
4D Gaussian Splatting SLAM

Yanyan Li1,2, Youxu Fang1, Zunjie Zhu1†, Kunyi Li2, Yong Ding3, Federico Tombari2,4
1Hangzhou Dianzi University, 2Technical University of Munich

3Zhejiang University, 4Google, †Corresponding author
Project Page: https://github.com/yanyan-li/4DGS-SLAM

Figure 1. Example results from the proposed 4D-GS SLAM system. The top row showcases novel view synthesis and Gaussian
visualizations in the BONN balloon (top left) and person tracking (top right) sequences. The appearance and geometry of static and
dynamic scenes are shown in the bottom row, respectively.

Abstract

Simultaneously localizing camera poses and constructing
Gaussian radiance fields in dynamic scenes establish a cru-
cial bridge between 2D images and the 4D real world. In-
stead of removing dynamic objects as distractors and re-
constructing only static environments, this paper proposes
an efficient architecture that incrementally tracks camera
poses and establishes the 4D Gaussian radiance fields in
unknown scenarios by using a sequence of RGB-D images.
First, by generating motion masks, we obtain static and dy-
namic priors for each pixel. To eliminate the influence of
static scenes and improve the efficiency of learning the mo-
tion of dynamic objects, we classify the Gaussian primitives
into static and dynamic Gaussian sets, while the sparse con-
trol points along with an MLP are utilized to model the
transformation fields of the dynamic Gaussians. To more
accurately learn the motion of dynamic Gaussians, a novel
2D optical flow map reconstruction algorithm is designed
to render optical flows of dynamic objects between neigh-
bor images, which are further used to supervise the 4D
Gaussian radiance fields along with traditional photomet-
ric and geometric constraints. In experiments, qualitative

and quantitative evaluation results show that the proposed
method achieves robust tracking and high-quality view syn-
thesis performance in real-world environments.

1. Introduction
Tracking [25, 32], mapping [10, 19], and rendering [22, 36]
in dynamic 3D scenes remain a fundamental challenge in
computer vision, with important applications in robotics,
augmented reality, and autonomous systems. While tra-
ditional methods [30, 50, 53] have demonstrated impres-
sive localization and view synthesis capabilities in static
environments, the presence of moving objects and diverse
lighting conditions in real-world scenarios still significantly
limit the performance of current solutions.

3D Gaussian primitives [22, 54] have recently emerged
as a powerful representation for novel view synthesis and
scene reconstruction, demonstrating efficient performance
in training and rendering compared to Neural Radiance
Field (NeRF) methods [2, 36]. However, pioneering Gaus-
sian Splatting SLAM algorithms [11, 30] mostly assumed a
static working space. Based on photometric and geomet-
ric constraints, these methods can incrementally localize
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camera poses and optimize Gaussian primitives in unknown
scenes. To extend pose estimation capabilities from static
scenes to dynamic ones, the most popular strategy [13, 49]
is to detect dynamic objects from 2D images and try to re-
move non-static pixels during the tracking process by lever-
aging semantic priors [16, 23].

Following a similar dynamic detection strategy, dynamic
Gaussian Splatting SLAM [24, 48] systems are proposed to
extend the working fields to non-static environments. Based
on the support of high-quality dynamic object detection
methods [23], the localization accuracy is further improved,
also for dynamic Gaussian Splatting SLAM methods. How-
ever, after removing the detected dynamic pixel areas, cur-
rent approaches fall back to reconstructing static Gaussian
radiance fields instead of building 4D reconstructions.

To bridge this gap, we introduce a method that simulta-
neously localizes camera poses and reconstructs 4D Gaus-
sian radiance fields from a sequence of RGB-D images in
dynamic scenes. Instead of treating dynamic objects as
noise [29] or distractors [38], the proposed approach ex-
plicitly models temporal variations of the Gaussian radi-
ance fields, enabling accurate scene representation while
maintaining geometric consistency. Our framework incre-
mentally estimates camera poses and updates Gaussian rep-
resentations in an online manner, ensuring robustness to
unknown and highly dynamic environments. By leverag-
ing depth information from RGB-D inputs, we improve
geometric accuracy while maintaining efficient computa-
tion. Unlike prior work that relies on post-processing or
explicit motion segmentation, our method naturally inte-
grates motion cues into the scene representation, allow-
ing for seamless reconstruction without discarding dynamic
content. The contributions of our method can be summa-
rized as follows:
• A novel 4D Gaussian Splatting pipeline is proposed to

localize camera poses and represent dynamic scenes in
Gaussian radiance fields.

• We divide the primitives into static and dynamic Gaus-
sians and introduce sparse control points together with an
MLP for modeling the motion of the dynamic Gaussians.

• A novel 2D optical flow rendering algorithm is proposed
to improve the performance of 4D Gaussian fields. We
estimate the 2D optical flow maps separately from dy-
namic GS and a pre-trained model, then leverage them as
constraints to learn the motion of the dynamic Gaussians.

2. Related Work
Camera Pose Estimation. Camera pose estimation is a
fundamental task in communities of computer vision and
robotics. Given monocular [7, 33], stereo [8, 32], RGB-
D [26, 39], or visual-inertial [3, 35], popular algorithms
in the domain of multiple view geometry are proposed
to estimate translation and orientation matrices via 2D-

2D [12, 28], 2D-3D [14, 52], and 3D-3D [37, 40] strate-
gies. Extended from these fundamental theories, robust and
versatile systems [5, 19, 25, 33] are implemented to ob-
tain track cameras and reconstruct unknown environments.
There are different focuses between these systems, where
the first group [33] of systems pursue accurate localization
results while another type [5] of pipelines achieve dense and
high-quality 3D reconstructions. With the development of
deep neural networks, deep point [6] and line [51] are used
in feature matching. RAFT [44] predicts optical flow maps
between relative images.

3D Gaussian Splatting and Non-static GS SLAM.
3D Gaussian Splatting (3DGS) [22, 27] is an explicit
parametrization for representing 3D unknown scenes,
which shows more efficient performance than implicit
methods, like NeRF [31] in novel view rendering tasks.
For traditional 3DGS methods[21, 30, 50], the application
fields mainly focus on static scenes. These approaches have
demonstrated strong performance in environments where
the scene remains largely unchanged over time, enabling ac-
curate tracking and reconstruction of 3D structures. How-
ever, in dynamic scenes, these methods tend to incur sig-
nificant errors during tracking or reconstruction. For non-
static scenes, methods [15, 24, 48] explore strategies to
deal with dynamic objects as distractors and establish Gaus-
sian fields for static components after removing dynamic
objects. Compared to these non-static Gaussian Splatting
methods that assume camera poses are given, non-static GS
SLAM methods [24, 48] are incrementally fed by Monocu-
lar or RGB-D images to estimate camera poses and recon-
struct Gaussian primitives. To achieve the goal, dynamic
object instances are masked from 2D images based on se-
mantic detection methods. Furthermore, these removed re-
gions are recovered by multiple views during the optimiza-
tion process.

Dynamic Gaussian Splatting. Dynamic 3D Gaussian
technology enhances the fast rendering capabilities of
3DGS [22], adapting it for dynamic scene reconstruction.
In this context, 4D Gaussian splatting [47] (4DGS) presents
an innovative approach by combining 3D Gaussians with
4D neural voxels. It introduces a decomposition neural
voxel encoding method, inspired by HexPlane [4], to ef-
ficiently generate Gaussian features from these 4D neural
voxels. To handle temporal variations, a lightweight MLP is
applied to predict Gaussian deformations over time. Build-
ing on this, the D3DGS framework [1] offers a deformable
3DGS model for dynamic scene representation, where time
is conditioned on the 3DGS. This framework transforms
the learning process into a canonical space, allowing for
the joint training of a purely implicit deformable field
with the learnable 3DGS. The result is a time-independent
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Figure 2. Architecture of the proposed Gaussian Splatting SLAM. The inputs to our system are temporally sequential RGB-D image
sequences and motion masks. In the initial frame, dynamic and static Gaussians are independently initialized using a motion mask,
and sparse control points are established according to the spatial distribution of dynamic Gaussians. The static structure is subsequently
employed for camera pose estimation through photometric and geometric constraints. Following keyframe insertion, we co-optimize
Gaussian attributes and camera poses while simultaneously estimating temporal motion patterns of dynamic Gaussians.

3DGS that separates motion from geometry. Addition-
ally, 3D Gaussians for Efficient Streaming [43] significantly
optimizes the streaming of photo-realistic Free-Viewpoint
Videos (FVVs) for dynamic scenes. It achieves this by us-
ing a compact Neural Transformation Cache (NTC) to sim-
ulate the translation and rotation (transformation fields [17])
of 3D Gaussians. This method reduces the training time
and storage space needed for each FVV frame while intro-
ducing an adaptive strategy to accommodate new objects in
dynamic scenes.

3. Methodology
3.1. Initialization
Similar to GS-based SLAM systems [21, 30, 50], the tra-
ditional components of 3D Gaussian ellipsoids, including
mean µ, covariance Σ, opacity α, and color c parame-
ters, are utilized in our representation. But the difference
is that we further define a new attribute dy to each Gaus-
sian, which is used to represent whether the Gaussian is a
dynamic Gaussian or not. Therefore, the final representa-
tion is G = [Σ µ α c dy].

Following 3D Gaussian Splatting [22], each 3D Gaus-
sian is rasterized into 2D splats, allowing for gradient flow
in scene reconstruction and pose estimation. As a result, the
rendered color of a pixel, denoted as C(p), can be described
by the following equation:

C(p) =

n∑
i=1

ciαi

i−1∏
j

(1− αj) (1)

here, c and α are the color and opacity properties of the

Gaussian, respectively.
Additionally, per-pixel depth D(p) and opacity O(p) are

rasterized by using alpha-blending:

D(p) =

n∑
i=1

diαi

i−1∏
j

(1− αj) (2)

O(p) =

n∑
i=1

αi

i−1∏
j

(1− αj) (3)

where di is the distance to the mean µ of the ith Gaussian
along the camera ray.

Instead of assuming that environments are static [21,
30, 50] or removing dynamic objects [24, 48] in Gaussian
Splatting optimization, we explore strategies to establish the
dynamic deformation network for dynamic Gaussians. To
be specific, we use a pre-trained model YoLov9 [46] to ob-
tain the motion mask. For sequences containing dynamic
objects that the pre-trained model cannot correctly segment,
we generate the motion mask by combining optical flow and
the pre-trained model. Based on the detected dynamics, the
Gaussians associated with pixels lying on the motion masks
are defined as dynamic Gaussians (Gdy), while others are
initialized as static Gaussians (Gst), during the initialization
stage.

Inspired by SC-GS [18], we also make use of sparse con-
trol points to learn the 6 DoF transformation. However, the
difference is that instead of obtaining sparse control points
through long-term pre-training, we initialize these points
using the motion regions from the input image of the ini-
tial frame.
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For each control point, we learn a time-varying 6-DoF
transformation via an MLP Ψ block. Therefore, the process
of querying the transformation fields of each control point
Pk at each time step t, which can be denoted as:

Ψ(Pk, t) → [Rt,Tt]. (4)

What is more, we derive the dense transformation field of
dynamic Gaussians using local interpolation of the transfor-
mations of their neighboring control points, employing Lin-
ear Blend Skinning (LBS) [42]. Specifically, for each dy-
namic Gaussian Gdy , we use K-Nearest Neighbors (KNN)
search to find its K nearest control points pk|k ∈ Nj in the
canonical space. Then, the interpolation weights for the
control points pk can be computed using a Gaussian Radial
Basis Function (RBF). By using the interpolation weights
of the neighboring control points and the 6-DoF transfor-
mations, we can compute the scale S, rotation R, and posi-
tional µ changes of each dynamic Gaussian Gdy .

3.2. Tracking
To avoid interference from the motion of dynamic objects
in the input and rendered images on camera tracking, we
exclude dynamic Gaussians from the Gaussian splatter ren-
dering during the tracking process. Instead, we optimize
the camera pose and exposure parameters using the ren-
dered color and depth maps, which are generated only by
static Gaussians. The optimization is performed using L1

loss between the rendered appearance and depth maps and
their observations, where the motion mask M is used here
to remove dynamic objects from the input images to achieve
robust camera pose localization performance:

Lt =
∑
p

M(λO(p)L1(C(p)) + (1− λ)L1(D(p))) (5)

here, an L1 loss is to supervise both the depth and color
renders, and λ is a fixed weight during the optimization
process. Note that, for L1(D(p)), we only apply the loss
over pixels that O(p) > 0.95 and the ground-truth depth
d(p) > 0. For L1(C(p)), we only apply the loss over pixels
where the gradient of the ground-truth color image exceeds
a certain threshold σ.

Keyframe Selection. Similar to MonoGS [30], we also
maintain a small number of keyframes in the sliding win-
dow W , using visibility checks and translation thresholds
to select keyframes, removing them if their overlap with the
latest keyframe drops below a threshold. However, a new
strategy, different from MonoGS [30], is proposed by con-
sidering dynamic situations. Specifically, even if the camera
movement is small, a new keyframe can also be selected and
inserted when we detect the motion mask has a big differ-
ence or at least every 5 frames. After adding a keyframe,

we initialize new static Gaussians with the static part of the
input image pixels from the current frame, followed by the
mapping step. However, new dynamic Gaussians will not
be added.

3.3. 4D Mapping
Once new static and dynamic scenarios are inserted into the
system after the tracking process, we propose a 4D mapping
module to optimize the dynamic Gaussian radiance fields.

Optical Flow Map Rendering. As introduced in Equa-
tion 5, appearance (RGB) and geometry (depth) rendering
constraints are utilized in the tracking process. However,
in the 4D mapping section, these traditional single-view su-
pervisions can provide reliable constraints for dynamic sce-
narios incrementally.

To solve the problem, we are the first 4D Gaussian Splat-
ting SLAM system that provides a novel strategy to ren-
der another type of map, the Optical Flow Map, in the 4D
mapping module. First of all, to create accurate optical
flows between two images, the traditional methods [9] use
pixel-based tracking methods. Instead of from the perspec-
tive of 2D views and correspondence matching, we migrate
the dynamic Gaussians Gdy between the currently selected
keyframe and its last keyframe to obtain two correspond-
ing sets of Gaussians, Gt and Gt−1. These two sets of
Gaussians are projected onto the camera plane of the cur-
rent keyframe, resulting in two sets of 2D point coordinates
pt and pt−1. Let the difference between pt and pt−1 be de-
noted as dx. Similar to rendering color and depth maps, we
can use dx to render the backward optical flow map F (p)
from time t to t− 1:

F (p) =

n∑
i=1

dxαi

i−1∏
j

(1− αj). (6)

Similarly, we can also render the forward optical flow
map from frames It−1 to It. The optical flow loss is
computed by comparing the forward and backward opti-
cal flow maps rendered from the dynamic Gaussians with
the forward and backward optical flow maps estimated by
RAFT [45] for the real input color images at times t − 1
and t in the motion mask area, using L1 loss, which can be
denoted as:

Lflow =
∑
p

M(L1(F (p)t→t−1, RAFT (p)t→t−1)

+ L1(F (p)t−1→t, RAFT (p)t−1→t))

(7)

here, F (p)t→t−1 and F (p)t−1→t are the optical flow maps
of dynamic Gaussian rendering from time t to t-1 and from
time t-1 to t, RAFT (p)t→t−1 and RAFT (p)t−1→t are the
optical flow map estimated by RAFT [45] from time t to
t− 1 and time t− 1 to t.
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Method ballon ballon2 ps track ps track2 sync sync2 p no box p no box2 p no box3 Avg.
RoDyn-SLAM[20] 7.9 11.5 14.5 13.8 1.3 1.4 4.9 6.2 10.2 7.9

MonoGS[30] 29.6 22.1 54.5 36.9 68.5 0.56 71.5 10.7 3.6 33.1
Gaussian-SLAM[50] 66.9 32.8 107.2 114.4 111.8 164.8 69.9 53.8 37.9 84.3

SplaTAM[21] 32.9 30.4 77.8 116.7 59.5 66.7 91.9 18.5 17.1 56.8
Ours 2.4 3.7 8.9 9.4 2.8 0.56 1.8 1.5 2.2 3.6

Table 1. Trajectory errors in ATE [cm]↓ in the BONN sequences. Results with the best accuracy are highlighted in bold font.

Method Metric fr3/sit st fr3/sit xyz fr3/sit rpy fr3/walk st fr3/walk xyz fr3/walk rpy Avg.

MonoGS[30]
PSNR[dB] ↑ 19.95 23.92 16.99 16.47 14.02 15.12 17.74

SSIM↑ 0.739 0.803 0.572 0.604 0.436 0.497 0.608
LPIPS↓ 0.213 0.182 0.405 0.355 0.581 0.56 0.382

Gaussian-SLAM[50]
PSNR[dB] ↑ 18.57 19.22 16.75 14.91 14.67 14.5 16.43

SSIM↑ 0.848 0.796 0.652 0.607 0.483 0.467 0.642
LPIPS↓ 0.291 0.326 0.521 0.489 0.626 0.630 0.480

SplaTAM[21]
PSNR[dB] ↑ 24.12 22.07 19.97 16.70 17.03 16.54 19.40

SSIM↑ 0.915 0.879 0.799 0.688 0.650 0.635 0.757
LPIPS↓ 0.101 0.163 0.205 0.287 0.339 0.353 0.241

SC-GS[18]
PSNR[dB] ↑ 27.01 21.45 18.93 20.99 19.89 16.44 20.78

SSIM↑ 0.900 0.686 0.529 0.762 0.590 0.475 0.657
LPIPS↓ 0.182 0.369 0.512 0.291 0.470 0.554 0.396

Ours
PSNR[dB] ↑ 27.68 24.37 20.71 22.99 19.83 19.22 22.46

SSIM↑ 0.892 0.822 0.746 0.820 0.730 0.708 0.786
LPIPS↓ 0.116 0.179 0.265 0.195 0.281 0.337 0.228

Table 2. Quantitative results in the TUM RGB-D sequences. Results with the best accuracy are highlighted in bold font.

Joint Optimization. In the mapping process, we use
the first three keyframes in W and randomly select five
keyframes that overlap with the current frame to recon-
struct the currently visible area. Additionally, to prevent
forgetting the global map, two keyframes are randomly se-
lected during each iteration. We optimize the Gaussian pa-
rameters and the camera poses of the three most recently
added keyframes using the photometric L1(C(p)), geomet-
ric L1(D(p)).

And we also introduce the regularization Liso loss func-
tions to penalize the stretch of the ellipsoid si by its differ-
ence to the mean s̃i:

Eiso = Σ
|G|
i=1||si − s̃i||1. (8)

Furthermore, we optimize the dynamic deformation net-
work, which includes the MLP layers Ψ and the parameters
of control points. To achieve this, we also need to compute
the ARAP loss [18] and the optical flow loss for each map
keyframe.

Finally, we optimize the relevant parameters by using a

weighted sum of these losses, denoted as Lmapping .

Lmapping = λL1(C(p)) + (1− λ)L1(D(p))

+ λflowLflow +W1arap loss

+W2Eiso

(9)

here, λ, λflow, W1 and W2 are fixed weights during opti-
mization.

Therefore, the two-stage mapping strategy is introduced
to optimize the camera poses, exposure parameters, and dy-
namic deformation network. This strategy can be described
in detail as follows:
• In the first stage, we use loss mapping Lmapping to opti-

mize only the camera poses and exposure parameters for
the first three keyframes in W , as well as the dynamic de-
formation network, without optimizing the Gaussian pa-
rameters. During this stage, the weight of the L1 loss for
the color and depth maps in the motion mask region will
be doubled.

• In the second stage, we use Lmapping to optimize the
camera poses and exposure parameters for the first three
keyframes in W , the dynamic deformation network, and
Gaussian parameters.
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Method Metric ballon ballon2 ps track ps track2 sync sync2 p no box p no box2 p no box3 Avg.

MonoGS[30]
PSNR[dB] ↑ 21.35 20.22 20.53 20.09 22.03 20.55 20.764 19.38 24.81 21.06

SSIM↑ 0.803 0.758 0.779 0.718 0.766 0.841 0.748 0.753 0.857 780
LPIPS↓ 0.316 0.354 0.408 0.426 0.328 0.5210 0.428 0.372 0.243 0.342

Gaussian-SLAM[50]
PSNR[dB] ↑ 20.45 18.55 19.60 19.09 21.04 21.35 19.99 20.35 21.22 20.18

SSIM↑ 0.792 0.718 0.744 0.719 0.784 0.837 0.750 0.768 0.814 0.769
LPIPS↓ 0.457 0.480 0.484 0.496 0.402 0.364 0.509 0.493 0.441 0.458

SplaTAM[21]
PSNR[dB] ↑ 19.65 17.67 18.30 15.57 19.33 19.67 20.81 21.69 21.41 19.34

SSIM↑ 0.781 0.702 0.670 0.606 0.776 0.730 0.824 0.852 0.873 0.757
LPIPS↓ 0.211 0.280 0.283 0.331 0.227 0.258 0.191 0.165 0.152 0.233

SC-GS[18]
PSNR[dB] ↑ 22.3 21.38 - - 23.62 22.74 20.60 21.55 19.24 21.63

SSIM↑ 0.737 0.708 - - 0.788 0.801 0.688 0.722 0.628 0.724
LPIPS↓ 0.448 0.450 - - 0.427 0.359 0.515 0.491 0.539 0.461

Ours
PSNR[dB] ↑ 25.90 22.71 21.78 20.65 23.25 25.42 23.14 24.28 25.88 23.66

SSIM↑ 0.874 0.838 0.832 0.820 0.812 0.892 0.845 0.873 0.886 0.852
LPIPS↓ 0.234 0.264 0.289 0.294 0.250 0.169 0.239 0.224 0.207 0.241

Table 3. Quantitative results in the BONN sequences. Results with the best accuracy are highlighted in bold font. And ”-” means that
reconstruction failure.

Method fr3/sit st fr3/sit xyz fr3/sit rpy fr3/walk st fr3/walk xyz fr3/walk rpy Avg.
RoDyn-SLAM[20] 1.5 5.6 5.7 1.7 8.3 8.1 5.1

MonoGS[30] 0.48 1.7 6.1 21.9 30.7 34.2 15.8
Gaussian-SLAM[50] 0.72 1.4 21.02 91.50 168.1 152.0 72.4

SplaTAM[21] 0.52 1.5 11.8 83.2 134.2 142.3 62.2
Ours 0.58 2.9 2.6 0.52 2.1 2.6 1.8

Table 4. Trajectory errors in ATE [cm]↓ in the TUM RGB-D sequences. Results with the best accuracy are highlighted in bold font.

Color Refinement. Finally, we perform 1500 iterations of
global optimization. In each iteration, we randomly select
10 frames from all keyframes to optimize the dynamic de-
formation network and Gaussian parameters. The loss used
is

Loss = 0.2D-SSIM + 0.8L1(C(p))

+ 0.1L1(D(p)) +W1arap loss +W2Eiso
(10)

here, W1 and W2 are fixed weights.

4. Experiments

4.1. Datasets

We evaluate our method on two real-world public datasets:
the TUM RGB-D dataset [41] and the BONN RGB-D Dy-
namic dataset [34]. Both datasets capture indoor scenes us-
ing a handheld camera and provide the ground-truth trajec-
tories.

4.2. Implementation

Our method is implemented in Python using the PyTorch
framework, incorporating CUDA code for time-critical ras-
terization and gradient computation of Gaussian splatting,
and we run our SLAM on a desktop with Intel(R) Xeon(R)
Silver 4210R and a single NVIDIA GeForce RTX 3090 Ti.
Furthermore, we set the weight W1 = 1e − 4, W2 = 10,
λ = 0.9, λflow = 3 , σ = 0.01, for all evaluations.

For sequences where dynamic objects appear in the mid-
dle, such as the sequence placing nonobstructing box of the
BONN dataset, we pre-specify the initial frame for initial-
izing dynamic Gaussians and control points.

4.3. Baselines and Metrics

We primarily compare our method to existing GS-SLAM
methods such as SplaTAM [21], Gaussian-SLAM [50],
and MonoGS [30], as well as Dynamic Gaussian Splatting
methods like SC-GS [18], and the NeRF-SLAM method for
dynamic scenes, RoDyn-SLAM [20]. Additionally, for SC-
GS, we select one image out of every five frames in the
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Figure 3. Visual comparison of the rendering images on the TUM RGB-D dataset. More results are added to the project page.
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(e)w/o two-stage mapping (f)fin

Figure 4. The comparison of rendering results with different
mapping strategies on the BONN RGB-D dynamic dataset.

dataset as the training dataset, and provide the ground truth
camera trajectory and the 3D model obtained by our method
for training.

We use standard photometric rendering quality metrics
to evaluate the performance of view synthesis, including
Peak Signal-to-Noise Ratio (PSNR), Structural Similar-
ity Index Measure (SSIM), and Learned Perceptual Image
Patch Similarity (LPIPS). Given that camera pose estima-
tion performance is crucial for SLAM methods, we also re-
port the Root Mean Square Error (RMSE) of the Absolute
Trajectory Error (ATE) across all sequences.

4.4. Pose Estimation
Besides rendering performance in appearance, we also

evaluate the pose estimation performance of these methods.
As shown in Table 4 and 1, the estimated trajectories are
compared to the ground truth ones. Thanks to the motion
masks and separation of dynamic Gaussians, the proposed
method shows robust and accurate camera pose estima-
tion results in high-dynamic scenes compared to these GS-
based SLAM methods. Furthermore, our method achieves
more accurate results in most of the scenes compared to the
NeRF-based dynamic SLAM, RoDyn-SLAM [20].

4.5. Quality of Reconstructed Map
Table 2 and 3 demonstrate the quality of the reconstructed
map on the TUM RGB-D [41] and BONN [34] datasets,
respectively. We evaluated rendering quality by averag-
ing the differences between the rendered images and the
ground truth images across all frames. As shown in Figure 2
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Figure 5. Visual comparison of the rendering image on the BONN RGB-D dataset. This is also supported by the quantitative results in
Table 3. More qualitative results have been added to the project page.

Optical Flow Separate Gaussians syn syn2

% % 18.37 22.11

% ! 22.87 24.84

! % 17.40 21.03

! ! 23.25 25.42

Table 5. Analysis of the impact of Optical Flow Loss and Sepa-
rate Gaussians on quantitative results (PSNR [dB] ↑) for the syn-
chronous and synchronous2 sequences in the BONN RGB-D dy-
namic dataset.

and 3, our proposed method achieves better reconstruction
than GS-based SLAM and dynamic Gaussian splatting SC-
GS [18] in most scenes. Due to the influence of expo-
sure parameters, our method may perform slightly worse on
some sequence metrics compared to other methods. How-
ever, as shown in Figure 5, our method achieves the best
reconstruction of static scenes and dynamic objects. More
rendering results are provided in the supplementary mate-
rial.

4.6. Ablation Study

Mapping Strategy. In Figure 4, we show the impact of
different mapping strategies on the final rendering result.
Figure 4b represents the results of optimizing the first eight
keyframes in the keyframe window and two randomly se-
lected keyframes from all keyframes during the mapping
process. Figure 4c represents the results of optimizing the
first five keyframes in the keyframe window and five ran-
domly selected keyframes from all keyframes during the
mapping process. Figure 4d presents the results of optimiz-
ing the first keyframes in the keyframe window, two ran-
domly selected keyframes from all keyframes, and seven

randomly chosen keyframes that overlap with the current
frame during the mapping process. Figure 4e shows the
result of applying the same operation in the first-stage map-
ping as in the second-stage mapping, the keyframe selec-
tion during mapping is the same as in Figure 4f, where Fig-
ure 4f is the method we use for mapping, which presents
the results of optimizing the first three keyframes in the
keyframe window, two randomly selected keyframes from
all keyframes, and five randomly chosen keyframes that
overlap with the current frame during the mapping process,
achieving the best result in both dynamic and static scene
reconstruction.

Optical-flow Loss and Separate Gaussians. In Table 5,
we ablate two aspects of our system: (1) whether optical
flow loss is used during the mapping stage, and (2) whether
only the dynamic Gaussian deformation is learned. We do
this using synchronous and synchronous2 sequences of the
BONN dataset. The results listed in Table 5 demonstrate
that the combined use of optical flow loss and dynamic
Gaussian separation is effective in scene reconstruction.

5. Conclusion

In this paper, we propose a novel approach for reconstruct-
ing dynamic scenes using 4D Gaussian Splatting SLAM.
Our method incrementally tracks camera poses and recon-
structs dynamic scenes from a sequence of RGB-D images
in unknown environments. By leveraging the power of dy-
namic and static Gaussian segmentation and optical flow,
our approach not only localizes the camera and reconstructs
the static environment but also effectively maps dynamic
objects. We demonstrate its effectiveness in achieving state-
of-the-art results in camera pose estimation and dynamic
scene reconstruction.
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