT

(c) Avg. effective step sizes for
2-bit weights (16th layer).

0 100 200 300 400
Epochs

50.0

55.0

60.0

65.0

FP w/ SGD
W2A2 w/ SGD
W2A2 w/ SGDT

(d) Test accuracy (%).

Figure 1. Training curves of full-precision (FP) and quantized models for ResNet-20 [11] on CIFAR-100 [24]. Both weights (W) and
activations (A) are quantized to a 2-bit precision (W2A2). With a gradient-based optimizer (SGD), we can control the average effective
step size of FP weights roughly by scheduling a LR ((a) vs. (b)), while we could not for quantized weights (the blue curve in (c)). The curve
for quantized weights is noisy, and decreases rapidly at the end of training, suggesting that 1) the quantized weights can alter significantly
with a small LR and/or a small change of a LR, disturbing a coarse-to-fine parameter update and causing an unstable training, and 2)
adopting a manually scheduled LR for QAT is sub-optimal. The optimizer coupled with our scheduling technique (SGDT) can control
the average effective step size of quantized weights by adjusting the number of transitions explicitly (the red curve in (c)), showing better
results in terms of accuracy and convergence (the red curve in (d)).

precision weights, quantized weights change their discrete
levels, only when corresponding latent weights pass tran-
sition points, where the quantizer alters discrete states (we
call this as transitions). This makes it hard to control an
average effective step size of quantized weights by adjust-
ing a LR, disturbing coarse-to-fine parameter updates and
the convergence of a model, even at the end of training (the
blue curve in Fig. 1d). For example, if latent weights are
concentrated around a transition point, they can pass the
point easily with a tiny LR, inducing significant changes
of quantized weights.

In this paper, we introduce a transition rate (TR) schedul-
ing technique for QAT, which allows to update latent
weights w.r.t the transitions of quantized weights explic-
itly. We define the TR of quantized weights as the num-
ber of quantized weights changing discrete levels at each
iteration for optimization, divided by the total number of
the weights. Note that an effective step size of each quan-
tized weight is either zero or a discrete value (i.e., a dis-
tance between two quantization levels), indicating that an
average effective step size for quantized weights is mainly
affected by the number of transitions. We thus conjecture
that the number of transitions, or similarly, the TR is a key
for controlling the degree of parameter changes for quan-
tized weights. Based upon this, we propose to schedule
a target TR of quantized weights, instead of a LR for la-
tent weights, and update the latent weights with a novel
transition-adaptive learning rate (TALR) to adjust a TR of
quantized weights accordingly. The TALR is changed adap-
tively to match the current TR of quantized weights with the
target one. By scheduling the target TR, we are able to ad-
just the average effective step size of quantized weights (the
red curve in Fig. 1c). This allows us to optimize quan-
tized weights in a coarse-to-fine manner, and provides a
stable training process (the red curve in Fig. 1d). To the
best of our knowledge, scheduling a TR for QAT has not

been explored, instead of a LR as in full-precision train-
ing. We demonstrate the superiority of our TR scheduling
technique over the plain LR scheduling using various net-
work architectures [11, 29, 31, 37, 43] and optimizers (e.g.,
SGD, Adam [22], and AdamW [33]) on image classifica-
tion [7, 24] and object detection [28]. In summary, the main
contributions of our work are threefold:
• We claim the necessity of a training scheduler special-

ized for general QAT for the first time, where quantized
weights are optimized indirectly by latent weights and a
quantizer. To update latent weights in QAT, we propose to
focus on the changes of quantized weights used for com-
puting an output of a quantized network, which has not
been covered by plain optimizers using a user-defined LR.

• We present a novel TR scheduling technique for QAT
together with a TALR, which is adjusted considering a
TR of quantized weights, controlling an average effective
step size of quantized weights accordingly.

• We demonstrate the effectiveness and generalization abil-
ity of our approach on network quantization, boosting the
performance of various models consistently.

2. Related Work
QAT. QAT methods simulate quantization during training
by converting full-precision latent weights into quantized
ones. Early works adopt fixed quantizers for binary [36, 48],
ternary [26], and multi-bit [4, 48] representations, attempt-
ing to minimize quantization errors. Recent approaches
introduce trainable quantizers that learn quantization pa-
rameters, such as intervals [5, 9, 20] or non-uniform lev-
els [45, 47], significantly improving performance. These
methods rely on the straight-through estimator (STE) [2]
to handle non-differentiable quantization, but suffer from
gradient mismatch [21, 46]. To address this, several works
avoid exploiting the STE by using differentiable quantiz-
ers [10, 21, 46] or adjusting the gradients depending on the

23467



latent weights [1, 25]. Despite advancements, they over-
look the fact that quantized weights act differently from
full-precision counterparts, and simply adopt the same op-
timization strategies for full-precision models, that exploit
manual LR scheduling techniques (e.g., step decay or co-
sine annealing [32]), to train a quantized model. We high-
light that quantized weights are updated indirectly by full-
precision latent weights and a quantizer. Based on this, we
propose to focus on actual changes of quantized weights,
and present a TR scheduling technique specialized for QAT.

Recently, the work of [34] points out that quantized
weights tend to oscillate between adjacent quantization lev-
els during QAT. To address the oscillation problem, it pro-
poses to freeze latent weights during training or to incorpo-
rate a regularization term into the objective function. While
this approach could alleviate the oscillations, it still relies on
the conventional optimization method using a LR, and thus
it cannot control the average effective step size of quantized
weights explicitly. Moreover, hyperparameters are chosen
carefully according to network architectures and bit-widths,
since freezing weights or adding the regularization term
could disturb the training process. We have observed that it
is difficult to control the average effective step size of quan-
tized weights with the LR scheduling, and the reason for
this is closely related to the oscillation problem. Different
from [34] that reduces oscillations themselves by freezing
or regularizing the weights, we attempt to control the ac-
tual change of quantized weights by scheduling a target TR.
In this way, we can achieve consistent performance gains
under the various bit-width settings with the same set of hy-
perparameters for each architecture, which is not feasible
for [34].

Most recently, pseudo-quantization training (PQT) [6,
38, 39] addresses oscillations by injecting pseudo-
quantization noise into full-precision weights, instead of ex-
ploiting the quantization operations during training. While
PQT stabilizes training, it introduces discrepancies between
training and inference, as the actual quantization operations
are not considered during training, leading to suboptimal
performance. To overcome this, they leverage auxiliary
techniques like knowledge distillation or mixed-precision
quantization, but at the cost of computational overheads. In
contrast, our method mitigates oscillations directly through
TR scheduling, maintaining consistency between training
and inference with minimal overhead, leading to consistent
performance gains over plain optimization methods, with
negligible overheads.

Optimization Methods. Neural networks are generally
trained using a gradient-based optimizer coupled with a LR
scheduling technique. Gradient-based optimizers update
network weights based on the gradients w.r.t an objective
function. SGD is a vanilla optimizer for minimizing the ob-
jective function, which often exploits the first moment of

the gradients to accelerate update steps near local optima.
Many works [8, 22, 42] propose advanced optimizers using
adaptive gradients. They accumulate squared gradients us-
ing a historical sum [8] or a running average [22, 42] (i.e.,
the second moment of gradients), which are then used
for normalizing each gradient dimension adaptively. This
enables highlighting infrequent features at training time,
which is particularly useful for sparse gradients [8]. All
of these optimizers exploit a LR to update full-precision
weights. They typically use a large LR initially and decay
it to a small value by a LR scheduling technique, such as
step decay or cosine annealing [32]. The large initial LR
encourages weights to explore local optima in a loss space,
and the small LR at the end of training prevents the weights
from overshooting from a local optimum [17, 23]. A recent
work [27] also points out that the LR scheduling is impor-
tant for both generalization and performance, since large
and small LRs play complementary roles in memorizing
different types of patterns. The aforementioned optimiza-
tion strategies are, however, designed for training a full-
precision model, directly updating full-precision weights
used for inference. For QAT, quantized weights are used for
forward/backward passes, but full-precision latent weights
are instead updated to train the quantized weights. We pro-
pose to consider this unique property of QAT to optimize
the latent weights, and introduce a novel TR scheduling
technique, specially designed for network quantization.

Closely related to ours, few works [12, 40] present op-
timizers for binary networks that train binary weights di-
rectly, rather than using latent weights. To this end, they
adopt the first moment of gradients [12] or its variant using
the second moment [40] to flip binary values via threshold-
ing. Although these methods do not use latent weights, the
first moment and its variant have a role similar to the latent
weights in that both accumulate gradients, and they sched-
ule a threshold manually for flipping binary values. This
suggests that they do not consider the degree of parameter
changes in the binary weights explicitly, causing the same
problem as the conventional optimizers using a LR. These
methods are also applicable for binary networks only. On
the contrary, our method adjusts a TR explicitly to control
an average effective step size of quantized weights conse-
quently, and it can be applied to general QAT, including
both binary and multi-bit quantization schemes.

3. Preliminary
QAT inserts weight and/or activation quantizers into each
layer of a neural network to simulate a quantization process
at training time. Here we briefly describe a quantizer and
an optimizer in QAT.
Quantizer. Weight and activation quantizers take full-
precision latent weights and activations in a layer, respec-
tively, and produce low-bit representations. Here we mainly

23468



0 10K 30K 50K 70K
Iterations

0.00

0.02

0.04

0.06

0.08

0.10

(a) LR decay for SGD.

0 10K 30K 50K 70K
Iterations

0

5e-5

1e-4

1.5e-4
Latent
Quantized

0

1e-3

2e-3

3e-3

4e-3

(b) Avg. effective step sizes.

70K-th iter
50K-th iter
30K-th iter

-1 -0.5 0 0.5 1
10K-th iter

(c) Distribution of normalized
latent weights.

0 10K 30K 50K 70K
Iterations

35.0

40.0

45.0

50.0

55.0

(d) Test accuracy (%).

Figure 2. Empirical analysis on QAT using SGD with a step LR decay. We binarize both weights and activations of ResNet-20 [11] and
train the model on CIFAR-100 [24]. For the visualizations in (b) and (c), we track the latent and quantized weights in the 16th layer. We can
see that the average effective step size of latent weights (the blue curve in (b)) is controlled by the LR in (a), while that for the quantized
weights changes significantly even with a small LR (the red curve in (b)). This is because the change of quantized weights is also affected
by the distribution of latent weights approaching the transition point (i.e., zero in (c)). The large changes in the quantized weights at the
end of training (the red curve in (b)) degrade the performance in (d). (Best viewed in color.)

explain the weight quantizer. The activation quantizer is
similarly defined. Let us denote by w full-precision latent
weights. The quantizer first normalizes and clips the latent
weights to adjust their range:

wn = f(w), (1)

where we denote by wn normalized weights. f is a nor-
malization function involving scaling and clipping opera-
tions, which can be either hand-designed [48] or be train-
able [5, 9, 20]. The normalized weights wn are then con-
verted to discrete ones wd using a discretization function g:

wd = g(wn). (2)

The discretization function g is typically a signum or a
round function for binary or multi-bit quantization schemes,
respectively. Note that STE [2] is usually adopted in a back-
ward pass to avoid a vanishing gradient problem, caused by
the discretization function, propagating the same gradient
from wd to wn. Lastly, the quantizer produces quantized
weights wq by de-normalizing the discrete weights wd:

wq = h(wd), (3)

where h is a de-normalization function for post-scaling.
The de-normalization could possibly be omitted (or fixed)
when the quantized layer is followed by a normalization
layer (e.g., batch normalization [19]), since it imposes the
scale invariance to the weights and activations [13, 14], sug-
gesting that de-normalization has no effect on either the for-
ward or backward pass.
Optimizer. In QAT, the latent weights w are updated,
instead of optimizing the quantized weights wq directly.
That is, updating the latent weights in turn alters the quan-
tized ones during training. More specifically, the quantized
weights change their discrete levels if corresponding nor-
malized latent weights wn pass transition points of the dis-
cretization function g (e.g., zero for the signum function)
after updating the latent weights w. Previous works typi-
cally use gradient-based optimizers with a user-defined LR
to update the latent weights as follows:

wt+1 = wt − µtgt, (4)

where the superscript t indicates an iteration step, and we
denote by g and µ a gradient term and the LR, respectively.
Note that the gradient term g is computed differently de-
pending on the types of optimizers. For example, SGD uses
the first moment of gradients.

4. Method
In this section, we first present a detailed analysis of a con-
ventional optimization method using a manually scheduled
LR in the context of QAT (Sec. 4.1). We then introduce a
novel TR scheduling technique (Sec. 4.2).

4.1. Empirical analysis
Conventional optimizers use a LR decay technique when
training a full-precision model. They update model param-
eters gradually in a coarse-to-fine manner, which encour-
ages a model to find a better local optimum in a loss space,
and prevents overshooting from a local optimum [17, 23].
This suggests that the optimizers control an average effec-
tive step size (i.e., the degree of parameter changes) of full-
precision weights by adjusting the LR. We have empirically
found that this does not hold for QAT. Namely, the average
effective step size of quantized weights in QAT is hardly
controlled by a conventional LR scheduling technique in
gradient-based optimizers.

To understand this problem in detail, we show an empir-
ical analysis on 1) how a gradient-based optimizer, coupled
with a manually scheduled LR, changes latent and quan-
tized weights within a framework of QAT, and 2) the influ-
ence of the changes on the classification accuracy of a quan-
tized model (Fig. 2). We train ResNet-20 [11] with binary
weights and activations on CIFAR-100 [24] using a SGD
optimizer with a step LR decay method. We can see from
Fig. 2a and the blue curve in Fig. 2b that the average effec-
tive step size of latent weights is controlled by a LR, which
is consistent with the result in a full-precision model (e.g.,
Fig. 1a vs. Fig. 1b). The reason is that the latent weights in

23469



QAT and the weights in a full-precision model are continu-
ous values, and the LR is responsible directly for updating
the weights, e.g., as in Eq. (4). On the contrary, quantized
weights alter significantly, even with a small LR (the red
curve in Fig. 2b). Since QAT uses quantized weights in a
forward propagation step to compute gradients w.r.t an ob-
jective function, the large changes of quantized weights at
the end of training make a training process unstable, dis-
turbing a quantized model to converge (Fig. 2d).

To delve deeper into this problem, let us suppose that a
quantized weight needs to alter its discrete level (e.g., from
a negative value to a positive one in the binary quantiza-
tion) in order to minimize a training loss. A corresponding
latent weight then keeps accumulating gradients to move
towards a transition point, and once a transition occurs, the
latent weight might stay near the transition point. We can
observe in Fig. 2c that the normalized latent weights (i.e.,
wn in Eq. (1)) are approaching the transition point (i.e.,
zero in this case) progressively according to the number
of iterations. The quantized weight is hence likely to os-
cillate between adjacent discrete levels with small LRs in
later training iterations (see the high peak at the 70K-th it-
eration in Fig. 2c). This coincides with the recent finding
in [34, 35] that the quantized weights tend to oscillate dur-
ing QAT, making it difficult to stabilize the batch normal-
ization statistics [19], and degrading the performance at test
time. This analysis indicates that 1) the average effective
step size of quantized weights is largely affected by the dis-
tribution of latent weights, and 2) the reason why the LR
is not a major factor for controlling the average effective
step size in QAT, contrary to an optimization process of
a full-precision model, is that the quantized weight alters
only when the latent weight passes a transition point of a
quantizer, but the LR cannot adjust the number of transi-
tions explicitly. Consequently, our empirical analysis sug-
gests the necessity of a training scheduler specific to QAT
that allows to update latent weights adaptively considering
the transitions in quantized weights.

4.2. TR scheduler

Here we present a relationship between an effective step
size and transitions in quantized weights, and describe our
approach to TR scheduling in a single layer.

TR of quantized weights. We say that a transition occurs
if a latent weight passes a transition point of a quantizer
after a single update. The number of transitions is hence
equal to that of quantized weights changing discrete levels
after the update. We can count the number of transitions
by observing whether discrete weights (i.e., wd in Eq. (2))
are changed or not after the update. Here we focus on a
TR, the number of transitions divided by the total number

of quantized weights, defined as follows:

kt =

∑N
i=1 I

[
wt

d(i) ̸= wt−1
d (i)

]
N

, (5)

where we denote by kt and wt
d(i) the TR and the i-th el-

ement of discrete weights at the t-th iteration step, respec-
tively, and N is the total number of quantized weights. I[·]
is an indicator function that outputs one if a given statement
is true and zero otherwise.

Relation between an effective step size and a transition.
An effective step size [22] indicates the magnitude of a sin-
gle parameter change. We can compute the effective step
size of a quantized weight wq by measuring its absolute dif-
ference before and after a single update as follows:∣∣△wt

q

∣∣ = ∣∣wt
q − wt−1

q

∣∣ , (6)

where we denote by |△wt
q| an effective step size of the

quantized weight at the t-th iteration step. We will show
that the effective step size is related to a transition of the
quantized weight. Let us denote by δt a post-scaling factor
of the de-normalization function h in Eq. (3) at the t-th it-
eration step. If the discretization function g in Eq. (2) is a
rounding function for multi-bit quantization (i.e. a discrete
weight wt

d is an integer value), we can rewrite Eq. (6) as
follows: ∣∣△wt

q

∣∣ = ∣∣δtwt
d − δt−1wt−1

d

∣∣ . (7)

If g is a signum function (i.e., wt
d ∈ {−1, 1}) for binary

quantization, Eq. (6) can be represented as follows:∣∣△wt
q

∣∣ = 1

2

∣∣δtwt
d − δt−1wt−1

d

∣∣ . (8)

Note that the change of δt in a single update is typically
small (i.e., δt ≈ δt−1) or we can set the post-scaling fac-
tor δt as a constant value if the quantized layer is followed
by a normalization layer [13, 14] (e.g., as in [25]). Assum-
ing that the change of δt is negligible within a single update
and a latent weight passes a single transition point when a
transition occurs, we can approximate the effective step size
of the quantized weight as follows:∣∣△wt

q

∣∣ ≈ δtI
[
wt

d ̸= wt−1
d

]
. (9)

That is, the effective step size of the quantized weight is
at most δt if a transition occurs, and zero otherwise. This
indicates that individual effective step sizes of quantized
weights are discrete values (i.e., zero or δt) determined by
the quantizer. Note that the effective step size for each full-
precision weight can be adjusted by a LR, since the weight
is a continuous value, which is however not applicable for
the quantized weight changing discretely. Accordingly, ad-
justing the number of transitions, or equivalently a TR, is

23470



important to control an average effective step size of quan-
tized weights. Based upon this, we design a TR scheduling
technique adjusting a TR of quantized weights explicitly,
allowing us to control the degree of parameter changes in
the quantized weights accordingly.

TR scheduler. We incorporate our TR scheduling tech-
nique into an optimization process by introducing a
transition-adaptive learning rate (TALR) to update latent
weights, allowing to adjust a TR of quantized weights man-
ually, w.r.t a target TR. To this end, we mainly apply three
operations at every iteration: Estimating a running TR us-
ing a momentum estimator, adjusting a TALR w.r.t a target
value, and updating latent weights. Specifically, we first
compute a running TR of quantized weights for each itera-
tion t using an exponential moving average with a momen-
tum of m:

Kt = mKt−1 + (1−m)kt, (10)

where we denote by Kt a running TR. Motivated by the
running statistics in e.g., batch normalization [19], we use
the momentum estimator to obtain the running TR, which
roughly averages the TRs over recent training iterations, in-
stead of using the TR, kt in Eq. (5), directly. This allows
us to use a stable statistic of the TR, and alleviates the in-
fluence from outliers. We then adjust a TALR based on the
running TR Kt and a target one:

U t = max
(
0, U t−1 + η

(
Rt −Kt

))
, (11)

where we denote by U t and Rt the TALR and the target TR
at the iteration step t, and η is a hyperparameter controlling
the extent of the TALR update. Note that we can schedule
the target TR Rt using typical schedulers (e.g., step decay),
which is analogous to the LR scheduling technique. With
the TALR U t at hand, we update the latent weights wt as
follows:

wt+1 = wt − U tgt, (12)

where gt is a gradient term computed depending on the type
of an optimizer (e.g., the first moment of gradients in SGD).
Updating the latent weights wt with the TALR U t enables
controlling the running TR of quantized weights Kt w.r.t
the target TR Rt. For example, if a current running TR Kt

is smaller than the target one Rt, the TALR U t increases ac-
cording to Eq. (11). The latent weights in Eq. (12) are then
updated largely, compared to the previous iteration. This
encourages more latent weights to pass transition points of
a quantizer, which in turn raises the TR in the next step.
Similarly, in the opposite case, the TALR decreases to re-
duce the TR. Note that one can adjust the TALR in a dif-
ferent way from Eq. (11) while achieving the same effect,
and we discuss the variants of update algorithms for TALR
in the Sec. S3.2 of the supplement. Our approach connects
the latent and quantized weights, in contrast to conventional

optimization methods, making it possible to control an aver-
age effective step size of quantized weights via scheduling
a target TR.

4.3. Quantization scheme
We apply the TR scheduler to QAT with various bit-width
settings, including binary and multi-bit representations. In
the following, we describe quantization schemes used in our
experiments.
Multi-bit quantization. We modify LSQ [9], the state-
of-the-art method for multi-bit uniform quantization1. We
define our b-bit quantizer as follows:

xq =
1

γ

⌈
clip

(γx
s
, α, β

)⌋
, (13)

where xq is an output of the quantizer. We denote by x an
input to the quantizer, which can be either latent weights
or input activations. clip(·, α, β) is a clipping function
with lower and upper bounds of α and β, respectively,
and ⌈·⌋ is a round function. Following LSQ, we employ
a learnable scale parameter s for each quantizer, adjust-
ing the range of quantization interval2. We set the bit-
specific constants (α, β, γ) as

(
−2b−1, 2b−1 − 1, 2b−1

)
and

(
0, 2b − 1, 2b

)
for weight and activation quantizers,

respectively. We do not perform a post-scaling with the
learnable scale parameter s after the round function in con-
trast to LSQ. That is, we fix the output range of a quantizer,
enforcing the output of the quantizer xq to be fixed-point
numbers, regardless of the range of an input x, which is
more suitable for hardware implementation. Note that the
scale difference between the input and output of a quan-
tizer does not matter if each convolutional/fully-connected
layer is followed by a normalization layer (e.g., batch nor-
malization [19]), imposing the scale invariance after every
quantized layer [13, 14]. This ensures that post-scaling does
not affect either the forward or backward pass. When the
normalization is not used, we optionally apply a learnable
post-scaling technique to outputs of convolutional/fully-
connected layers [25].
Binary quantization. We apply two binarization meth-
ods. First, we use the network architecture of ReAct-
Net [31] and its quantization scheme, which is the state
of the art on binary quantization. ReActNet modifies the
ResNet [11] or MobileNet-V1 [15] architectures by adopt-
ing the Bi-Real structure [30] that adds more residual con-
nections, while exploiting real-valued 1× 1 convolutions in

1Using the same network architecture (i.e., a vanilla version of ResNet),
our modifications provide similar or better baseline results on Ima-
geNet [7], compared to the performance of LSQ, reproduced in [3].

2We train scale parameters in activation quantizers only, and do not
train them in weight quantizers, when the TR scheduling technique is
adopted. Otherwise, transitions could occur, even when the latent weights
are not updated. For a fair comparison, we use learnable scale parameters
for weight quantizers, when using plain optimizers without TR scheduling.
See the Sec. S5.2 of the supplement for details.

23471



Table 1. Quantitative comparison of quantized models on Im-
ageNet [7] in terms of a top-1 validation accuracy. We train
quantized models with plain optimization methods (SGD and
Adam [22]) or ours using a TR scheduler (SGDT and AdamT).
The bit-widths of weights (W) and activations (A) are represented
in the form of W/A. For comparison, we report the performance of
full-precision (FP) and activation-only binarized (W32A1) mod-
els. The results of ReActNet-18 [31] for the plain optimizers are
reproduced with an official source code.

Optimizer
MobileNetV2 ReActNet-18 ResNet-18

(FP: 71.9) (W32A1: 66.8) (FP: 69.9)
2/2 3/3 4/4 1/1 1/1 2/2 3/3 4/4

SGD 46.9 65.6 69.9 65.0 55.3 66.8 69.5 70.5
SGDT 53.6 67.0 70.5 65.3 55.8 66.9 69.7 70.6

Adam 49.6 66.5 70.0 65.3 56.1 66.7 69.5 70.1
AdamT 53.8 67.3 70.8 65.7 56.3 67.2 69.7 70.4

Table 2. Quantitative comparison of quantized models on CIFAR-
100/10 [24] in terms of a top-1 test accuracy.

Optimizer

CIFAR-100 CIFAR-10

ReActNet-18 ResNet-20 ReActNet-18 ResNet-20
(W32A1: 69.6) (FP: 65.1) (W32A1: 91.3) (FP: 91.1)

1/1 1/1 2/2 1/1 1/1 2/2

SGD 69.7 54.9 64.1 90.9 85.2 90.2
SGDT 72.2 55.8 65.5 93.0 85.6 90.7

Adam 69.5 54.8 63.3 90.4 84.8 90.2
AdamT 71.8 55.9 65.2 92.9 85.7 91.1

Table 3. Quantitative comparison of quantized models on Ima-
geNet [7] in terms of a top-1 validation accuracy. We train quan-
tized models with plain optimization method (AdamW [33]) or
ours using a TR scheduler (AdamWT).

Optimizer
DeiT-T DeiT-S

(FP: 72.0) (FP: 79.9)
2/2 3/3 2/2 3/3

AdamW 54.6 68.1 68.4 77.6
AdamWT 57.4 69.5 71.8 78.5

the residual connections. This approach also uses learnable
shift operations before quantization and activation func-
tions. Second, we binarize vanilla ResNet models to com-
pare binary and multi-bit quantization schemes under a fair
training setting. To this end, we design a binary quantizer
using Eq. (13). For a weight quantizer, we set α, β, and γ,
to -1, 1, and 1, respectively, and replace the round operator
with a signum function to obtain a binary value of −1 or 1.
For an activation quantizer, we set those values as 0, 1, and
1, respectively, to generate a binary activation of 0 or 1.

5. Experiments

We describe our experimental settings (Sec. 5.1) and
show results on image classification and object detec-
tion (Sec. 5.2). We then analyzze the TR scheduling tech-
nique (Sec. 5.3). More detailed analyses and discussions
are provided in the supplement.

Table 4. Quantitative results on object detection. We train Reti-
naNet [29] on the training split of MS COCO [28] using either the
plain optimization method (SGD) or ours (SGDT). We report the
average precision (AP) on the validation split.

Backbone W/A Optimizer AP AP50 AP75 APS APM APL

ResNet-50

FP SGD 37.80 57.62 40.50 23.12 41.39 49.70

4/4
SGD 38.05 57.75 40.23 22.51 41.46 49.68

SGDT 38.36 58.01 40.76 22.46 41.87 49.71

3/3
SGD 37.32 56.87 39.71 21.90 40.82 48.97

SGDT 37.59 56.89 40.18 21.51 40.98 49.07

5.1. Experimental settings
For image classification, we train quantized models for Mo-
bileNetV2 [37], ResNet families [11], ReActNet-18 [31],
and DeiT-T/S [43] on CIFAR-10/100 [24] and/or Ima-
geNet [7]. We train them using a cross-entropy loss, ex-
cept for ReActNet-18 on ImageNet, where we use a dis-
tributional loss [31] following the work of [31]. For ob-
ject detection, we adopt RetinaNet [29] with ResNet back-
bones on MS COCO [28]. Unlike the previous QAT meth-
ods [45, 49], we use a shared prediction head to handle
features of different resolutions, analogous to the original
RetinaNet [29]. For ease of activation quantization, we add
a ReLU layer after each convolutional layer in the predic-
tion head, so that all inputs of activation quantizers are non-
negative. For more details, please refer to the Sec. S4.1 of
the supplement.

While our method requires additional computations (i.e.,
element-wise comparison in Eq. (5) and scalar operations in
Eqs. (10)-(11)), they are computationally cheap compared
to the whole training process. The training time increases
by only 2% compared to the plain optimization methods
with the same machine (Sec. S2.5 of the supplement).

5.2. Results
Image classification. We provide in Tables 1-3 quanti-
tative comparisons of quantized models trained with opti-
mizers using plain optimization methods and our approach.
We report a top-1 classification accuracy on ImageNet [7]
and CIFAR-100/10 [24] using the MobileNetV2 [37],
ReActNet-18 [31], ResNet-18/20 [11], and DeiT-T/S [43]
architectures. From these tables, we observe three things:
(1) Our method provides substantial accuracy gains over
the plain optimizers, regardless of the datasets, network ar-
chitectures, and quantization bit-widths. This indicates that
scheduling a target TR is a better choice for the optimiza-
tion process in QAT compared to the conventional strategy
scheduling a LR. (2) The performance gaps on ImageNet
using light-weight MobileNetV2 (0.6∼6.7%) are more
significant than the ones using ReActNet-18 or ResNet-
18 (0.1∼0.5%). Moreover, the performance gaps become
larger for smaller bit-widths of MobileNetV2. These results
suggest that the TR scheduling technique is especially use-
ful for compressing networks aggressively, such as quantiz-

23472



0 10K 30K 50K 70K
Iterations (t)

0.000

0.002

0.004

0.006
Running TR Kt

Target TR Rt

(a) Running TR Kt and
target TR Rt.

0 10K 30K 50K 70K
Iterations (t)

0.0

0.2

0.4

0.6

0.8

1.0

(b) TALR Ut.

70K-th iter
50K-th iter
30K-th iter

-2 -1.5
(TP)

-1 -0.5
(TP)

0 0.5
(TP)

1
10K-th iter

(c) Distributions of normalized
latent weights.

0 10K 30K 50K 70K
Iterations

0.22

0.24

0.26

0.28

0.30

0.32

(d) Average distances to the
nearest transition points.

Figure 3. Analysis on TR scheduling. We train ResNet-20 [11] on CIFAR-100 [24] using SGDT, where we quantize both weights and
activations with 2-bit representations. We visualize distributions of normalized latent weights in the 16th layer in (c), and average distances
between normalized latent weights and the nearest transition points in (d). The transition points in (c) are denoted by TPs in the x-axis.
The top-1 test accuracy and average effective step sizes of quantized weights are shown by the red curves in Figs. 1d and 1c, respectively.

ing a light-weight model or extremely low-bit quantization.
(3) Considering the results for ReActNet-18 and the ResNet
families, our approach outperforms the conventional op-
timization methods by significant margins (0.4∼2.5%) on
the small dataset (i.e., CIFAR-100/10). On the large-scale
dataset (i.e., ImageNet), it also shows superior results,
achieving 0.1∼0.5% accuracy gains. The overall perfor-
mance gaps decrease on ImageNet, possibly because the
plain optimizers with a gradually decaying LR (e.g., cosine
annealing LR [32]) benefit from lots of training iterations
on ImageNet (roughly 600K). They, however, do not show
satisfactory results within a small number of iterations on
CIFAR-100/10 (roughly 80K), compared to ours.

Object detection. We compare in Table 4 the quantiza-
tion performance of detection models in terms of an average
precision (AP) on the validation split of MS COCO [28].
We train RetinaNet [29] with the ResNet-50 [11] backbone
using either SGD or SGDT on the training split of MS
COCO. We can observe in Table 4 that the TR scheduling
technique boosts the AP consistently over the SGD base-
lines across different bit-widths, similar to the results on
image classification. This suggests that the TR scheduling
technique is also useful for the object detection task involv-
ing both regression and classification, demonstrating once
more the effectiveness of our method and its generaliza-
tion ability to various tasks. Additional quantitative results
on object detection with different backbone networks (e.g.,
ResNet-18/34) and qualitative results are provided in the
Sec. S1.2 of the supplement.

5.3. Analysis

We show in Fig. 3 an in-depth analysis on how a TR sched-
uler works during QAT. We can see from Fig. 3a that the
running TR Kt roughly follows the target TR Rt, indicat-
ing that we can control the average effective step size of
quantized weights (the red curve in Fig. 1c) by schedul-
ing the target TR. This is possible because the TALR U t

is adjusted adaptively to match the running TR Kt with the

target one Rt (Fig. 3b). We can see that the TALR U t in-
creases initially, since the running TR Kt is much smaller
than the target TR Rt. The TALR U t then decreases gradu-
ally to reduce the number of transitions, following the target
TR Rt. Note that the TALR U t approaches zero rapidly
near the 50K-th iteration. To figure out the reason, we
show in Figs. 3c and 3d distributions of normalized latent
weights and their average distances to the nearest transition
points, respectively. We can observe in Fig. 3c that latent
weights tend to be concentrated near the transition points of
a quantizer as the training progresses, similar to the case in
Sec. 4.1 using a user-defined LR. This implies that transi-
tions occur more frequently in later training iterations if we
do not properly reduce the degree of parameter change for
latent weights. In particular, we can see in Fig. 3d the aver-
age distances between the normalized latent weights and the
nearest transition points are relatively small after the 50K-
th iteration. Under such circumstance, the TALR should
become much smaller in order to reduce the running TR,
as in the sharp decline around the 50K-th iteration. We can
thus conclude that our approach adjusts the TALR by con-
sidering the distribution of the latent weights implicitly.

6. Conclusion
We have discussed the problem of a conventional optimiza-
tion method using a LR in QAT. To overcome this, we have
presented a TR scheduling technique specialized for general
QAT, which controls the number of transitions in quantized
weights explicitly. We have shown that the optimizers cou-
pled with our TR scheduling technique outperform the plain
ones using a LR by significant margins under various QAT
settings. We have also verified that our approach enables
stable training with different types of optimizers and sched-
ulers, which is generally difficult in the conventional opti-
mization methods, indicating that the TR scheduling tech-
nique offers more diverse training options for QAT. We ex-
pect that our method would be adopted to boost the per-
formance of other quantized models, bringing a significant
advance in the field of network quantization.

23473



Acknowledgements
This work was supported in part by NRF and IITP
grants funded by the Korea government (MSIT) (No.
2023R1A2C2004306, No.RS-2022-00143524, Develop-
ment of Fundamental Technology and Integrated Solution
for Next-Generation Automatic Artificial Intelligence Sys-
tem, RS-2021-II212068, Artificial Intelligence Innovation
Hub) and the Yonsei Signature Research Cluster Program
of 2025 (2025-22-0013).

References
[1] Yu Bai, Yu-Xiang Wang, and Edo Liberty. ProxQuant:

Quantized neural networks via proximal operators. In Int.
Conf. Learn. Represent., 2019. 1, 3

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. arXiv, 2013. 2, 4

[3] Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen
Blankevoort, and Nojun Kwak. LSQ+: Improving low-bit
quantization through learnable offsets and better initializa-
tion. In IEEE Conf. Comput. Vis. Pattern Recog. Workshops,
pages 696–697, 2020. 6

[4] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-
los. Deep learning with low precision by half-wave gaussian
quantization. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 5918–5926, 2017. 1, 2

[5] Jungwook Choi, Zhuo Wang, Swagath Venkataramani,
Pierce I-Jen Chuang, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. PACT: Parameterized clipping activation
for quantized neural networks. arXiv, 2018. 1, 2, 4

[6] Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve.
Differentiable model compression via pseudo quantization
noise. TMLR, 2022. 3

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., pages
248–255, 2009. 2, 6, 7

[8] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. J. Mach. Learn. Res., 12(7), 2011. 3

[9] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, and Dharmendra S Modha.
Learned step size quantization. In Int. Conf. Learn. Rep-
resent., 2020. 1, 2, 4, 6

[10] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,
Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differen-
tiable soft quantization: Bridging full-precision and low-bit
neural networks. In Int. Conf. Comput. Vis., pages 4852–
4861, 2019. 1, 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 770–778, 2016. 1, 2, 4,
6, 7, 8

[12] Koen Helwegen, James Widdicombe, Lukas Geiger, Zechun
Liu, Kwang-Ting Cheng, and Roeland Nusselder. Latent

weights do not exist: Rethinking binarized neural network
optimization. In Adv. Neural Inform. Process. Syst., pages
7533–7544, 2019. 3

[13] Byeongho Heo, Sanghyuk Chun, Seong Joon Oh, Dongy-
oon Han, Sangdoo Yun, Gyuwan Kim, Youngjung Uh, and
Jung-Woo Ha. AdamP: Slowing down the slowdown for mo-
mentum optimizers on scale-invariant weights. In Int. Conf.
Learn. Represent., 2021. 4, 5, 6

[14] Elad Hoffer, Ron Banner, Itay Golan, and Daniel Soudry.
Norm matters: efficient and accurate normalization schemes
in deep networks. In Adv. Neural Inform. Process. Syst.,
2018. 4, 5, 6

[15] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv,
2017. 6

[16] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In IEEE Conf. Comput. Vis. Pattern Recog., pages
7132–7141, 2018. 1

[17] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E
Hopcroft, and Kilian Q Weinberger. Snapshot ensembles:
Train 1, get m for free. In Int. Conf. Learn. Represent., 2017.
1, 3, 4

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In IEEE Conf. Comput. Vis. Pattern Recog., pages
4700–4708, 2017. 1

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Int. Conf. Mach. Learn., pages 448–456,
2015. 4, 5, 6

[20] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son,
Jae-Joon Han, Youngjun Kwak, Sung Ju Hwang, and
Changkyu Choi. Learning to quantize deep networks by op-
timizing quantization intervals with task loss. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 4350–4359, 2019. 1, 2,
4

[21] Dohyung Kim, Junghyup Lee, and Bumsub Ham. Distance-
aware quantization. In Int. Conf. Comput. Vis., pages 5271–
5280, 2021. 1, 2

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int. Conf. Learn. Represent.,
2014. 1, 2, 3, 5, 7

[23] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative
view: When does SGD escape local minima? In Int. Conf.
Mach. Learn., pages 2698–2707, 2018. 1, 3, 4

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. Technical report, 2009.
2, 4, 7, 8

[25] Junghyup Lee, Dohyung Kim, and Bumsub Ham. Network
quantization with element-wise gradient scaling. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 6448–6457, 2021.
1, 3, 5, 6

[26] Fengfu Li, Bo Zhang, and Bin Liu. Ternary weight networks.
arXiv, 2016. 1, 2

23474



[27] Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining
the regularization effect of initial large learning rate in train-
ing neural networks. In Adv. Neural Inform. Process. Syst.,
2019. 3

[28] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
Eur. Conf. Comput. Vis., pages 740–755, 2014. 2, 7, 8

[29] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Int.
Conf. Comput. Vis., pages 2980–2988, 2017. 2, 7, 8

[30] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,
and Kwang-Ting Cheng. Bi-Real Net: Enhancing the perfor-
mance of 1-bit cnns with improved representational capabil-
ity and advanced training algorithm. In Eur. Conf. Comput.
Vis., pages 722–737, 2018. 6

[31] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-
Ting Cheng. ReActNet: Towards precise binary neural net-
work with generalized activation functions. In Eur. Conf.
Comput. Vis., pages 143–159, 2020. 1, 2, 6, 7

[32] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In Int. Conf. Learn. Repre-
sent., 2017. 3, 8

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Int. Conf. Learn. Represent., 2019. 2, 7

[34] Markus Nagel, Marios Fournarakis, Yelysei Bondarenko,
and Tijmen Blankevoort. Overcoming oscillations in
quantization-aware training. In Int. Conf. Mach. Learn.,
2022. 3, 5

[35] Eunhyeok Park and Sungjoo Yoo. PROFIT: A novel train-
ing method for sub-4-bit MobileNet models. In Eur. Conf.
Comput. Vis., pages 430–446, 2020. 5

[36] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. XNOR-Net: ImageNet classification using
binary convolutional neural networks. In Eur. Conf. Comput.
Vis., pages 525–542, 2016. 1, 2

[37] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 4510–4520, 2018. 2, 7

[38] Pedro Savarese, Xin Yuan, Yanjing Li, and Michael Maire.
Not all bits have equal value: Heterogeneous precisions via
trainable noise. In NeurIPS, 2022. 3

[39] Juncheol Shin, Junhyuk So, Sein Park, Seungyeop Kang,
Sungjoo Yoo, and Eunhyeok Park. Nipq: Noise proxy-based
integrated pseudo-quantization. In CVPR, 2023. 3

[40] Cuauhtemoc Daniel Suarez-Ramirez, Miguel Gonzalez-
Mendoza, Leonardo Chang, Gilberto Ochoa-Ruiz, and
Mario Alberto Duran-Vega. A bop and beyond: A second
order optimizer for binarized neural networks. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 1273–1281, 2021. 3

[41] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 2818–2826, 2016. 1

[42] T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp: Di-
vide the gradient by a running average of its recent magni-

tude, COURSERA: Neural Networks for Machine Learning.
Technical report, 2012. 3

[43] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 2, 7

[44] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 1492–1500, 2017. 1

[45] Kohei Yamamoto. Learnable companding quantization for
accurate low-bit neural networks. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 5029–5038, 2021. 1, 2, 7

[46] Jiwei Yang, Xu Shen, Jun Xing, Xinmei Tian, Houqiang Li,
Bing Deng, Jianqiang Huang, and Xian-sheng Hua. Quanti-
zation networks. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 7308–7316, 2019. 1, 2

[47] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang
Hua. LQ-Nets: Learned quantization for highly accurate and
compact deep neural networks. In Eur. Conf. Comput. Vis.,
pages 365–382, 2018. 1, 2

[48] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He
Wen, and Yuheng Zou. DoReFa-Net: Training low bitwidth
convolutional neural networks with low bitwidth gradients.
arXiv, 2016. 1, 2, 4

[49] Bohan Zhuang, Lingqiao Liu, Mingkui Tan, Chunhua Shen,
and Ian Reid. Training quantized neural networks with a
full-precision auxiliary module. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 1488–1497, 2020. 7

23475


	Introduction
	Related Work
	Preliminary
	Method
	Empirical analysis
	TR scheduler
	Quantization scheme

	Experiments
	Experimental settings
	Results
	Analysis

	Conclusion

