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Abstract

Understanding multimodal signals in egocentric vision,
such as RGB video, depth, camera poses, and gaze, is es-
sential for applications in augmented reality, robotics, and
human-computer interaction, enabling systems to better in-
terpret the camera wearer’s actions, intentions, and sur-
rounding environment. However, building large-scale ego-
centric multimodal and multitask models presents unique
challenges. Egocentric data are inherently heterogeneous,
with large variations in modality coverage across devices
and settings. Generating pseudo-labels for missing modal-
ities, such as gaze or head-mounted camera trajectories, is
often infeasible, making standard supervised learning ap-
proaches difficult to scale. Furthermore, dynamic camera
motion and the complex temporal and spatial structure of
first-person video pose additional challenges for the direct
application of existing multimodal foundation models.

To address these challenges, we introduce a set of effi-
cient temporal tokenizers and propose EgoM2P, a masked
modeling framework that learns from temporally-aware
multimodal tokens to train a large, general-purpose model
for egocentric 4D understanding. This unified design sup-
ports multitasking across diverse egocentric perception and
synthesis tasks, including gaze prediction, egocentric cam-
era tracking, and monocular depth estimation from ego-
centric video, and also serves as a generative model for
conditional egocentric video synthesis. Across these tasks,
EgoM2P matches or outperforms specialist models while
being an order of magnitude faster. We will fully open-
source EgoM2P to support the community and advance
egocentric vision research.

1. Introduction

Egocentric video capture has evolved significantly with the
integration of multimodal data, including RGB, depth, gaze,
and camera trajectories. These modalities interact dynami-
cally, offering the most crucial information for understand-
ing human head motion, intention, and scene geometry.
The growing availability of real-world multimodal egocen-
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Figure 1. EgoM2P: A large-scale egocentric multimodal and mul-
titask model, pretrained on eight extensive egocentric datasets.
It incorporates four modalities—RGB and depth video, gaze dy-
namics, and camera trajectories—to handle challenging tasks like
monocular egocentric depth estimation, camera tracking, gaze es-
timation, and conditional egocentric video synthesis. For simplic-
ity, we only visualize four frames here.

tric datasets [5, 10, 20, 23, 26, 29, 30, 49, 60, 61, 69, 70,
77, 87, 106, 122, 125], such as EgoExo4D, HoloAssist,
and HOT3D, provide rich, diverse, and semantically mean-
ingful data. Additionally, large-scale synthetic datasets
generated by simulators like EgoGen [52] provide precise
ground truth annotations, which are often expensive and
time-consuming to obtain in the real world. By combin-
ing these complementary data sources, it is increasingly fea-
sible to train large-scale multimodal and multitask models
for egocentric vision. These models have the potential to
further enhance our understanding of human behavior and
real-world interactions, opening new possibilities for appli-
cations in augmented reality, virtual reality, and robotics.
Current large-scale video models predominantly fo-
cus on understanding and generating videos from third-
person perspectives: Video understanding tasks span video
captioning, question answering, retrieval, and segmenta-
tion [39, 51, 59, 71, 112, 116, 121, 123, 127]; Video gen-
eration models primarily generate third-person view videos
from text inputs [11, 12, 17, 22, 31, 35, 37, 45, 67, 68, 78,
85, 88, 100, 107, 111, 117]. Recent works [48, 81] have ex-
panded modalities to include audio, yet these models still
operate with a limited range of modalities. While third-
person video models have seen significant progress, ego-
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centric foundation models have advanced at a much slower
pace. Egocentric views present unique challenges, includ-
ing dynamic camera movements, complex human-object in-
teractions, and the influence of human intentions, which are
not adequately addressed by third-person models. Further-
more, the development of large egocentric models was hin-
dered by the limited scale of available egocentric datasets.
With the scaling of egocentric datasets, recent efforts in
egocentric foundation models [90, 118] have focused on
egocentric video question-answering (QA). However, these
models often overlook critical human-related modalities,
which are naturally captured by head-mounted cameras and
are essential for understanding human intentions. Addition-
ally, these models lack 3D or 4D reconstruction capabilities,
limiting their ability to fully capture the spatiotemporal as-
pects of human motions and intentions.

Recent advances in multimodal and multitask vision
foundation models primarily center on images, demonstrat-
ing remarkable abilities in cross-modal prediction [8, 18,
47, 64, 65, 76, 103, 105]. These models, which build upon
Transformers [99], enable versatile any-to-any predictions,
facilitating multitasking across various modalities, such as
depth, surface normal, segmentation masks, etc. How-
ever, these models use pseudo-labeling networks to gen-
erate aligned binding data across modalities, but effective
pseudo-labelers for egocentric videos remain limited due to
the domain gap with third-person views. Moreover, these
models focus on single-image prediction, and struggle to
maintain temporal consistency when applied to egocentric
video sequences with fast-changing camera poses.

In this paper, we present EgoM2P, the first multimodal
and multitask model for 4D egocentric data. Our approach
explores four modalities: RGB video, depth video, gaze dy-
namics, and camera trajectories. EgoM2P supports any-to-
any modality predictions and demonstrates its multitasking
capabilities across various tasks: gaze estimation, egocen-
tric camera tracking, depth estimation from monocular ego-
centric video, and conditional egocentric video generation.

Specifically, we build a multimodal token database con-
taining four billion training tokens by curating eight exten-
sive egocentric datasets from both real-world and synthetic
data. To address missing modality annotations, we effec-
tively extend multimodal masked pretraining, originally de-
signed for image foundation models that assume the avail-
ability of all modalities, to the egocentric video domain.
While missing modalities are masked out, EgoM2P can
still effectively predict them. We design a unified tem-
poral tokenizer architecture to tokenize multimodal data
into temporally-aware tokens. By using variable masking
rates to mask input and target tokens during the training of
EgoM2P, we benefit from its parallel inference capability
and demonstrate its multitasking performance across vari-
ous downstream applications, while achieving a significant

speed-up. In summary, the contributions of this work are:

1. We introduce EgoM?2P, the first multimodal and multi-
task large egocentric model for RGB, depth video, eye
gaze dynamics, and camera trajectories.

2. We extend multimodal masked pretraining from the im-
age domain to the egocentric video domain by address-
ing challenges such as more complex spatiotemporal dy-
namics and the lack of annotations for certain inherently
missing modalities.

3. EgoM?2P is comparable to or outperforms state-of-the-
art algorithms in egocentric camera tracking, gaze dy-
namics estimation, monocular egocentric depth estima-
tion, and conditional egocentric video synthesis, while
being significantly more efficient.

2. Related Work

Image Foundation Models. Image foundation models are
pretrained versatile neural networks that serve as a univer-
sal foundation of various downstream vision tasks, such
as image classification, detection, and segmentation [15,
16, 21, 46, 62, 79]. CLIP [82] aligns image and text em-
beddings via contrastive learning, unlocking zero-shot and
open-vocabulary classification. ImageBind [27] extends
multimodal alignment beyond text, connecting images to
modalities like audio, depth, and thermal data. Multimodal
Language Models [1, 2, 41, 57, 72, 92, 113] enable uni-
fied reasoning across text, images, and audio. Recent work
4M [8, 76] trains a multimodal image foundation model
using Transformers to enable prediction across any input-
output modality pairs. Our work extends 4M by incorporat-
ing temporal modeling, training a unified multimodal and
multitask model for egocentric vision.

Video Foundation Models. Recent advancements in video
foundation models build upon the success of Vision Lan-
guage Models (VLMs), focusing on video understanding
and generation through various approaches, such as video-
language contrastive learning [ 109, 110, 114], masked mod-
eling [25, 95, 102], and autoregressive sequence prediction
[4, 53, 55, 71, 91]. Diffusion-based video generative mod-
els [3, 11, 78, 81, 93] achieve photorealistic video genera-
tion with fine-grained content control through conditioning
signals such as text prompts and reference images. These
capabilities position video models as promising candidates
for world models [3, 14, 32, 74, 97], as their generative
process inherently captures the temporal dynamics of real
worlds from internet-scale data.

Egocentric Video Understanding and Generation. Un-
derstanding the world through egocentric videos is critical
for applications in augmented reality, virtual reality, and
robotics. Multiple egocentric video datasets [10, 20, 29,
30, 106] have been collected to capture the diversity and
complexity of daily life scenarios. These egocentric videos
present significant technical challenges, including: activity
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N RGB Depth Gaze Camera
EgoExo04D [30] X

HoloAssist [106] Ve

HOT3D (Aria) [10] Ve

HOT3D (Quest) [10] | gray v'* X

ARCTIC [23] Ve %

TACO [61] Ve x

H20 [49] x

EgoGen [52] x

Table 1. Datasets used in our method. A green checkmark (v')
signifies availability, a red cross (x) denotes unavailability or ex-
clusion due to low quality, and a blue checkmark with a star (v'*)
indicates the use of pseudo labels.

recognition [42, 101, 129], hand motion and object inter-
action estimation [9, 24, 119], egocentric video prediction
and generation [56, 58, 108, 115], egocentric camera local-
ization [86, 94], among others. While task-specific methods
have been developed for these challenges, there remains a
lack of a unified egocentric video foundation model. Our
work addresses this gap by enabling cross-modality se-
quence predictions across RGB, depth, camera poses, and
gaze signals, representing a preliminary step toward a foun-
dational multitasking model for a unified egocentric under-
standing of scenes and human behaviors.

3. Method

This section overviews the data curation pipeline and train-
ing paradigm. In Sec. 3.1, heterogeneous egocentric
datasets are transformed into unified formats. Sec. 3.2 de-
scribes the process of compressing high-dimensional multi-
modal data into compact discrete tokens, enabling efficient
training and inference. Next, Sec. 3.3 covers the embedding
of multimodal discrete tokens and the masked pretraining of
EgoM?2P. Finally, Sec. 3.4 explains how final target tokens
are predicted by sampling from the pretrained model.

3.1. Data Curation

As shown in Tab. 1, egocentric datasets differ in their
data annotation coverage. Due to hardware and process-
ing constraints, frame drops are common in captured depth
data, making it difficult for wearable AR glasses [73, 75]
to achieve pixel-aligned depth streams. Besides, helmet-
mounted Kinect cameras are unable to capture gaze infor-
mation. This unstructured nature of egocentric data poses
challenges for both data curation and model training.

Our data curation pipeline includes 3 steps: 1) splitting,
2) annotation, and 3) standardization:
Splitting. The raw multimodal data are segmented into
clips of T' frames. These video clips are re-encoded into
high-quality mp4 format with the same resolutions.

Annotation. Real-world egocentric depth data is scarce,
often contains sensor noise, and suffers from frame drops.
We leverage RollingDepth [44] to generate pseudo-labels
for the depth annotation to get pixel-aligned depth videos.
To further scale up the amount of accurate depth training
data, we use EgoGen [52], a novel egocentric synthetic data
generator, to generate approximately 30 hours of video data
at 30 FPS. This involves letting virtual humans walk in
Replica [89] scenes and GIMO [128] scene scans, rendering
their egocentric views to obtain accurate depth and camera
trajectory annotations. As analyzed in Supp. Mat. Sec. B.3,
EgoGen boosts EgoM2P performance. For datasets without
gaze annotations, we leave them unlabeled due to the lack
of effective pseudo-labelers for gaze dynamics.

Standardization. These datasets have various video res-
olutions and define their world coordinate systems differ-
ently, with varying origins, axis conventions, handedness,
and scale. We standardize multi-modal data as follows. All
data streams are at 30 FPS. Depth videos are encoded us-
ing inverse depth representation, with normalization applied
per sequence. Noisy Kinect depth labels are preprocessed
with hole filling via morphological operations and inpaint-
ing, then denoised using median and bilateral filtering. We
reproject the eye gaze data, originally represented as a 3D
ray with depth, onto the 2D image plane and represent it as a
moving point on this plane. Camera trajectories are unified
as camera-to-world transformations in OpenCV convention,
using the first frame as the reference frame to standardize
the world coordinates across different datasets.

3.2. Tokenizers

Given a multi-modal clip with T" frames, we represent each

modality as follows:

* RGB Video: X' ¢ RT*XHxWX3 where H and W de-
note the spatial resolution.

* Depth Video: XdPth ¢ RT>*HxWx1

+ Gaze Dynamics: X#° ¢ RT*2, where each entry corre-
sponds to the 2D gaze coordinates.

+ Camera Trajectory: X ¢ R7*9 where each pose is
parameterized by the 6D rotation representation [130] and
translation, with the reference frame as the first frame.

Our multi-modal dataset is represented as X =

{Xreb Xdepth Yeaze Ycaml where modalities can be miss-

ing for each sub-dataset according to Tab. 1.

We leverage the state-of-the-art (SOTA) Cosmos tok-
enizer [3] to tokenize video modalities, applying a tempo-
ral compression rate of 4 and a spatial compression rate
of 8 to convert the video into discrete tokens. For other
modalities, we train modality-specific tokenizers. To ensure
adaptability when incorporating new modalities, we employ
a unified tokenizer architecture using a Transformer-based
vector quantized variational autoencoder (VQ-VAE) [98].
The network architecture is illustrated in the upper part of
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Figure 2. Network Architecture: (1) We train VQ-VAE [98] tokenizers for camera trajectories and gaze dynamics (Sec. 3.2), and adopt
Cosmos tokenizers [3] to tokenize RGB and depth streams. High-dimensional input modalities, including videos, gaze dynamics, and
camera trajectories, are compressed into discrete tokens to serve as our training database. (2) Our EgoM2P follows the architecture of
T5-Base [83]. We perform multimodal masked pretraining (Sec. 3.3), where we randomly sample a fixed number of input and target
tokens from our token database without overlap. For simplicity, we only visualize four frames here.

Fig. 2. For each modality mod € {gaze,cam}, let N =
dim(X™°4) — 1. The encoder € begins by performing an N-
dimensional convolution, represented as Convd(X™?).
This operation downsamples along the temporal axis by
a factor of 2. Next, it adds an N-dimensional positional
embedding before passing the embedded data through 12
Transformer blocks. Each Transformer block attends to
every pair-wise interaction among all tokens. Then, we
quantize the embeddings using the quantizer Q to learn
modality-specific codebooks, employing cosine similarity
as the distance metric, following [76, 120]. Finally, discrete
codes are decoded through the decoder D, which mirrors
the architecture of the encoder:

7 = S(X"wd)
q=Q(z)
X" = D(q)

The overall training loss is:
Lo = X" = X3 + || sglz] — all3 + 5 ||z — ssld]l3,

where sg[-] is the stop-gradient operator and S balances
the commitment loss. Due to hardware constraints, cer-
tain modalities, such as gaze, may contain invalid data when
tracking is lost. We mask out invalid data and use masked
L2 loss instead. See Supp. Mat. Sec. A.1 and C. for details.

3.3. Multimodal Masked Pretraining

4M [8, 76] introduces the Massively Multimodal Masked
Modeling training scheme for static image modalities,
where a small batch of sampled multimodal target tokens is
predicted using another batch of sampled multimodal input
tokens. However, when applying masked modeling to ego-
centric videos, 4M encounters several challenges: 1) There
are no mechanisms to ensure temporal consistency. 2) The
number of tokens per video sample is significantly larger
than in image modalities, hindering efficient training and
scalability. 3) The ratio of tokens across different modalities
is highly imbalanced; e.g., each sample contains 170 times
more video tokens than gaze tokens, which may lead to the
neglect of critical information from less represented modal-
ities. 4) Missing annotations in egocentric datasets can pose
challenges, whereas 4M pseudo-labeled all modalities.

Multimodal Token and Dataset Balancing. In Sec. 3.2,
we leverage our Transformer-based VQ-VAE and Cosmos
Tokenizer [3] to tokenize each modality into temporally-
aware discrete tokens. The large number of video tokens
poses challenges for multimodal token pretraining. While
aggressively compressing video tokens during tokenization
might be beneficial, it can negatively impact video quality.
To address this, we downsample videos to 8 FPS, reduc-
ing the token count per video to 1/3 of its original amount.
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After tokenization, the training set comprises roughly 4 bil-
lion multimodal tokens, whereas there are just 13 million
gaze tokens. In addition, the scale of different datasets is
also highly imbalanced, e.g., EgoExo04D [30] has 160 times
more samples than H20 [49]. Training directly with these
imbalanced datasets can cause the model to ignore modal-
ities that have fewer tokens. Additionally, some datasets
might suffer from overfitting, while others remain under-
fitted. To mitigate this issue, we experiment with differ-
ent sampling weights for both dataset sampling and token
sampling across multi-modalities within the datasets. We
discover that initially sampling a dataset with a probability
proportional to its size, followed by sampling tokens from
its modalities with uniform concentration parameters fol-
lowing 4M, results in the most stable training and optimal
performance. See Supp. Mat. Sec. A.2 for details.

Temporal Multimodal Token Embedding. As shown in
the lower part of Fig. 2, for each modality, we use modality-
specific embedding layers to map input tokens into a high-
dimensional unified space, facilitating the alignment and
integration of multimodal information. We then add sine-
cosine positional embeddings, using 1D for gaze and cam-
era tokens and 3D for video tokens. The same approach is
applied to target tokens. Similar to 4M [8, 76], we incor-
porate a learnable modality category embedding, which is
shared for both input and target token embedding modules.

Masking. Masked modeling has demonstrated its efficacy
in prior works [7, 8, 33, 76, 95]. 4M requires aligned multi-
modal annotations and resorts to pseudo-labeling. However,
it is not practical to pseudo-label all modalities for egocen-
tric datasets. We represent missing modalities as placehold-
ers and mask them out. See Supp. Mat. Sec. A.4 for details
on handling missing modalities. Similar to 4M, we reduce
computational costs by applying input and target masking,
encoding and decoding only a fixed number of visible to-
kens. While 4M caps this at 256, given that the number
of tokens per video exceeds 5000, we increase this number
to 2048 to accommodate more information. For each mul-
timodal data sample X;, we sample how many visible to-
kens to use as inputs and targets for each available modality
mod € {rgb, depth, gaze, cam}, then sample tokens in each
clip X’;”’d within these limits accordingly (See Supp. Sec.
A.2). Visible input and target tokens are mutually exclusive.

Model architecture. Apart from the modality-specific em-
bedding layers for the input and target tokens, the main
architecture follows T5-Base [83]. The encoder applies
self-attention to all sampled visible input tokens, integrat-
ing spatiotemporal information from multiple modalities.
The decoder input is formed by masking the sampled vis-
ible target tokens. The decoder applies cross-attention
with the encoder output as context and performs masked
self-attention—restricted to tokens within the same modal-
ity—to predict those masked target tokens, which ensures

that the decoder generates coherent tokens within the same
modality. The training loss is cross-entropy. For each
modality m:

~

m C.

]‘ = m ~
Ly = _E Zyg,c) log (ygfg))
t=1 c=1
L . L
1= Ta 41 n
tota M| = n

where M is the set of modalities that have available tokens,
T, is the number of tokens in each modality, C,, is the
codebook size, and ¥, .. is the predicted probability distribu-
tion for each token. See Supp. Mat. Sec. A.3 for details.

3.4. Inference

During training, we use variable masking rates to randomly
mask out multimodal tokens that are encoded with tempo-
ral information. Prior works [76] have shown that masked
image models trained with this scheme function as order-
agnostic autoregressive models [38], allowing tokens to be
decoded iteratively in random orders for parallel inference.
Similarly, we show that EgoM2P is able to predict the dis-
tribution over masked tokens simultaneously, potentially
providing the speed needed for real-time applications. As
shown in Tab. 2, our method can predict the camera trajec-
tory for a 60-frame video in 0.18 seconds (300+ FPS).

The parallel inference process can be formulated as a
multi-step decoding procedure. We use a linear scheduling
approach to predict n target tokens over s decoding steps.
At each step, we randomly select n/s target tokens and first
perform a forward pass of the pretrained model using all
visible input tokens to predict the conditional distribution
Yeond Of selected target tokens in parallel. Next, we mask
out all input tokens and perform a second forward pass to
predict the unconditional probability §yncona Of selected tar-
get tokens using cross-attention on masked input tokens.
The predicted target token distribution ¢ is estimated using
classifier-free guidance [34] with weight w:

Q = (1 + W)gcond - Wguncond

The final target token prediction is sampled from the pre-
dicted distribution § with nucleus sampling [36]. We find
that for modalities with a small number of tokens, a single
decoding step is sufficient. For video modalities, increas-
ing decoding steps and predicting a subset of tokens at each
step is beneficial. See Supp. Mat. Sec. A.5 for pseudocode.

3.5. Implementation Details

For each multimodal clip, we set its length to 2 seconds.
Non-video modalities have T" = 60 frames, while video
modalities have T' = 16 frames due to the reduced FPS.
The video resolution is 256 x256. After tokenization, the
RGB and depth videos have 5120 tokens per sample, and
the gaze and camera trajectory have 30 tokens per sample.
See more details in Supp. Mat. Sec. A.
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EgoExo04D [30] ADT [80] (unseen)

Method ‘ATEL RTEl RRE| | ATE| RTE| RRE/ | Time}

DROID-SLAM [94] | 0.018 0.005 0.506 | 0.034 0.010 0.316 | 2.7s
ACE-Zero [13] 0.028 0.007 0.672 | 0.049 0.011 0.333 | 426s
Align3R [66] 0.019 0.006 0.762 | 0.028 0.010 0.276 | 372s
EgoM2P ‘ 0.017 0.004 0.429 ‘ 0.0320.006 0.490 ‘ 0.18s

0.026 0.005 0.480

Table 2. Evaluation on camera tracking. Compared to specialist
SOTAs that require geometry test-time optimization, EgoM2P’s
feed-forward tracking results achieve comparable performance yet
with significantly higher efficiency. We report the average runtime
per sequence. Underlined denotes post-training results (Sec. 4.5).

4. Experiments

We benchmark EgoM2P’s multitasking abilities with SOTA
models in downstream tasks, including egocentric percep-
tion and synthesis. We also benchmark it on unseen datasets
without any fine-tuning to show the strong generalization
ability of the pretrained feature. Additionally, we show
EgoM?2P can be easily fine-tuned via post-training.

4.1. Egocentric Camera Tracking

Evaluation Protocols. We sample 200 video clips from the
validation split of the EgoExo04D dataset [30] for evaluation.
To assess EgoM2P’s generalization to unseen dataset, we
also evaluate on 200 video clips from the Aria Digital Twin
(ADT) dataset [80], which is entirely excluded from our
training dataset. We process all input frames to 256256
resolution and 8 FPS. We use standard error metrics: Ab-
solute Translation Error (ATE), Relative Translation Error
(RTE), and Relative Rotation Error (RRE).

Baselines. We compare with specialist camera tracking
methods, including DROID-SLAM [94], ACE-Zero [13],
and Align3R [66]. Note that all baseline methods lever-
age explicit geometry constraints and perform bundle ad-
justment during test-time optimization. ACE-Zero and
Align3R [66] also reply on off-the-shelf monocular depth
and optical flow predictions as additional inputs. In con-
trast, EgoM?2P is trained without any geometry modeling
or 3D inductive bias and can predict camera poses directly
from RGB inputs in a single feed-forward pass.

Results. See metrics in Tab. 2. Compared with special-
ist SOTA models that involve explicit geometry model-
ing, our versatile model trained without any 3D inductive
bias achieves comparable performance. Notably, while all
baselines require time-consuming test-time optimization,
EgoM?2P achieves 300+ FPS inference speed, thanks to our
parallel decoding approach. Egocentric camera tracking
can sometimes be challenging due to rapid motion speed
and little camera parallax. As shown in Fig. 3, while base-
lines may suffer from temporal jitter and error accumulation
in some cases, EgoM2P can predict smooth and plausible
camera trajectories in the sense that it learns to capture the

— Ground Truth
— EgoM2P ’
DROID-SLAM
153 == ACE-Zero
== Align3R

— Ground Truth
—— EgoM2P N
DROID-SLAM AN
0.72 == ACE-Zero /
== Aiign3R

y(m)

0.8

-0.06 0.0 0.06 0.11 0.38 0.46 0.54 0.62
x (m) z(m)

EgoExo4D [30] ADT [80]

(a) Visualization of camera trajectories.
EgoM2P DROID-SLAM [94]  ACE-Zero [13]

X X
R om
BB X ®

(b) Comparison of camera tracking on ADT [80]. Ground truth and
predictions are represented by black and colored wireframes, respectively.

Input Align3R [66]

X

Frame 05
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Figure 3. Egocentric capture often involves rapid head rota-
tions, which challenges baseline tracking methods. However,
EgoM?2P effectively predicts smooth and plausible camera poses
in the shown examples. This capability also generalizes to the un-
seen ADT [80] dataset without post-training.

uniqueness of egocentric motion. This capability can even
generalize to the out-of-domain ADT test set.

4.2. Egocentric Gaze Dynamics Estimation

Evaluation Protocols. We sample 1,000 videos from the
validation split of the EgoExo4D dataset [30]. We normal-
ize both ground truth and predicted labels of all methods to
the range [0, 1] and evaluate gaze estimation accuracy using
the mean squared error (MSE).

Baselines. We compare EgoM2P with two SOTA meth-
ods that predict 2D gaze locations from egocentric video:
Huang et al. [40] and Lai et al. [50], using their official
implementations for evaluation.

Results. We use input videos at 30 FPS for the baselines,
and following baselines’ respective settings, input video
frames are resized to 224 x224 for [40] and 256x256 for
[50]. Our method achieves the lowest MSE (0.0162), out-
performing Huang et al. [40] (0.0255) and Lai et al. [50]
(0.0175). For qualitative comparisons, refer to Fig. 4 and
Sup. Vid. EgoM2P produces more consistent gaze pre-
dictions, highlighting our capability to understand human
intentions as one of its multitasking abilities.
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Figure 4. Gaze dynamics estimation. EgoM2P can predict results
that are more aligned with human intentions.

H20 [49] HOI4D [60] (unseen)
Method ‘AbsRelJ, 51.25 1 | AbsRel | 81.05 1 | Time |
RollingDepth [44] |  0.087 90.5 0.057 97.6 37s
Align3R [66] 0.074 91.8 0.045 98.1 90s
0.061 98.0
EgoM2P ‘ 0.055 96.0 ‘ 0.041 990 ‘ 0.8s
Table 3. Evaluation on egocentric video depth estimation.

Compared to specialist SOTAs requiring geometry-based test-time
optimization, the versatile EgoM2P achieves comparable perfor-
mance while being significantly more efficient. With post-training
described in Sec. 4.5, EgoM2P excels (see underlined results).

4.3. Egocentric Monocular Video Depth Estimation

Evaluation Protocols. We evaluate on the test split of
H20 [49], which contains 236 two-second video clips. To
validate our method’s cross-domain generalization capabil-
ity, we also evaluate on 100 two-second video clips from
HOI4D [60], which is entirely unseen during EgoM2P’s
training. We temporally downsample each video clip to 8
FPS and resize it to 256x256 as input. We align the esti-
mated relative depth with the GT depth by a sequence-level
scale and translation factor and evaluate the depth accuracy
with absolute relative error (Abs Rel) and the percentage of
predicted depths within a 1.25-factor of true depth (d1.25).
Baselines. We compare EgoM2P with two special-
ized video depth estimators, RollingDepth [44], and
Align3R [66]. Both methods employ pretrained net-
works [43, 104] to estimate monocular or pair-wise depth
maps and then conduct hierarchical sequence-level opti-
mization to temporally align per-frame depths.

Results. We report the results in Tab. 3 and provide vi-
sual comparisons in Fig. 5. RollingDepth and Align3R re-
quire sequence-level optimization after per-frame predic-
tions, which can take as long as one minute for a two-
second sequence. In contrast, EgoM2P predicts the en-
tire depth video in a single end-to-end feed-forward pass,
achieving at least 30x faster inference speed. Quantitatively,
EgoM?2P achieves comparable performance with baseline
methods and even the best d; 25 on two test sets, particu-
larly the unseen HOI4D dataset, which validates EgoM2P ’s
generalization to out-of-domain egocentric data. Reducing
the quantization error of the Cosmos tokenizer [3] would
further improve our depth prediction result. Please refer to
our supplementary videos for more visualization.

H20 [49]
—

HOI4D [60]

EgoM2P

R-Depth [44]

£
o

gn3R [66] )

PRV R i

Figure 5. Egocentric video depth estimation. EgoM2P achieves
comparable performance with specialist SOTA methods. Rolling
Depth [44] struggles in estimating the depth of hands, an important
component in egocentric view, while our method can capture hand
movement even in the out-of-domain HOI4D [60] dataset, without
any post-training or fine-tuning.

4.4. Conditional Egocentric Video Synthesis

EgoM?2P can synthesize RGB videos from other modalities.
This section focuses on depth-to-RGB video synthesis.
Evaluation Protocols. We randomly sampled 142 depth
videos from the HoloAssist [106] test set and 100 depth
videos from the ASE [6] dataset. Note that the entire ASE
dataset is unseen in our model’s training and can be used
to assess our method’s generalizability. For ASE, we use
their labeled fisheye depth videos as inputs. For HoloAssist,
since its depth labels are misaligned with the RGB frames,
we employ RollingDepth [44] to generate pseudo-depth la-
bels for each RGB frame as input. For quantitative met-
rics, we employ Fréchet Video Distance (FVD) [96], Struc-
tural Similarity Index (SSIM), Peak Signal-to-Noise Ratio
(PSNR), and the perceptual metric LPIPS [124].

Baselines. We compare our method with two SOTA Con-
trolNet-based approaches: Control-A-Video [19] and Con-
trolVideo [126], both support depth as a conditional input.
Results. Since the two baselines require additional text
input, we adopt different templates for each dataset.
In HoloAssist, we use the template “Two hands with
{object}”, where {object} represents the item being held
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HoloAssist [106] ASE [6] (unseen)

Method ‘FVD*J, SSIM 1 PSNR 1 LPIPS ||FVD* | SSIM 1 PSNR 1 LPIPS |

Control-A-Video [19]

ControlVideo [126] 1.363 0235 8.18 0.653 | 1.392 0275 1046 0.676

2309 0.185 925 0.677 ‘2.226 0289 1111 0817

1.336 0308 6.923 0.715

EgoM2P 0.525 0594 16924 0.520

‘0.759 0.592 15.163 0.336‘

Table 4. Evaluation on depth-to-RGB video synthesis. EgoM2P
outperforms baselines on the HoloAssist test set, producing
higher-quality egocentric videos. On the unseen ASE dataset, it
generates videos that more closely resemble real ones with a lower
FVD* (FVD/10%). With post-training (Sec. 4.5), EgoM2P excels
on unseen datasets indicated by underlined results.

in the RGB video. For ASE, since it consists of indoor
videos, we use the prompt “Indoor scenes”. In Fig. 6, we
present a qualitative comparison highlighting the challenges
faced by two baselines in generating RGB frames that accu-
rately correspond to the input depth maps. These baseline
methods often produce outputs with significant discrepan-
cies in semantic and geometric alignment, especially on the
ASE [6] dataset. In contrast, our approach EgoM2P demon-
strates superior performance by maintaining alignment be-
tween the depth maps and the generated RGB frames. The
quantitative results are reported in Tab. 4. On the HoloAs-
sist dataset [106], our model outperforms the baseline ap-
proaches. On the ASE dataset [6], which is unseen and
stylistically different from our training data, our method
demonstrates strong generalization capabilities, generating
egocentric videos that more closely resemble real ones, as
indicated by a lower FVD score. In contrast, baseline mod-
els, initialized with the powerful Stable Diffusion [84], tend
to produce hallucinations. While they achieve higher PSNR
scores, their outputs often deviate from the true egocentric
video distribution, as indicated by their higher FVD scores.

4.5. Post-Training

The pretrained EgoM2P demonstrates strong generalization
abilities on cross-dataset generalization tests. Additionally,
in Tab. 2, 3, and 4, we show that EgoM2P can be further
enhanced via post-training on the training sets of unseen
datasets, enabling rapid adaptation to new domains with
minimal data. See more details in Supp. Mat. Sec. D.

5. Conclusion

We propose EgoM2P, the first multimodal and multitask
large egocentric model integrating four common modalities
in egocentric vision. To handle complex spatiotemporal dy-
namics in multimodalities, we propose a unified temporal
tokenizer architecture to tokenize gaze and camera trajec-
tory into discrete tokens encoded with temporal informa-
tion. To address heterogeneity in egocentric datasets, we
extend multimodal masked modeling to the video domain
and pretrain EgoM2P with 400 billion tokens sampled from
our 4 billion multimodal token database. EgoM2P matches

O
(=)
-
@
7
@
<
(=]
=
=}
=

Figure 6. Comparison of depth-to-RGB video synthesis. Red
boxes highlight incorrectly generated fingers in baselines, while
ours generate meaningful hand motion. Our results show im-
proved alignment with the input depth, minimizing hallucinations.
No post-training was applied for ASE results in this figure.

or surpasses state-of-the-art specialist models and demon-
strates efficiency in various downstream applications, in-
cluding egocentric camera tracking, gaze estimation in ego-
centric videos, egocentric monocular depth estimation, and
conditional egocentric video synthesis.

Limitations. The visual quality of the synthesized videos
is inherently limited by current state-of-the-art video tok-
enizers [3]. Although better tokenizers could reduce video
quality loss during quantization, this is not our main fo-
cus. Leveraging a diffusion decoder conditioned on discrete
video tokens to enhance visual quality could be effective.
Future Work. Wearable devices have constrained comput-
ing resources and demand real-time processing for seamless
human-computer interactions. We aim to explore perfor-
mance optimizations for EgoM2P on embedded GPUs. In
this work, we consider the most common modalities in ego-
centric vision. Integrating hand motion, audio, text, etc.,
into the model is a promising direction for future work.
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