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Abstract

Dataset distillation, which compresses large-scale datasets
into compact synthetic representations (i.e., distilled
datasets), has become crucial for the efficient training of
modern deep learning architectures. While existing large-
scale dataset distillation methods leverage a pre-trained
model through batch normalization statistics alignment,
they neglect the essential role of covariance matrices in pre-
serving inter-feature correlations, resulting in reduced di-
versity in the distilled datasets. In this paper, we propose
a simple yet effective approach, Diversity-Enhanced Distri-
bution Alignment (DEDA), which enhances the diversity of
distilled data by leveraging inter-feature relationships. Our
method first establishes Gaussian distribution alignment by
matching the means and covariances of each class in the
original dataset with those of the distilled dataset in the
feature space of a pre-trained model. Since features within
the last layer of a pre-trained model are often highly similar
within each class, aligning distributions in this layer cannot
obtain diversified distilled data, resulting in gradient star-
vation during downstream training tasks. To overcome this
limitation, we introduce a regularizer that constrains the co-
variance matrix of the distilled data in the last layer to max-
imize diagonal elements while minimizing non-diagonal el-
ements. Extensive evaluations across CIFAR-10/100, Tiny-
ImageNet, and ImageNet-1K demonstrate state-of-the-art
performance without additional computational overhead.

1. Introduction

The exponential growth of large-scale datasets has driven
significant advancements in deep learning, enabling deep
neural networks to achieve dramatic success across various
tasks [7, 13, 18, 23, 38]. However, the increasing storage
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Figure 1. Visualization of the last layer feature distribution dur-
ing CIFAR-100 model training. As training progresses, features
become increasingly compact. In a well-trained model, samples
within each class exhibit high cosine similarity (cosine distance <
0.1). This compact feature space can limit the diversity of distilled
data when aligning with the original data features.

requirements and extended training time due to the expand-
ing dataset size present a fundamental challenge. Dataset
distillation (or condensation) has emerged as a crucial solu-
tion, which compresses the large-scale datasets into signifi-
cantly smaller and more representative ones (i.e., distilled
datasets) [40, 44]. Such distilled datasets can accelerate
model training in downstream tasks, while maintaining the
training performance of the original dataset across a wide
range of model architectures.

Although many dataset distillation methods have shown
strong performance on moderate-scale benchmarks, such as
CIFAR-10/100 [11, 21, 25, 42], their scalability to large-
scale datasets like ImageNet-1K remains inherently con-
strained. One primary bottleneck is the need to load the
original data during each optimization step of the distilled
data, resulting in significant memory and computational



overhead. To address these challenges, SRe2L. [43] intro-
duces a novel decoupled framework for efficient large-scale
dataset distillation. Instead of loading the original data re-
peatedly, this approach first trains a well-converged model
on the original dataset. Then, the distilled samples are op-
timized by aligning their embeddings in the Batch Normal-
ization (BN) layer with the statistics of the BN layer in the
pre-trained well-converged model. While aligning global
BN statistics effectively preserves the overall information
of the original dataset, it will make all distilled samples cap-
ture highly similar information, leading to high inter-class
similarity. To mitigate this issue, LPLD [41] proposes align-
ing intra-class BN statistics to enhance the class discrim-
inability of the distilled data. However, we argue that sim-
ply aligning the mean and variance of the BN layer’s multi-
dimensional feature distributions is insufficient to capture
the distribution of the original data.

Notably, the covariance matrix is another critical statistic
that captures intra-class feature variations, which contains
more information than the variance with each non-diagonal
element represents the relationship between two feature di-
mensions. An intuitive way is to align the distilled data with
both the mean and covariance of the feature representations
from the pre-trained model. However, samples in the last
layer of a pre-trained well-converged model tend to be re-
markably similar. As illustrated in Figure 1, the distribution
of the original samples from the same category in the last-
layer is gradually shrunk during the training process. It is
evident that as the model converges, samples of a category
in the last-layer become increasingly concentrated, with the
cosine distance between individual samples and their class
centers typically falling below 0.1. As a result, even if the
distilled data is aligned with the distribution of the original
sample in the last-layer of the pre-trained model, their di-
versity is still limited, leading to gradient starvation for the
model training in downstream tasks.

To enhance the diversity of distilled data, we propose a
simple yet effective Diversity-Enhanced Distribution Align-
ment (DEDA) framework, which preserves the semantic
richness of the original dataset through feature distribu-
tion alignment. Unlike the batch normalization-based align-
ment methods, our approach employs Gaussian distribution
matching between the original and distilled data in the fea-
ture space. To obtain the Gaussian distribution of the origi-
nal dataset, we design an Offline Gaussian Distribution Esti-
mation, which extracts feature statistics with the pre-trained
model by loading the original data once and stores the mean
and covariance matrices in a memory bank. We then op-
timize the distilled data by aligning their feature distribu-
tions with the class-specific statistics of the original data in
the memory bank to achieve efficient class-wise distillation.
Furthermore, to address distribution compactness observed
in the last-layer of the pre-trained model, we introduce a
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covariance regularization. This regularization simultane-
ously maximizes the diagonal elements to increase feature
variance and minimizes the off-diagonal elements to elim-
inate redundant correlations. It effectively mitigates gra-
dient starvation in downstream tasks caused by the limited
samples’ diversity in the abstract feature space. Experimen-
tal results on various datasets (e.g., CIFAR-10/100, Tiny-
ImageNet, and ImageNet-1K) demonstrate that our DEDA
can effectively enhance semantic diversity and significantly
improve the performance in downstream tasks. The main
contributions of this work are as follows:

We propose a Diversity-Enhanced Distribution Align-
ment (DEDA) for dataset distillation. To the best of our
knowledge, this is the first work to maintain the inter-
feature relationships in large-scale dataset distillation to
enhance the diversity of the distilled data.

Due to the high similarity of samples from the same cate-
gory in the last layer of a well-converged model, we pro-
pose a covariance regularization for distilled data to avoid
gradient starvation in downstream tasks.

Our experiments demonstrate that the proposed DEDA
achieves state-of-the-art results on multiple benchmarks
while maintaining computational efficiency. Moreover,
because of the high semantic diversity, our distilled data
exhibits superior cross-architecture performance.

2. Related Work

Existing dataset distillation methods can be categorized into
two principal paradigms: optimization process alignment
and feature space alignment.

Optimization Process Alignment. The optimization
process alignment methods aim to incorporate the inter-
mediate training dynamics of the original dataset into the
distilled data synthesis process. The foundational frame-
work involves gradient matching [16, 20, 47, 48], which
minimizes the distance between the gradients generated by
the original and distilled datasets during model parame-
ter updates. Subsequently, trajectory alignment methods
[3, 4, 8, 24] ensure consistency across entire optimization
paths rather than at each individual optimization step. How-
ever, the information learned by the model from the original
data at different training stages is inconsistent, and there-
fore, indiscriminate matching can lead to a loss of infor-
mation in the distilled data. To address this, SeqMatch [9]
and DATM [14] enhance the process by explicitly divid-
ing the model into different training stages for alignment,
thereby improving the diversity of the information captured
in the distilled data. Moreover, DREAM [26] further im-
proves the quality of the distilled data by dynamically se-
lecting samples through clustering original data representa-
tives. While these approaches achieve notable performance
improvements, they are computationally expensive due to
the iterative model updating and data synthesis processes.



Feature Space Alignment. To reduce computational
costs, this paradigm directly aligns the feature distributions
between the original and distilled data, without requiring
model updates [49]. CAFE [39] aligns the prototypes of in-
termediate features from deep networks. To reduce feature
redundancy, DataDAM [31] utilizes spatial attention mech-
anisms to align key features. Additionally, M3D [46] re-
formulates prototype matching within Reproducing Kernel
Hilbert Spaces (RKHS). However, these methods typically
use randomly initialized models to extract features, which
can lead to inaccurate embeddings. To enhance embedding
accuracy, IDM [50] and DANCE [45] propose to use mul-
tiple pre-trained feature extractors for more robust feature
extraction. While pre-trained models improve embedding
accuracy, only matching class prototypes will limit the di-
versity of the distilled data. IID [6] and DSDM [22] address
this limitation by aligning both the prototypes and covari-
ance matrices of class features, thereby preserving seman-
tic richness. However, the joint processing of original and
distilled data introduces significant memory demands.

Large-Scale Dataset Distillation. To achieve data dis-
tillation on large-scale datasets, some methods have in-
troduced pre-trained generative models for data synthe-
sis, where their performance relies heavily on the pre-
trained models [12, 35]. Orthogonal to the generation-base
methods, recent advances address scalability bottlenecks
through decoupled strategies [36, 42, 43]. The pioneer-
ing SRe2L framework [43] introduces a decoupled distil-
lation paradigm that first trains a well-converged model on
the original data and then optimizes the distilled data by
aligning local batch statistics with the global Batch Nor-
malization (BN) parameters of the pre-trained model. How-
ever, this global BN alignment mechanism enforces a uni-
form optimization objective across all synthetic samples, in-
herently limiting inter-class discrimination of the distilled
data. LPLD [41] attempts to enhance class discriminabil-
ity by aligning intra-class BN statistics. However, cap-
turing a pre-trained model’s BN statistics (mean and vari-
ance) is insufficient to guarantee the diversity of the distilled
data. To address this limitation, alternative strategies have
emerged with different alignment mechanisms. G-VBSM
[33] matches multiple statistical characteristics of different
network architectures. Meanwhile, DWA [10] introduces
training perturbations and variance-weighted adjustments
to enhance sample diversity. However, these methods in-
cur extra computational overhead due to additional model
training. Instead, we directly leverage the covariance matrix
to capture inter-feature relationships, effectively enhancing
the diversity without additional computational costs.

3. Preliminary

Background. In this paper, we denote the original large-
scale dataset as 7 = {(wl,yz)}ﬂ, where y;, € YV =
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{0,1,...,C — 1} represents the corresponding label. The
distilled dataset is represented as S = {(s;,y;)} Lill, with
each class containing IPC (Images Per Class) samples. The
total size of the distilled dataset is |S| = IPC x C' < |T]|,
ensuring that the distilled dataset is significantly smaller
than the original dataset. The objective of dataset distil-
lation is to compress a large-scale training dataset 7 into a
much smaller distilled dataset S while maintaining model
performance. Specifically, a model Mg, trained on the dis-
tilled dataset S should achieve comparable performance to
a model Mg, trained on the full dataset 7 when evaluated
on a test set. This objective can be formally expressed as:

]EmNDtest [E (M97‘7 .’B)] ~ EmNDtest [f (Mesa m)] , (D

where (-, x) denotes the loss function that measures the
model’s performance on a test sample x, and D;.; repre-
sents the test set.

Large-Scale Dataset Distillation. Classical dataset dis-
tillation methods have demonstrated success in compress-
ing information for medium-sized datasets [3, 31, 47], but
they struggle to scale effectively to large-scale datasets.
To overcome this limitation, SRe2LL [43] introduces a de-
coupled learning paradigm, consisting of three key stages:
Squeeze, Recover, and Relabel. In the Squeeze stage, a pre-
trained model @ is first trained on the original dataset 7,
thereby compressing the feature of 7 into 8+. In the re-
cover stage, the pre-trained model @ is then used to opti-
mize distilled data S. The optimization objective is to align
S with the information encoded in 8. Specifically, the goal
is to minimize the following loss function:

arg méin [ECE(0T7 S) + ACBN(OT7 8)] s 2)
where Lcg is the standard cross-entropy loss function, and
Lpn is the batch normalization (BN) alignment loss. The
BN loss Lgn ensures that the mean and variance of the
normalized feature distribution of S are aligned with those
stored in the batch normalization layer of @+. Finally, in
the Relabel stage, the downstream training task on S is per-
formed through soft label alignment, where soft labels are
generated from the logits of 0.

4. Method

We illustrate the framework of our proposed Diversity-
Enhanced Distribution Alignment for Dataset Distillation
in Figure 2. In the first stage, we estimate the Gaussian
distribution for each class c in the original dataset 7 using
features extracted for the intermediate layer [ of the pre-
trained model 6+, i.e., N (u%—’c, Cov%—,c). These statistics
of the Gaussian distribution in each layer are then stored in
a memory bank. In the second stage, during the optimiza-
tion process of the distilled data S., we retrieve the corre-
sponding statistics from the memory bank and feed them
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Figure 2. Illustration of our proposed DEDA. Stage I: Offline Gaussian Distribution Estimate. Pre-trained model statistics (mean ulT’C and
covariance CovlT,C) across network layers and stored in a memory bank M. Stage II: Distilled Data Optimization. DEDA (1) retrieves
target statistics from M., (2) computes three objective components: Gaussian distribution alignment (Lgpa ), diversity-enriched regularizer
(Lvar, Lcov), and standard cross-entropy loss (Lck), and (3) updates distilled data through optimization iterations.

to O7. To ensure consistency across layers, we align the
feature distribution N’ (ufg o Covfs, .) of Sc with the corre-
sponding statistics from 6. To address the issue of feature
space compactness in the last layer of 87, we introduce an
explicit regularization term to constrain the covariance ma-
trix of the distilled data Covgc. Specifically, we maximize
the diagonal elements (variance loss Ly,;) and minimize the
non-diagonal elements of the covariance matrix (covariance
loss L¢oy), which encourages a maximally separable feature
distribution for the distilled samples. The overall loss func-
tion is summarized in Section 4.3.

4.1. Gaussian Distribution Alignment

Although previous work [42, 43] that aligns the mean and
variance of batch normalization (BN) layers in a pre-trained
model using Eq. (2) has achieved promising results, we be-
lieve that these statistical measures are insufficient to fully
capture the distribution of the original data. We argue that
covariance is also a crucial statistical component, as it en-
capsulates the relationships between feature dimensions.
Therefore, we propose an offline Gaussian distribution esti-
mation to better describe the diversity of the original data.
Specifically, for each class ¢ € {1,...,C}, we model
its sample distribution at layer [ as a Gaussian distribution.
For the samples in class class ¢, we extract their features
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by feeding them into the pre-trained model 8+, producing
feature tensors f'(x) at each intermediate layer. Given the
high dimensionality of the feature tensor (e.g., the first layer
of ResNet-18 has a dimensionality of 64 x 56 x 56), directly
computing the covariance matrix is computationally expen-
sive. To reduce this cost while preserving critical informa-
tion, we apply an average pooling operation:

fl(x) = AvgPool2d (fl(a:)) , 3)

where f!(z) € RP>HXWi with D, indicating the num-
ber of channels in layer [, and H; and W, denoting the
height and width of the feature maps in layer [, respectively.
After average pooling, the feature dimension is reduced to
fl(x) € RP:. Using the pooled features, we compute the
feature statistics for each class ¢, specifically the mean vec-
tor p!- , and the covariance matrix Cov?- , are:

. 1

ll’T,c - (4)

1
[7el

SV (Fl @) — bl ) (F ) — )T (5)

where p! . € RP" and Covly . € RP* Pt To efficiently
manage the the Gaussian distribution of each class, we con-
struct a memory bank to the mean and covariance of each

C’ov%—ﬁc =



Gaussian distribution. This memory bank allows for fast
access during the optimization process, improving compu-
tational efficiency.

During the optimization process of the distilled data, we
sequentially optimize the distilled data for each class ¢, de-
noted as S.. Before optimizing S., we retrieve the mean and
covariance of the Gaussian distribution statistics for class
¢ from the memory bank and assign them to 6. Subse-
quently, following the same approach as in the original data
modeling, we model the Gaussian distribution for S, to ob-
tain \/ (ufg’c, Cov ) and align these statistics with those
of the original data in 0. Based on this, we define the
Gaussian Distribution Alignment (GDA) loss for L — 1 lay-
ers (excluding the last layer) as follows:

L-1
Lcpa = Z (“l’l’fs,c - iu’lT,cng + FYHCO’U‘ZS‘,C - Cov'lr,c”g)

=1

(6)
where 7y is a hyperparameter that balances the contributions
of the mean and covariance alignment terms.

4.2. Diversity-Enriched Regularizer

While layer-wise Gaussian distribution alignment in a pre-
trained model effectively preserves the diversity of the orig-
inal data, the excessively compact and homogeneous fea-
tures in the last layer L lead to a constrained matching
space. Consequently, aligning with the last-layer features of
the pre-trained model may result in insufficient diversity of
the distilled data, leading to gradient starvation [1, 2, 29, 30]
for model training in downstream tasks.

To address this challenge, we propose an explicit co-
variance regularization for the last-layer features of the dis-
tilled data. For the covariance matrix of the distilled data’s
last layer, denoted as Cov‘lg’c € RPLxDPr  we introduce
two complementary properties to enhance feature repre-
sentation: (1) Maximization of diagonal variances o
Diag(Cov§,) € RP” to ensure comprehensive utiliza-
tion of each feature dimension, and (2) Minimization of
non-diagonal covariances to promote feature independence
and reduce redundancy. Therefore, our proposed regular-
izer consists of two components:

Dp
1
Lvw = 55~ ;max (0,1 - /a7), 7
Low= =S |Covk, | @®)
Cov DL(DL _ 1) 275] S,C 1,7 .

The variance regularization term Ly, employs a hinge-
based formulation to enhance feature diversity, while the
covariance term Loy acts as a cross-correlation suppression
regularizer aiming to improve representational efficiency.
Further theoretical analysis is provided in Appendix 9.
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Algorithm 1: DEDA
Input: 7 Original training dataset; S: Distilled
synthetic dataset; 7": Number of training
iterations; @1: Pre-trained model; C":
Number of classes; 77: Learning rate.

1 Initialize distilled dataset S <+ ()

2 Stage I: Offline Gaussian Distribution Estimate

3 Group samples by class ¢ to form subset 7. C 7.

4 Compute feature mean {ulT’C ﬁzf_l via Eq. (4).

5 Compute covariance {C’o'ulT,c Ef ~! via Eq. (5).

6 Store {p! };=1 " and {Cov} }i=1 " in
memory bank M_..

~

Stage II: Distilled Data Optimization
for each class c = 1 to C do
Initialize the model parameters using the stored
statistics from the memory bank Mc:
6r  {uy )=b 1 {Covly J =
for iteration i = 1to T do
Compute Lgpa via Eq.(6).
Compute Ly, via Eq.(7).
Compute L¢,y, via Eq.(8).
Compute the total loss £ via Eq.(9).
Update S, < S — Vs L.

10
11
12
13
14
15

O]ltput: Distilled synthetic dataset S

4.3. Overall Loss and Training Algorithm

Following previous work [10, 41, 43], we preserve the
cross-entropy loss Lcg from Eq.(2) to maintain intra-class
discriminability. In addition, our composite loss function
comprises three key components: the Gaussian distribution
alignment loss Lgpa, variance regularization loss Ly,,, and
covariance regularization loss Lcoy. The overall loss func-
tion is formulated as follows:

L = Lcg + Laopa + A1 Lvar + A2Lcov, 9

where \; and A, are weighting coefficients. The training
procedure is detailed in Algorithm 1.

Computational Complexity. Traditional methods align
feature maps across all BN layers by matching their means
and variances, leading to a computational complexity of
O(2 x D; x H; x W;). In contrast, our DEDA uses spa-
tial average pooling to reduce spatial dimensions and aligns
both the means and covariance matrices, lowering the com-
putational complexity to O(D? + D).

5. Experiment

5.1. Experimental Setup

Datasets. We evaluate our dataset distillation method on
four widely-used image benchmarks: (1) Low-resolution



Table 1. Comparison of different methods on CIFAR-10, CIFAR-100, and Tiny-ImageNet. For classical dataset distillation methods,
ConvNet represents methods using ConvNet-128, with underlined results indicating their best performance. For modern large-scale dataset
distillation methods, RN-18 represents methods using ResNet-18, where bold results highlight the overall best performance.

\ CIFAR-10 \ CIFAR-100 \ Tiny-ImageNet
Method Venue

| IPC=10 IPC=50 | IPC=10 IPC=50 | IPC=10 IPC=50 IPC=100
Random - 260+12 434410 | 146+£0.5 300+04 | 50+02 150+04 -
KIP [28] ICLR21 627+03 68.6+02 | 28340.1 - - - -

2 DC[47] ICLR21 449+0.5 539405 | 323+03 428+04 - - -

z CAFE[39] CVPR22 | 509405 623+04 | 315402 429+02 - - -

S DM [49] WACV23 | 489406 63.0+04 | 297403 43.6+04 | 129+04 241+03 -
MTT [3] CVPR23 | 653+£07 71.6+02 | 40.1+04 477402 | 232402 28.0+0.3 -
DataDAM [31] ICCV23 | 542+08 67.0+£04 |348+05 494403 | 187+£03 287403 -

% SRe2L [43] NeurIPS23 | 272404 475+05 | 31.64+05 522403 | 161+02 41.1+£04 497403

7 LPLD [41] NeurIPS24 - - - - - 48.8+04 536403

% DEDA - 382+£04 602+05 | 43.6+04 651+04 | 445406 552+03 593403

Table 2. Comparison on ImageNet-1K using ResNet-{18, 50, 101} . Bold results indicate the best results. T denotes the reported results.

\ ResNet-18 \ ResNet-50 \ ResNet-101
Method

| IPC=10 IPC=50 IPC=100| IPC=10 IPC=50 IPC=100| IPC=10 IPC=50 IPC=100
SRe2L [43] | 2134+ 0.6 46.8+0.2 52.8-+03[284+0.1 55.6+03 61.0+04]309+01 608+05 628+02
LPLD [41] | 346+09 554+03 5944+02| 41.7F 62.21 65.7 - - -
DEDA 36.4+0.7 563+04 584+03|425+05 62.7+04 654+03|463+0.5 624+0.6 649+03

datasets: CIFAR-10/100 [17] (32x32 resolution, 60,000
images, 10/100 classes) and Tiny-ImageNet [19] (64 x64
resolution, 100,000 images, 200 classes); (2) High-
resolution dataset: ImageNet-1K [5] (224 x224 resolution,
1.28 million images, 1,000 classes). These datasets vary in
complexity, where ImageNet-1K is the most complex due
to its high resolution and large image volume.
Implementation Details. We implement our method
following the experimental settings established in prior
works [41, 43]. Specifically, we use ResNet-18 [15] as the
default distillation architecture. We set the covariance ma-
trix hyperparameter to v = 50 by default to promote feature
diversity while aligning Gaussian distributions. Our reg-
ularization strategy uses weighted coefficients of \; = 0.2
for variance regularization and Ao = 4.0 for covariance reg-
ularization. More implementation details are in Section 8.
Evaluation Metric. We evaluate the quality of the dis-
tilled data using the Top-1 test accuracy on the original
dataset’s test set. Following the evaluation strategy [4 1, 43],
we use the soft labels generated by the pre-trained teacher
model on the distilled data as the ground truth for training
a model from scratch. These soft labels are dynamically
updated by the teacher model at each validation epoch.
Compared Methods. We evaluate our DEDA method
against several state-of-the-art baselines. In addition to ran-
dom sample selection, we compare with classical dataset
distillation methods, including DC [47], KIP [28], DM [49],

3752

CAFE [39], MTT [3], and DataDAM [31]. For large-scale
dataset distillation, we choose SRe2L. [43] and LPLD [41]
for comparison. Notably, G-VBSM [33] and DWA [10] are
not compared, as they incorporate multiple model training.

5.2. Main Results

CIFAR-10/100 and Tiny-ImageNet. Table |1 presents a
comparative analysis of our DEDA framework against state-
of-the-art methods on CIFAR-10, CIFAR-100, and Tiny-
ImageNet. Our findings highlight two key insights: (1)
When utilizing larger pre-trained models (e.g., ResNet-18),
DEDA achieves substantial performance gains, outperform-
ing SRe2L by 12.7% on CIFAR-10, 12.9% on CIFAR-100,
and 14.1% on Tiny-ImageNet with IPC = 50. These signif-
icant improvements validate the effectiveness of our Gaus-
sian distribution matching mechanism in capturing essential
features. (2) While conventional ConvNet-128-based meth-
ods, such as MTT [3], leverage bilevel optimization and are
considered state-of-the-art for small-scale dataset distilla-
tion, they struggle to scale effectively to larger datasets. In
contrast, DEDA consistently outperforms these approaches
on more challenging benchmarks, demonstrating its su-
perior ability to handle dataset expansion, particularly on
CIFAR-100 and Tiny-ImageNet.

ImageNet-1K. Table 2 presents a comprehensive eval-
uation of our DEDA on ImageNet-1K using ResNet-18,
ResNet-50, and ResNet-101 architectures. The results re-
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Figure 3. Hyperparameter ablation (-, A1, A2) on CIFAR-100 with IPC=50. y controls the covariance-to-mean ratio in Lgpa, while Ay
and A2 are the weights that are the variance maximization and off-diagonal covariance terms, respectively.

Table 3. Cross-architecture performance of distilled dataset of
CIFAR-100 using ResNet-18.

IPC NetWorks SRe2LL Ours
ResNet-50 224+13 394+0.9
MobileNetV?2 16.1+05 30.1+1.1
10 EfficientNetBO 11.1 +£03 24.6 +0.5
ShuffleNetV?2 11.8+0.7 23.1+0.8
VGG-16 192+02 29.7+04
ResNet-50 52.8+0.7 63.7+0.6
MobileNetV2 432+02 55.6 0.6
50 EfficientNetBO | 2494+ 17 43.7+1.2
ShuffleNetV?2 275+1.1 451 +£0.9
VGG-16 404 +12 523+0.8

veal the following insights: (1) Both LPLD and our DEDA
outperform SRe2L, highlighting the effectiveness of class-
specific alignment in reducing inter-class similarity and en-
hancing class discriminability. (2) Our DEDA further sur-
passes LPLD, demonstrating that the introduction of covari-
ance alignment and regularization significantly enhances
the diversity of distilled data, ultimately leading to superior
performance on downstream tasks.

5.3. Cross-Architecture Evaluation

A more critical evaluation metric for distilled data is its abil-
ity to generalize across different network architectures. As
shown in Table 3, we comprehensively assess the cross-
architecture generalization capability of our CIFAR-100
distilled dataset (trained on ResNet-18) by testing its per-
formance on several unseen network architectures trained
from scratch. The evaluation includes seven distinct ar-
chitectures: ResNet-50 [15], MobileNetV2 [32], Efficient-
NetBO0 [37], ShuffleNetV2 [27], and VGG-16 [34], showing
that our method can achieve generalization without the need
to optimize distilled data across multiple architectures.
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Table 4. Ablation study on CIFAR-100 with IPC=10/50.

| Lapa DER | IPC
Method
| MA' CA  Lya Lcow | 10 50
SRe2L. | - - - - 1320 475
v . - 39.8  63.1
o v /7 - 416 63.8
urs v v/ - | 422 647
v - vV | 421 642
v v/ v | 436 65.1
5.4. Analysis

Ablation Study. To evaluate the effectiveness of each
component in our DEDA, we conduct ablation experiments
on CIFAR-100, considering two primary elements: Gaus-
sian Distribution Alignment Loss (Lgpa) and Diversity-
Enriched Regularizer (DER). As detailed in Table 4, our
analysis reveals four key findings: (1) Our novel approach
of storing complete Gaussian statistics (mean and covari-
ance) from the pre-trained model demonstrates superior
effectiveness compared to existing methods. The Mean
Alignment (MA) component alone outperforms SRe2L’s
BN-layer alignment by 15.6%, demonstrating the impor-
tance of class-specific alignment. (2) The Covariance
Alignment (CA) component in Lgpa provides an addi-
tional performance improvement when combined with MA.
This demonstrates that preserving inter-feature relation-
ships through covariance matching is crucial for main-
taining the diversity of feature dimensions. (3) Our pro-
posed Variance Maximization Regularization (Lv,) applied
to last-layer features ensures sufficient diversity in seman-
tic dimensions, yielding further accuracy gains of 0.6%
and 0.9%. This validates our hypothesis that feature space
expansion promotes better knowledge representation. (4)
The Off-diagonal Covariance Minimization Regularization
(Lcoy) effectively reduces inter-dimensional redundancy,
achieving additional performance improvements of 1.4%
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Figure 4. Visualization of distilled data. (a) and (b) show distilled images from SRe2L and our DEDA, respectively. The first two rows
display apples and aquarium fish from CIFAR-100, while the last two rows show ptarmigan birds and sorrel horses from ImageNet-1K.
Compared to distilled images generated by SRe2L, those produced by our method exhibit significantly greater diversity.

and 0.4%. This confirms that promoting orthogonality in
the last-layer feature dimensions effectively reduces the im-
pact of feature redundancy.

Effect of . The hyperparameter - represents the ra-
tio between covariance and mean alignment in our frame-
work. Covariance matrices play a pivotal role as statisti-
cal descriptors that encode both intra-class variations and
inter-dimensional correlations among feature dimensions.
As demonstrated in Figure 3a for CIFAR-100 with IPC=50,
we observe substantial performance gains when increasing
~ from 0 to 50. However, extending v beyond this optimal
range (50 to 200) leads to performance degradation. This
phenomenon stems from an inherent trade-off between co-
variance alignment and mean matching: excessive empha-
sis on preserving covariance structures may inadvertently
weaken information on the inherent properties of each class.

Effect of \; and \s. The regularization weights Ay (for
variance minimization) and Ay (for off-diagonal covariance
maximization) address distinct aspects of feature distribu-
tion. In the pre-trained model, last-layer features exhibit
high concentration within classes while carrying high-level
semantic information. A; explicitly constrains feature di-
versity across distilled samples, whereas A2 encourages di-
mension decorrelation to enhance feature representational
capacity. As shown in Figure 3b and 3¢ for CIFAR-100 with
IPC=50, optimal performance is achieved with \; = 0.2
and A\, = 4. Notably, large \; values may degrade per-
formance due to excessive expansion of the feature space,
which may compromise class discriminability. In contrast,
performance remains relatively stable across variations in
A2, indicating lower sensitivity to this parameter.

5.5. Visualization

To assess whether our method preserves the feature diver-
sity of the original dataset, we present visual comparisons
between the distilled data from SRe2L and our DEDA on
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CIFAR-100 and ImageNet-1K in Figure 4. Our empiri-
cal observations yield two critical insights: (1) On low-
resolution data like CIFAR-100, our DEDA demonstrates
superior class discriminability compared to SRe2L, with
distilled samples effectively preserving class-specific se-
mantic information. This enhanced performance validates
the effectiveness of our class-specific Gaussian distribution
matching strategy in maintaining inter-class distinctions.
(2) On high-resolution data like ImageNet-1K, our DEDA
not only maintains class discriminability but also captures
richer semantic diversity. For instance, the distilled im-
ages of the "sorrel’ class (red-brown horse) preserve various
fine-grained attributes, including equine postures, anatomi-
cal features, and color variations. This underscores the ro-
bustness of our method across different data scales.

6. Conclusion

In this paper, we address two key limitations in modern
dataset distillation: (1) the feature alignment of distilled
data to original data overlooks crucial inter-feature corre-
lations, and (2) the compact feature space of the pre-trained
model’s last layer leads to a lack of diversity in the dis-
tilled data. To overcome these challenges, we propose a
novel Diversity-Enhanced Distribution Alignment (DEDA)
method for dataset distillation. DEDA enhances diversity
by aligning the distilled data with the Gaussian distribution
of the original data and implementing a diversity-enriched
regularizer at the last layer. Our experimental evaluation
across multiple benchmarks demonstrates that DEDA con-
sistently outperforms existing methods while maintaining
computational efficiency. Although DEDA shows promis-
ing results on large-scale datasets, its performance declines
as distilled samples increase (e.g., [PC=100), highlighting
the need for further exploration to balance class-specific in-
formation retention and diversity enhancement.
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