
Memory-Efficient 4-bit Preconditioned Stochastic Optimization

Jingyang Li1 Kuangyu Ding1 Kim-Chuan Toh1 Pan Zhou2

1 National University of Singapore 2 Singapore Management University
1{li jingyang,kuangyud}@u.nus.edu mattohkc@nus.edu.sg 2panzhou@smu.edu.sg

Abstract

Preconditioned stochastic optimization algorithms, exem-
plified by Shampoo, outperform first-order optimizers by of-
fering theoretical convergence benefits and practical gains
in large-scale neural network training. However, they in-
cur substantial memory overhead due to the storage de-
mands of non-diagonal preconditioning matrices. To ad-
dress this, we introduce 4-bit quantization for Shampoo’s
preconditioners. We introduce two key methods: First, we
apply Cholesky decomposition followed by quantization of
the Cholesky factors, reducing memory usage by leverag-
ing their lower triangular structure while better preserv-
ing spectral properties to minimize information loss. To our
knowledge, this is the first quantization approach applied to
Cholesky factors of preconditioners. Second, we incorpo-
rate error feedback in the quantization process, efficiently
storing Cholesky factor and error state in the lower and up-
per triangular parts of the same matrix. Through exten-
sive experiments, we demonstrate that combining Cholesky
quantization with error feedback enhances memory effi-
ciency and algorithm performance in large-scale deep-
learning tasks. Theoretically, we also provide convergence
proofs for quantized Shampoo under both smooth and non-
smooth stochastic optimization settings.

1. Introduction
Deep learning has achieved significant advancements across
numerous fields in recent years, including language model-
ing [7, 48], computer vision [16], and multi-modality [38].
These advancements are primarily driven by the scaling of
model size, dataset volume, and computational power, as
outlined in scaling laws that demonstrate the impact of in-
creased resources on model performance [24, 25]. This
trend of scaling has further extended into specialized do-
mains such as finance [54], material science [56], and
healthcare [30].

Along with the size growth of large-scale models,
stochastic gradient descent (SGD) has become a widely
adopted method for training thanks to its efficiency and
simplicity [23, 41, 45]. However, adaptive gradient meth-
ods, e.g., Adagrad [17], Adam [26], and AdamW [35], ap-

Figure 1. Comparison of test accuracy and peak memory usage for
training ResNet-34 on CIFAR-100 dataset.

ply a diagonal preconditioning to the gradient, which en-
ables faster convergence than SGD [17, 63]. These adaptive
methods have demonstrated empirical advantages in various
applications [16, 58] and are now the standard optimizers
for training large-scale neural networks.

Building on adaptive gradient methods, full-matrix pre-
conditioned gradient methods offer theoretically superior
convergence by capturing richer correlations among pa-
rameters [17]. Despite these theoretical advantages, how-
ever, the memory overhead associated with non-diagonal
matrices poses a significant challenge for large-scale neu-
ral networks, which can contain millions of parameters
[16, 23, 34]. To address this, a range of efficient precon-
ditioned gradient methods, such as K-FAC [36], Shampoo
[22], K-BFGS [20], and AdaBK [60], aim to make full-
matrix preconditioning computationally feasible by approx-
imating the full-matrix preconditioner, e.g., block-diagonal
precondition matrix. These algorithms have shown faster
convergence rates in practice when compared to both SGD
and adaptive gradient methods [3, 43, 60].

Nevertheless, these efficient preconditioned methods
still impose substantial memory costs that restrict their
scalability in practical and large-scale model applications.
As shown in Fig. 1, the peak memory usage of meth-
ods like Shampoo remains significantly higher than SGD.
While quantizing precondition matrices in these precon-
ditioned methods from high-precision to low-precision,
e.g., 32-bit to 4-bit, effectively reduces memory usage, it
also inevitably introduces information loss, which, in turn,
severely degrades the performance of these preconditioned

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

22633

methods. This is validated by Fig. 1: compared with 32-bit
Shampoo, 4-bit Shampoo enjoys much less memory cost
but suffers from much worse performance. Therefore, for
these efficient preconditioned methods, carefully designed
strategies are essential to effectively compress precondition
matrices without compromising optimization quality.
Contribution. We focus on Shampoo due to its simplic-
ity, effectiveness, and popularity, aiming to enable efficient
4-bit quantization of preconditioners while maintaining the
stability and efficiency of preconditioned gradient methods.
Our main contributions are as follows:
• We introduce Cholesky quantization to improve mem-

ory efficiency and stability. Instead of directly quantizing
preconditioners, we apply Cholesky decomposition and
quantize the Cholesky factors. This reduces storage by
half while better preserving spectral properties, mitigat-
ing quantization-induced information loss. To the best of
our knowledge, this is the first quantization approach ap-
plied to Cholesky factors of preconditioners.

• We propose an error feedback strategy for Cholesky
quantization to further reduce quantization error. In-
spired by low-precision communication in distributed
training [42, 46, 57], we maintain a 4-bit error state that
exponentially-moving averages past quantization errors
for stable error estimation. This state compensates the
Cholesky factor at each iteration, reducing information
loss. Moreover, the triangular structure of the Cholesky
factor allows efficient joint storage with its error state.

• We establish convergence guarantees for quantized
Shampoo in both smooth and nonsmooth stochastic non-
convex optimization. In the smooth case, our 4-bit Sham-
poo achieves the optimal O(1→

T
) convergence rate. In the

nonsmooth case (e.g., ReLU-based networks [23]), we
provide the first proof of global convergence for precondi-
tioned gradient descent, showing convergence to station-
ary points under mild conditions.

• We develop 4-bit Shampoo using these techniques and
evaluate it on image classification with convolutional neu-
ral networks (CNNs) and vision transformers (ViTs). It
outperforms vanilla 4-bit Shampoo, and significantly re-
duces memory usage compared to 32-bit Shampoo while
maintaining comparable test performance, enabling larger
models to be trained within existing resource constraints.

Discussion: Recent work [51] also studies preconditioner
compression. Our approach improves it in two key as-
pects. First, we introduce error feedback (EF) to relieve the
information loss from quantization, which [51] overlooks.
EF helps retain critical curvature information during train-
ing. Second, our Cholesky Quantization (CQ) stores only
lower-triangular factors, making it more memory-efficient
than [51], which stores full orthogonal matrices. More-
over, Cholesky decomposition has lower computational
cost (O(n3

p
/3)) than the QR decomposition used in [51]

(O(2n3
p
/3)). These improvements lead to better efficiency

and performance across models (see Tab. 7).

2. Related Work
Preconditioned Stochastic Optimization. Adaptive gradi-
ent methods are the most widely used preconditioned gra-
dient methods in training neural networks, with Adagrad
[17], RMSProp [47], and Adam [26] being notable exam-
ples. They use diagonal preconditioners to rescale the gradi-
ents, been shown to improve convergence in stochastic set-
tings. Preconditioned gradient methods with non-diagonal
preconditioners offer faster convergence in theory [17], and
are widely explored recently due to faster convergence than
adaptive gradient methods in practice [20, 22, 36, 60].
Among them, Shampoo [22] receives extensive concern for
its simplicity and effectiveness [37, 50, 51], and it has been
developed for large-scale distributed training [3, 43].
Quantization for Optimizers. Quantization has been
widely used for gradient compression to enable efficient
communication in large-scale optimization, particularly for
distributed training [2, 49, 52]. Recent works have extended
quantization to optimizer states—such as the momentum or
second-moment estimates used by adaptive optimizers like
Adam—to decrease peak memory usage during neural net-
work training [15, 32]. Despite its computational efficiency,
quantization incurs information loss, which can degrade al-
gorithmic performance. To address this, ongoing research
explores techniques such as error feedback compensation
to mitigate these effects and improve robustness [40, 42].

3. Preliminaries
Here we introduce practical Shampoo from [3], and linear-
square (linear-2) quantization [15] to compress the precon-
ditioning matrices in our algorithm.
Notations. Let →A→F =

√∑
ij
A

2
ij

denote the Frobenius
norm of a matrix A, and ↑A,B↓ =

∑
ij
AijBij its inner

product. The Kronecker product of A and B is denoted by
A↔B. For a symmetric matrix H , ωmax(H) and ωmin(H)
represent its maximum and minimum eigenvalues, respec-
tively. For square symmetric matrices A and B, we write
A ↗ B if B ↘ A is positive semidefinite (PSD). Quantiza-
tion and dequantization operations denoted by Q and D.

3.1. Practical Shampoo
When minimizing a nonconvex stochastic objective:

F (W) := Eω↑![F (W, ε)], (1)
where W ≃ Rm↓n is the parameter of the learning model,
and data ε is drawn from an unknown distribution !. At
each iteration, we sample a mini-batch of data points to
compute the stochastic gradient G ≃ Rm↓n, and use this
stochastic gradient to update the model parameter W .

To accelerate convergence, Shampoo preconditions the
stochastic gradient used in first-order optimizers. Specifi-
cally, at iteration k, it updates the preconditioning states Lk

22634

and Rk with stochastic gradient Gk for preconditioning:




Lk = ϑLk↔1 + (1↘ ϑ)GkG
T

k
,

Rk = ϑRk↔1 + (1↘ ϑ)GT

k
Gk,

Ĝk = L
↔1/4
k

GkR
↔1/4
k

,

(2)

where ϑ ≃ (0, 1), and the 1/4-th root inverse is computed
efficiently using the Schur-Newton algorithm [21].

Next, first-order base optimizer F like SGD can use the
preconditioned gradient G̃k in Eq. (2) to replace vanilla
Gk for model update. For efficiency, Shampoo stores
(Lk, Rk, L

↔1/4
k

, R
↔1/4
k

), and updates (Lk, Rk) for every T1

iterations and (L↔1/4
k

, R
↔1/4
k

) every T2 iterations. See prac-
tical Shampoo algorithm in Algorithm 2 of Appendix A.

3.2. Linear Square Quantization for Compression
Quantization compresses tensors from high precision
floating-point to low precision, reducing memory usage.
Following [15, 32], we use block-wise quantization to mit-
igate outlier effects. Below, we introduce the quantiza-
tion and dequantization processes, focusing on the two-
dimensional tensor (matrix) case of Shampoo.
Quantization. For a floating-point matrix X ≃ Rm↓n, we
partition it into blocks of size B ⇐ B, resulting in P =
⇒m/B⇑ ⇐ ⇒n/B⇑ blocks {Xp}

P

p=1. In each block Xp, a
normalization factor Np = max{|Xp|} scales elements to
[↘1, 1] via X̄p = Xp/Np. Each element x̄p in X̄p is then
quantized to a b-bit integer using a quantization mapping
M : [0, 2b ↘ 1] ⇓ Z ⇔ [↘1, 1], calculated by:

qp = argmin
j↗[0,2b↔1]↘Z

|x̄p ↘M(j)|. (3)

Common quantization mappings include linear, dynamic,
and quantile mappings [15, 32, 51]. Here we use a linear-2
mapping for simplicity and efficiency when b = 4:

M(j) =






↘(↘1 + 2j
2b↔1)

2
, j < 2b↔1

↘ 1,

0, j = 2b↔1
↘ 1,

(↘1 + 2j
2b↔1)

2
, j > 2b↔1

↘ 1,

(4)

where j ≃{0, 1, . . . , 2b ↘ 1}. This block-wise quantization
can be efficiently executed in parallel on GPUs [19, 59].
Dequantization. Dequantization D reverses the quantiza-
tion process. For each quantized block Qp, we map each
element qp back to [↘1, 1] via x̄

≃
p

= M(qp) to obtain
X̄

≃
p
. We then restore the original scale using Np, giving

X
≃
p
= D(Qp) = NpX̄

≃
p
. Like quantization, dequantization

is parallelizable on GPUs.
For block size B ⇐ B, it balances accuracy and mem-

ory cost: smaller blocks improve accuracy but increase the
number of normalization factors, raising memory overhead.

4. Memory-Efficient Shampoo Via Compen-
sated Cholesky Quantization

We first present a direct quantization method to reduce the
memory overhead of Shampoo’s preconditioning matrices
in Sec. 4.1. Then, in Sec. 4.2, we introduce a more memory-

efficient Cholesky quantization approach that better pre-
serves spectral properties to enhance vanilla quantization.
Finally, in Sec. 4.3, we propose a compensation strategy to
mitigate information loss from Cholesky quantization.

4.1. Quantization for Shampoo Compression
From Sec. 3.1, one knows that Shampoo requires storage
of four preconditioning matrices (Lk, Rk, L

↔1/4
k

, R
↔1/4
k

),
each sized d ⇐ d, where d denotes the model parame-
ter dimension. This brings much additional GPU memory
cost, and becomes even more pronounced when training
modern neural networks, which are often extremely high-
dimensional. So reducing Shampoo’s memory overhead is
essential for efficient and scalable network training.

A straightforward approach is to use a quantizer Q, e.g.,
the linear-2 quantization in Sec. 3.2, to compress the pre-
conditioners in Shampoo for saving memory, and then adopt
a dequantizer D to recover them for subsequent usage. For-
mally, at iteration k, we can compute two low-precision pre-
conditioning states (L̄k, R̄k) as

Lk = ϑD(L̄k↔1) + (1↘ ϑ)GkG
T

k
, L̄k = Q(Lk),

Rk = ϑD(R̄k↔1) + (1↘ ϑ)GT

k
Gk, R̄k = Q(Rk).

(5)

In this work, we use 4-bit precision for efficient storage. For
L̄
↔1/4
k

, R̄
↔1/4
k

, we update them as

Lk = D(L̄k), L̄
↔1/4
k

= Q((Lk + ω
L

maxϖIm)↔1/4),

Rk = D(R̄k), R̄
↔1/4
k

= Q((Rk + ω
R

maxϖIn)
↔1/4),

(6)

where, same as vanilla Shampoo, ωL

maxϖIm and ω
R

maxϖIn

provide numerical stability during the Schur-Newton iter-
ations used to calculate the inverse 1/4-th roots, in which
ω
L

max, ωR

max are the maximal singular values of Lk, Rk, and
ϖ is a small constant [60].

Accordingly, one can store 4-bit (L̄k, R̄k, L̄
↔1/4
k

,

R̄
↔1/4
k

) instead of their original 32-bit versions, and de-
quantize them for usage, e.g., dequantizing (L̄↔1/4

k
, R̄↔1/4

k
)

to compute preconditioned gradient in Eq. (2).
Despite its simplicity, direct quantization of precondi-

tioners as in Eq. (5) and Eq. (6) can lead to performance
degradation due to information loss, e.g., quantizing them
from 32-bit to 4-bit precision. For instance, when train-
ing ViT-Small [16] on CIFAR-100 [27] with Shampoo using
AdamW as the base optimizer, the 32-bit version Shampoo
achieves 77.95% test accuracy, substantially outperforming
the 4-bit quantized Shampoo, which reaches only 74.56%.
Further experimental comparisons can be found in Sec. 6.

4.2. Efficient and Stable Cholesky Quantization
Here we introduce Cholesky quantization (CQ) to further
improve memory efficiency and also stability of quantiza-
tion in Sec. 4.1. Instead of quantizing Lk and Rk, we ap-
ply Cholesky decomposition on Lk and Rk, and quantize
their corresponding Cholesky factors as C̄L

k
and C̄

R

k
which

22635

are lower triangular matrices and require much less storage.
Formally, at iteration k, this process can be written as

Lk↔1=D(C̄L

k↔1)D(C̄L

k↔1)
T
, Rk↔1=D(C̄R

k↔1)D(C̄R

k↔1)
T
,

Lk=ϑLk↔1+(1↘ϑ)GkG
T

k
, Rk=ϑRk↔1+(1↘ϑ)GT

k
Gk,

C
L

k
=Cholesky(Lk+ϖI), CR

k
=Cholesky(Rk+ϖI),

(7)
where Cholesky(Lk + ϖI) computes a lower triangular
matrix C

L

k
such that CL

k
C

L

k

T
= Lk + ϖI . The small term

ϖI is added for numerical stability, with ϖ as small constant.
Once C

L

k
and C

R

k
are computed, they are quantized as:

C̄
L

k
= Q(CL

k
), C̄

R

k
= Q(CR

k
). (8)

Accordingly, we can only store two quantized lower tri-
angular matrices C̄

L

k
and C̄

R

k
. Here we quantize the off-

diagonal part of C̄L

k
and C̄

R

k
into 4-bit precision while re-

taining the diagonal elements for 32-bit. This approach is
used because off-diagonal elements have less impact on nu-
merical stability, allowing reduced precision with minimal
accuracy loss. In contrast, diagonal elements are crucial
for overall stability and accuracy, so keeping them in 32-bit
helps prevent error accumulation in the factorization.

Now we discuss two advantages of CQ. Firstly, Cholesky
factors are lower triangular matrices, requiring nearly half
memory compared to storing full preconditioners in Sec. 4.1
or full orthogonal matrices in [51], reducing peak GPU
memory. Secondly, the preconditioner Lk recovered from
Lk = D(C̄L

k
)D(C̄L

k
)T remains symmetric and positive def-

inite (PD), better preserving spectral properties. Conse-
quently, its inverse 1/4-th root more closely approximates
the original 32-bit preconditioner. To quantify this preserva-
tion, we consider the Frobenius norm relative error (NRE)
and angle error (AE) between matrices [51], given by

NRE = →A
↔1/4

↘ g(A)↔1/4
→F /→A

↔1/4
→F ,

AE = arccos

(
↑A

↔1/4
, g(A)↔1/4

↓

→A↔1/4→F →g(A)↔1/4→F

)
,

(9)

where g represents the combined effect of quantization and
dequantization. We evaluate these metrics using both syn-
thetic PD matrices and preconditioners from 32-bit Sham-
poo training of VGG-19 on CIFAR-100. As shown in
Tab. 1, CQ significantly reduces both NRE and AE, demon-
strating its effectiveness in preserving spectral properties.
See Appendix C.2 for further details.

Table 1. NRE and AE on synthetic and real preconditioners for
vanilla quantization (VQ) and Cholesky quantization (CQ).

Preconditioner VQ CQ
NRE AE NRE AE

Synthetic 46.141 27.187 9.188 9.204
Epoch 50 29.041 19.353 5.367 5.366
Epoch 100 25.712 18.505 4.852 4.853
Epoch 150 25.351 19.317 4.788 4.788
Epoch 200 34.908 20.795 6.152 6.154

Figure 2. Efficient storage for Cholesky factor and error state.

Finally, we analyze the computational cost of CQ. In
practice, parameter per layer is divided into 1200 ⇐ 1200
blocks before preconditioning (Appendix C.3), keeping the
per-block CQ cost at O(n3

p
) with np ↖ 1200. As shown in

Tabs. 5 and 6, CQ introduces minimal overhead.

4.3. Compensated Cholesky Quantization
To mitigate the information loss from quantization, we in-
troduce error feedback (EF) for Cholesky factors. Error
feedback was original proposed to alleviate the information
loss caused by gradient compression for communication in
distributed training setting [40, 42]. The key idea is to com-
pensate for compression errors by adding them back into
the gradients before compression in the next step. Practi-
cal adaptations of EF has also been explored in [46, 57] to
combine EF with adaptive gradient methods.

Different from previous work, our focus in this work is
the compression of preconditioners of preconditioned gradi-
ent methods, and therefore our error feedback is conducted
on the preconditioners. At each iteration, an additional low-
precision (4-bit) error state, denoted as Ē

L

k
, is maintained

to capture quantization error for the Cholesky factor C̄
L

k
.

This error state is then used in the next iteration to enhance
precision by compensating for potential quantization errors.

Specifically, at iteration k, we first compute the Cholesky
factors CL

k
and C

R

k
following the standard steps in Eq. (7).

Before quantizing, we apply error compensation as follows:

E
L

k↔1 = D(ĒL

k↔1), C̄
L

k
= Q(CL

k
+ E

L

k↔1),

E
R

k↔1 = D(ĒR

k↔1), C̄
R

k
= Q(CR

k
+ E

R

k↔1).
(10)

Next, we update the error states ĒL

k
and Ē

R

k
using an expo-

nential moving average to improve stability:
E

L

k
= ϑeE

L

k↔1 + (1↘ ϑe)(C
L

k
+ E

L

k↔1 ↘D(C̄L

k
)),

E
R

k
= ϑeE

R

k↔1 + (1↘ ϑe)(C
R

k
+ E

R

k↔1 ↘D(C̄R

k
)),

(11)

where ϑe is the momentum parameter. Since the Cholesky
factors C

L

k
and C

R

k
are lower triangular and quantization

excludes diagonal elements, the error states EL

k
and E

R

k
are

also triangular with zero diagonals. This enables efficient
storage, as each error state can be stored as the upper tri-
angular part as illustrated in Fig. 2, incurring no additional
memory overhead compared to vanilla 4-bit Shampoo.

Finally, we can compute the inverse 1/4-th root of the

22636

Algorithm 1 4-bit Shampoo via Compensated Cholesky
Quantization
Input: initial weight W0 ≃ Rm↓n, initial Cholesky fac-
tors C̄

L

0 =
↙
ϖIm, C̄R

0 =
↙
ϖIn, quantization error states

Ē
L

0 = 0, ĒR

0 = 0, initial preconditioners L̂0 = Im, R̂0 =
In. Total training iterations T , interval of updating precon-
ditioners T1 and T2, momentum parameter ϑ,ϑe ≃ (0, 1).
First-order optimizer F with initial optimizer state s0.
Output: final weight WT .

1: for k = 1, 2, . . . , T do
2: Compute gradient Gk = ∝Lk(Wk)
3: if k%T1 ′ 0 then
4: Update Cholesky factors according to Eq. (7)
5: Conduct error compensation following Eq. (10)
6: Update quantization error states as Eq. (11)
7: else
8: C̄

L

k
= C̄

L

k↔1, C̄
R

k
= C̄

R

k↔1
9: end if

10: if k%T2 ′ 0 then
11: Compute inverse 1/4-th root of the precondi-

tioners following Eq. (12)
12: else
13: L̂k = L̂k↔1, R̂k = R̂k↔1

14: end if
15: Ĝk = D(L̂k)GkD(R̂k)
16: Wk, sk = F(Wk↔1, sk↔1, Ĝk)
17: end for

preconditioners with stored Cholesky factors via
L̂k = Q((D(C̄L

k
)D(C̄L

k
)T + ω

L

maxϖIm)↔1/4),

R̂k = Q((D(C̄R

k
)D(C̄R

k
)T + ω

R

maxϖIn)
↔1/4).

(12)

Next, with SGD as the base optimizer, the model parameters
are updated with the preconditioned gradient:

Wk+1 = Wk ↘ ϱkD(L̂k)GkD(R̂k), (13)
where ϱk is the learning rate for iteration k that is of-
ten scaled by →Gk→F /→Ĝk→F according to the graft-
ing trick [1]. The preconditioned stochastic gradient
D(L̂k)GkD(R̂k) can also be fed into another first-order op-
timizer F , such as Adam, for model updates. Accordingly,
we have arrived at our compensated Cholesky quantization
based Shampoo summarized in Algorithm 1.

5. Theoretical Analysis
Here we provide theoretical analysis of Algorithm 1 with
SGD base optimizer as an example. We first define

xk := Vec(Wk), gk := Vec(Gk),

Hk := D(R̂k)↔D(L̂k),
(14)

where Vec reshapes the matrix into a vector by concatenat-
ing the columns of the matrix. Then, we rewrite Shampoo
with SGD as base optimizer in Eq. (13) into an equivalent

vectorization formulation:
xk+1 = xk ↘ ϱkHkgk. (15)

See this equivalent derivation in Appendix B. In the follow-
ing, we analyze Shampoo with SGD as base optimizer in
Eq. (15) under different situations.

5.1. Smooth Nonconvex Training Loss
Here we analyze the smooth nonconvex f , which is defined
according to loss function Eq. (1) as

f(x) := F (W), (16)
where x = Vec(W) is the vectorized model parameter. To
this end, we introduce the necessary assumptions.

Assumption 5.1. a) Assume the training loss f is L-
Lipschitz smooth, i.e., →∝f(x)↘∝f(y)→2 ↖ L →x↘ y→2.
b) Suppose the stochastic gradient gk is unbiased and
its variance can be bounded: E[gk] = ∝f(xk) and
E[→gk ↘∝f(xk)→

2
2] ↖ ς

2(1 + →∝f(xk)→
2
2).

c) Assume the preconditioner Hk has bounded eigen-
values, i.e., sup

k
ωmax(Hk) ↖ ωH,max < ∞ and

infk ωmin(Hk) ∈ ωH,min > 0.

For Assumptions 5.1a) and b), these conditions are stan-
dard for stochastic first-order methods (in fact, Assump-
tion 5.1b) is even milder than the commonly assumed con-
dition E[→gk ↘ ∝f(xk)→22] ↖ ς

2). Assumption 5.1c) re-
quires the preconditioner Hk to be upper bounded and pos-
itive definite, which is guaranteed by the implementation
of the Schur–Newton method, the regularization step in
Eq. (7), and Proposition 5.1. Specifically, (i) the upper
bound follows from Eq. (7) where an ϖI regularization is
added to ensure a lower bound on C

L

k
; then, applying the

↘
1
4 exponent yields an upper bound while the operator DQ

keeps the quantization error bounded. (ii) The strict pos-
itive definiteness (i.e., the lower bound) is ensured by the
Gershgorin Circle Theorem and the Schur–Newton method.
In particular, if Sk denotes the inner matrix in Eq. (12)
such that D(L̂k) = DQ

(
S
↔1/4
k

)
, then the Schur–Newton

method (applied for a limited number of steps) yields a di-
agonally dominant matrix Zk approximating S

↔1/4
k

; writ-
ing D(L̂k) = Zk + E

Z

k
with E

Z

k
denoting the quantiza-

tion error, the Gershgorin Circle Theorem guarantees that if
Zk is strictly diagonally dominant and →E

Z

k
→ is sufficiently

small, then Zk + E
Z

k
remains strictly positive definite, as

further supported by Proposition 5.1. Empirical evidence in
Fig. 3 also demonstrates that the eigenvalues of the dequan-
tized preconditioners D(L̂k) and D(R̂k) remain positive
throughout training, further validating Assumption 5.1c).

Proposition 5.1. For the 4-bit Shampoo in Algorithm 1,
let Mk := (D(C̄L

k
)D(C̄L

k
)T + ω

L

maxϖIm)↔1/4, if
→Mk→o”,max ↖ CB , then its preconditioners hold that

D(L̂k) ↗ Mk + CBnk2
↔b

I,

22637

Figure 3. Eigenvalue frequency of the dequantized preconditioners D(L̂) and D(R̂) of VGG-19 on CIFAR-100 at 50, 100, 150, and 200
training epochs, all eigenvalues are greater than 0.

where →·→o”,max is the maximal absolute value of all off-
diagonal entries and nk is the number of rows in Wk. Fur-
thermore, if for every row index i it holds that |[Mk]ii| >(
1 + 2

2b↔1

)∑
j ⇐=i

|[Mk]ij |, then D(L̂k) ∋ 0.

This proposition shows that the sequence {D(L̂k)} can
be bounded above and below. Now we are ready to derive
the convergence, and state the main results below.
Theorem 5.1. Suppose Assumption 5.1 holds. Let ϱk =

c→
T+1

with c ≃

(
0, εH,min

2L(1+ϑ2)ε2
H,max

)
, then we have

E
[
→∝f(x̄T)→

2
2

]
↖

2(f(x0)↘ f̄ + c
2
Lς

2
ω
2
H,max)

cωH,min

↙
T + 1

,

where x̄T is randomly selected from {x0, x1, ..., xT } and
f̄ := minx↗Rd f(x).

See its proof in Appendix B. Theorem 5.1 shows that
for smooth nonconvex training loss, our 4-bit Shampoo
with SGD as the base optimizer can converge at the rate
of O(1→

T
). This convergence rate is optimal as shown in

[8], indicating that our 4-bit Shampoo maintains the opti-
mal convergence rate despite the potential information loss
introduced by quantization.

5.2. Nonsmooth Nonconvex Training Loss
In this subsection, we analyze the nonsmooth nonconvex
training loss function, particularly in cases where the acti-
vation function is nonsmooth, such as the ReLU in ResNet
[23]. The iterative scheme can be written as:

xk+1 = xk ↘ ϱkHk(dk + εk),

where dk ≃ φf(xk), φf denotes the subgradient of f , and
{εk} is the sequence of the random noise in the subgradient.
Relevant concepts are provided in Appendix B.2. Given a
process {εi}⇒i=0, let Fk denote the history up to iteration k.
To this end, we introduce the necessary assumptions.
Assumption 5.2. a) The function f is ↼-Lipschitz continu-
ous. Additionally, f is a Whitney stratifiable function.
b) The noise in the subgradient is unbiased and has
bounded variance

E[εk|Fk↔1] = 0, E[→εk→22 |Fk↔1] ↖ ς
2
,

c) For any convergent subsequence xkj
⇔ x̄, we have

limN⇑⇒
1
N

∑
N

j=1 Hkj
= H̄ for some positive definite ma-

trix H̄ . Additionally, sup
k⇓0 ωmax(Hk) ↖ M .

The class of Lipschitz continuous functions is broad and
includes pathological cases where subgradient flows fail to
converge to stationary points [12]. To address this, we focus
on Whitney stratifiable functions, which generalize most
practical cases, including loss functions in neural networks
with nonsmooth activations like ReLU [5, 13]. Assumption
5.2c) requires only Cesàro summability of {Hk}, a mild
condition crucial for handling non-time-homogeneity.

Theorem 5.2. Suppose that Assumption 5.2 holds and the
sequence {xk} remains within a compact set. If the learning
rate satisfies

∑⇒
k=1 ϱk = ∞ and

∑⇒
k=1 ϱ

2
k
< ∞, then

lim
k⇑⇒

dist(xk,”) = 0,

where ” := {x : 0 ≃ φf(x)} is the set of stationary points.
For a stratifiable function, the result of convergence to

the stationary point set is tight. There are no complexity
results due to the challenges posed by its complex noncon-
vexity and nonsmoothness [5, 13]. This result ensures the
convergence of our proposed algorithm on nonsmooth train-
ing losses, including those arising in deep neural networks
such as ReLU-based architectures.

6. Experiments
In this section, we evaluate our 4-bit Shampoo Algorithm 1
on classical image classification and large language model
(LLM) pre-training. We compare its performance against
vanilla 4-bit and 32-bit Shampoo when using SGD with mo-
mentum (SGDM) [45] or AdamW [35] as base optimizer,
and the base optimizer itself. For all experiments, we re-
port test accuracy and peak memory usage to assess both
algorithmic performance and GPU memory overhead.
Training Setting. Following standard benchmarks for im-
age classification [23, 31, 53], we train VGG-19 [44],
ResNet-34 [23], Swin Transformer Tiny (Swin-Tiny) [34],
and Vision Transformer Small (ViT-Small) [16] on CIFAR-
100 [27] and Tiny-ImageNet [29], as well as ResNet-50 and
ViT-Base on ImageNet [14]. For LLM pre-training, we fol-
low [33, 64] to train LLaMA [48] on the C4 dataset [39]
with varying model sizes. Training hyperparameters for
Shampoo match those of the base optimizer, except that
the base optimizer is trained for additional epochs in im-
age classification to achieve comparable performance. All
experiments are conducted on a single NVIDIA A100 GPU
(80GB). Further details are provided in Appendix C.3.

22638

(a) SGDM as base optimizer. (b) AdamW as base optimizer.
Figure 4. Comparison of training loss and test accuracy (%) for training ResNet-34 on CIFAR-100 and ViT-Small on Tiny-ImageNet. The
left figure shows ResNet-34 results, and the right figure shows ViT-Small results.

Table 2. Test accuracy (%) and peak memory (MB) of vanilla 4-bit
Shampoo with off-diagonal and original block-wise quantization
for VGG-19 on CIFAR-100 and Swin-Tiny on Tiny-ImageNet.

Method VGG-19 Swin-Tiny
Accuracy Memory Accuracy Memory

Original 74.20 661.7 60.83 1126.2
Off-Diagonal 74.36 662.2 61.28 1126.9

Table 3. Test accuracy (%) and peak memory (MB) on CIFAR-
100. Here VQ denotes vanilla quantization, CQ denotes Cholesky
quantization, and EF denotes error feedback.

Model Optimizer Accuracy Memory

VGG-19

SGDM 74.43 597.3
SGDM + 32-bit Shampoo 75.02 1065.2
SGDM + 4-bit Shampoo (VQ) 74.36 662.2
SGDM + 4-bit Shampoo (CQ) 74.99 646.0
SGDM + 4-bit Shampoo (CQ+EF) 75.21 662.2

ResNet-34

SGDM 79.12 1254.7
SGDM + 32-bit Shampoo 80.69 1882.6
SGDM + 4-bit Shampoo (VQ) 79.45 1341.0
SGDM + 4-bit Shampoo (CQ) 80.27 1319.5
SGDM + 4-bit Shampoo (CQ+EF) 80.52 1341.0

Swin-Tiny

AdamW 78.28 1095.3
AdamW + 32-bit Shampoo 79.84 1248.6
AdamW + 4-bit Shampoo (VQ) 78.33 1116.8
AdamW + 4-bit Shampoo (CQ) 79.29 1111.5
AdamW + 4-bit Shampoo (CQ+EF) 79.45 1116.8

ViT-Small

AdamW 73.00 2930.0
AdamW + 32-bit Shampoo 77.95 3448.9
AdamW + 4-bit Shampoo (VQ) 74.56 3001.7
AdamW + 4-bit Shampoo (CQ) 77.34 2983.7
AdamW + 4-bit Shampoo (CQ+EF) 77.74 3001.7

6.1. Test Performance
To ensure a fair comparison between vanilla 4-bit Sham-
poo and our method, we apply off-diagonal 4-bit block-
wise quantization to Shampoo’s preconditioners while re-
taining diagonal elements in 32-bit, defining this as vanilla
4-bit Shampoo. As shown in Tab. 2, off-diagonal quantiza-
tion only slightly increases peak memory but improves test
performance. Thus, we adopt off-diagonal quantization for
vanilla 4-bit Shampoo in all experiments.

As shown in Tab. 3, 4-bit Shampoo with Cholesky quan-
tization consistently outperforms vanilla 4-bit Shampoo.
For instance, with SGDM as the base optimizer for ResNet-
34 on CIFAR-100, it achieves 80.27% test accuracy versus
79.45% for vanilla 4-bit Shampoo. Similarly, with AdamW
for ViT-Small on CIFAR-100, it reaches 77.34% compared

Table 4. Test accuracy (%) and peak memory (MB) on Tiny-
ImageNet. Here VQ denotes vanilla quantization, CQ denotes
Cholesky quantization, and EF denotes error feedback.

Model Optimizer Accuracy Memory

VGG-19

SGDM 62.19 1632.8
SGDM + 32-bit Shampoo 63.36 2102.5
SGDM + 4-bit Shampoo (VQ) 62.34 1697.8
SGDM + 4-bit Shampoo (CQ+EF) 63.51 1697.8

ResNet-34

SGDM 68.27 4221.3
SGDM + 32-bit Shampoo 69.11 4846.0
SGDM + 4-bit Shampoo (VQ) 68.43 4307.7
SGDM + 4-bit Shampoo (CQ+EF) 68.88 4307.7

Swin-Tiny

AdamW 60.74 1105.5
AdamW + 32-bit Shampoo 62.73 1256.8
AdamW + 4-bit Shampoo (VQ) 61.28 1126.9
AdamW + 4-bit Shampoo (CQ+EF) 62.81 1126.9

ViT-Small

AdamW 55.21 2944.2
AdamW + 32-bit Shampoo 58.11 3468.1
AdamW + 4-bit Shampoo (VQ) 56.47 3016.0
AdamW + 4-bit Shampoo (CQ+EF) 57.51 3016.0

to 74.56%. This improvement stems from Cholesky quan-
tization’s ability to recover preconditioners from Cholesky
factors, better preserving the spectral properties of 32-bit
Shampoo preconditioners (Sec. 4.2).

Moreover, experimental results in Tab. 3 validate the ef-
fectiveness of the error compensation strategy for Cholesky
factors introduced in Sec. 4.3. With SGDM as the base op-
timizer for ResNet-34 on CIFAR-100, 4-bit Shampoo with
compensated Cholesky decomposition improves test accu-
racy by 0.25% over 4-bit Cholesky quantization. Similarly,
with AdamW for ViT-Small on Tiny-ImageNet, it achieves
a 0.4% improvement. This consistent gain stems from EF,
which retains and integrates quantization errors from pre-
vious steps into the updated Cholesky factors before each
quantization, iteratively minimizing quantization errors.

Experimental results on larger image classification
datasets (Tabs. 4 and 5) further validate the superiority of
our 4-bit Shampoo with compensated Cholesky quantiza-
tion. On Tiny-ImageNet, it consistently improves test ac-
curacy by over 0.45% compared to vanilla 4-bit Shampoo,
whether using SGDM or AdamW as the base optimizer. For
ResNet-50 and ViT-Base on ImageNet, it increases test ac-
curacy by 0.27% and 0.73%, respectively, achieving perfor-
mance close to the original 32-bit Shampoo.

For LLM pre-training experiments (Tab. 6), our 4-bit

22639

Table 5. Comparison of test accuracy (%), wall-clock time (min),
and peak memory (MB) on the ImageNet dataset.

Model Optimizer Accuracy Time Memory

ResNet-50

Base 77.56 2106.4 11356.2
32-bit 78.06 1841.1 11986.4
4-bit (VQ) 77.73 1882.8 11445.2
4-bit (ours) 78.00 1899.4 11445.2

ViT-Base

Base 72.59 1741.6 11839.7
32-bit 75.47 1392.4 13319.1
4-bit (VQ) 72.28 1406.2 12052.3
4-bit (ours) 75.01 1409.6 12052.3

Table 6. Comparison of test perplexity (PPL, lower is better), up-
date time (min), and peak memory (GB) on the C4 dataset.

Model Optimizer PPL Time Memory

LLaMA-130M

Base 27.32 162.9 45.9
32-bit 26.93 169.1 48.2
4-bit (VQ) 28.08 170.5 46.2
4-bit (ours) 26.98 178.9 46.2

LLaMA-350M

Base 24.29 431.7 52.9
32-bit 24.07 443.8 58.8
4-bit (VQ) 25.14 445.3 53.7
4-bit (ours) 23.99 456.2 53.7

LLaMA-1B

Base 48.39 403.7 59.0
32-bit Out of GPU Memory
4-bit (VQ) 48.53 411.4 61.9
4-bit (ours) 46.31 425.0 61.9

Shampoo with compensated Cholesky quantization con-
sistently achieves lower test perplexity than vanilla 4-bit
Shampoo and the base optimizer. Its performance closely
matches 32-bit Shampoo, provided the 32-bit version fits
within GPU memory. These results demonstrate the effec-
tiveness of our quantization strategy in preserving test per-
formance for large-scale neural network training.

6.2. Memory and Computational Efficiency
For GPU memory usage, Tabs. 3 to 6 show that 4-bit quan-
tization significantly reduces the peak memory consump-
tion of 32-bit Shampoo. For instance, with SGDM as the
base optimizer for ResNet-34 on CIFAR-100, 4-bit Sham-
poo lowers peak memory by over 540MB, reducing usage
by more than 28%. Similarly, with AdamW for LLaMA-
350M on C4, it reduces peak memory by 5.1GB. More-
over, when training LLaMA-1B, 32-bit Shampoo exceeds
GPU memory limits on an A100 (80GB), whereas our 4-bit
Shampoo runs efficiently with strong test performance.

Additionally, as shown in Tab. 3, 4-bit Cholesky quan-
tization further reduces peak GPU memory usage com-
pared to vanilla quantization. For example, when train-
ing ResNet-34 on CIFAR-100 with SGDM, it reduces peak
memory by 21.5MB, accounting for 25% of the 86.3MB
overhead introduced by vanilla 4-bit Shampoo’s precondi-
tioners. This efficiency arises from storing only the lower
triangular Cholesky factors C̄L

k
, C̄

R

k
, which require half the

memory of full matrices Lk, Rk (Sec. 4.2). Thus, 4-bit
Shampoo with Cholesky quantization achieves additional
memory savings over vanilla 4-bit Shampoo. See Ap-

pendix C.4 for further details.
For computational efficiency, Tabs. 5 and 6 show that

the overhead introduced by compensated Cholesky quan-
tization over vanilla 4-bit quantization is minimal. When
training ResNet-50 and ViT-Base on ImageNet, the addi-
tional computation time is under 20 minutes, accounting for
less than 1% of the total training time. For LLaMA training
on the C4 dataset, it adds less than 15 minutes, contributing
to under 5% of the total training time.

6.3. Ablation Study
Comparison with [51]. We compare our 4-bit Shampoo
with [51] across a variety of tasks. As shown in Tab. 7, our
method consistently outperforms [51].

Table 7. Test accuracy (%) and PPL of [51] and our algorithm.

Model VGG-19 Swin-Tiny LLaMA-350M LLaMA-1B
Metric Acc. (↑) Acc. (↑) PPL (↓) PPL (↓)
4-bit ([51]) 74.71 79.04 24.39 48.32
4-bit (ours) 75.21 79.45 23.99 46.31

Effects of ϑ and ϑe. Following modern Shampoo algo-
rithms [3, 43], we maintain an exponential moving average
of Cholesky factors and error states. Tab. 8 shows the ro-
bustness of our method to momentum coefficients ϑ,ϑe.

Table 8. Test accuracy (%) for ResNet-34 on CIFAR-100.

ω,ωe 0.6 0.7 0.8 0.9 0.95 0.98
Accuracy 80.40 80.36 80.44 80.47 80.52 80.30

More Optimizers. We further evaluate RMSprop as the
base optimizer. As shown in Tab. 9, our 4-bit Shampoo con-
sistently outperforms vanilla 4-bit Shampoo while reducing
memory usage compared to the 32-bit version.
Table 9. Test accuracy (%) and peak memory (MB) for Swin-Tiny
on CIFAR-100 with RMSprop as the base optimizer.

Optimizer Accuracy Memory
RMSprop 74.35 1066.1
RMSprop+32-bit Shampoo 75.67 1219.5
RMSprop+4-bit Shampoo (VQ) 74.82 1087.5
RMSprop+4-bit Shampoo (ours) 75.31 1087.5

7. Conclusion
We propose 4-bit Shampoo, a memory-efficient precondi-
tioned gradient method that significantly reduces GPU us-
age while maintaining performance close to 32-bit Sham-
poo. By quantizing only the lower-triangular Cholesky fac-
tors to 4 bits, our approach halves memory cost while pre-
serving spectral properties. An error feedback mechanism
further corrects quantization errors at each step. We prove
convergence in nonconvex settings and demonstrate strong
results on image classification and LLM pre-training.
Limitations. (a) Our CQ and EF are currently tested only
with Shampoo, though they are applicable to other precon-
ditioned methods, which we leave for future work. (b) Due
to limited compute, we focus on image classification and
LLM pre-training, leaving domains like detection, video
generation, and large-scale fine-tuning for future study.

22640

Acknowledgments
This research is supported by the Ministry of Education,
Singapore, under its AcRF Tier 2 Funding (Proposal ID:
T2EP20224-0048) and its AcRF Tier 1 grant (project ID:
23-SIS-SMU-063). Any opinions, findings and conclusions
or recommendations expressed in this material are those of
the author(s) and do not reflect the views of the Ministry of
Education, Singapore.

References
[1] Naman Agarwal, Rohan Anil, Elad Hazan, Tomer Koren,

and Cyril Zhang. Disentangling adaptive gradient methods
from learning rates. arXiv preprint arXiv:2002.11803, 2020.
5

[2] Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and
Milan Vojnovic. Qsgd: Communication-efficient sgd via gra-
dient quantization and encoding. Advances in neural infor-
mation processing systems, 30, 2017. 2

[3] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and
Yoram Singer. Scalable second order optimization for deep
learning. arXiv preprint arXiv:2002.09018, 2020. 1, 2, 8

[4] Michel Benaı̈m, Josef Hofbauer, and Sylvain Sorin. Stochas-
tic approximations and differential inclusions. SIAM J. Con-
trol and Optimization, 44(1):328–348, 2005. 3

[5] Jérôme Bolte and Edouard Pauwels. Conservative set valued
fields, automatic differentiation, stochastic gradient methods
and deep learning. Mathematical Programming, 188:19–51,
2021. 6, 3

[6] Vivek S Borkar. Stochastic approximation: a dynamical sys-
tems viewpoint. Springer, 2009. 3

[7] Tom B Brown. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020. 1

[8] Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sid-
ford. Lower bounds for finding stationary points ii: first-
order methods. Mathematical Programming, 185(1):315–
355, 2021. 6

[9] Frank H Clarke. Optimization and nonsmooth analysis.
SIAM, 1990. 3

[10] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
policies from data. arXiv preprint arXiv:1805.09501, 2018.
5

[11] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition workshops, pages 702–703, 2020. 5

[12] Aris Daniilidis and Dmitriy Drusvyatskiy. Pathological sub-
gradient dynamics. SIAM Journal on Optimization, 30(2):
1327–1338, 2020. 6, 3

[13] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Ja-
son D Lee. Stochastic subgradient method converges on tame
functions. Foundations of Computational Mathematics, 20
(1):119–154, 2020. 6, 3, 4

[14] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 6

[15] Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettle-
moyer. 8-bit optimizers via block-wise quantization. arXiv
preprint arXiv:2110.02861, 2021. 2, 3

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2020. 1, 3, 6

[17] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-
gradient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 12(7),
2011. 1, 2

[18] John C Duchi and Feng Ruan. Stochastic methods for com-
posite and weakly convex optimization problems. SIAM J.
Optimization, 28(4):3229–3259, 2018. 3

[19] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of quan-
tization methods for efficient neural network inference. In
Low-Power Computer Vision, pages 291–326. Chapman and
Hall/CRC, 2022. 3

[20] Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practi-
cal quasi-newton methods for training deep neural networks.
Advances in Neural Information Processing Systems, 33:
2386–2396, 2020. 1, 2

[21] Chun-Hua Guo and Nicholas J Higham. A schur–newton
method for the matrix p th root and its inverse. SIAM Journal
on Matrix Analysis and Applications, 28(3):788–804, 2006.
3

[22] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo:
Preconditioned stochastic tensor optimization. In Interna-
tional Conference on Machine Learning, pages 1842–1850.
PMLR, 2018. 1, 2

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016. 1, 2, 6, 5

[24] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan
Clark, et al. Training compute-optimal large language mod-
els. arXiv preprint arXiv:2203.15556, 2022. 1

[25] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec
Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361,
2020. 1

[26] Diederik P Kingma. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 1, 2

[27] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 3, 6

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-

22641

works. Advances in neural information processing systems,
25, 2012. 5

[29] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 6

[30] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. Biobert:
a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics, 36(4):1234–1240,
2020. 1

[31] Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song.
Vision transformer for small-size datasets. arXiv preprint
arXiv:2112.13492, 2021. 6, 5

[32] Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient
optimizers with 4-bit states. Advances in Neural Information
Processing Systems, 36, 2024. 2, 3

[33] Vladislav Lialin, Namrata Shivagunde, Sherin Muckatira,
and Anna Rumshisky. Relora: High-rank training through
low-rank updates. arXiv preprint arXiv:2307.05695, 2023.
6, 5

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 1, 6, 5

[35] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019. 1, 6

[36] James Martens and Roger Grosse. Optimizing neural net-
works with kronecker-factored approximate curvature. In In-
ternational Conference on Machine Learning, pages 2408–
2417. PMLR, 2015. 1, 2

[37] Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach,
Sham Kakade, and Lucas Janson. A new perspective on
shampoo’s preconditioner. arXiv preprint arXiv:2406.17748,
2024. 2

[38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervi-
sion. In International conference on machine learning, pages
8748–8763. PMLR, 2021. 1

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. Journal of machine learning
research, 21(140):1–67, 2020. 6

[40] Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. Ef21: A
new, simpler, theoretically better, and practically faster error
feedback. Advances in Neural Information Processing Sys-
tems, 34:4384–4396, 2021. 2, 4

[41] Herbert Robbins and Sutton Monro. A stochastic approxima-
tion method. The Annals of Mathematical Statistics, pages
400–407, 1951. 1

[42] Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu.
1-bit stochastic gradient descent and its application to data-
parallel distributed training of speech dnns. In Interspeech,
pages 1058–1062. Singapore, 2014. 2, 4

[43] Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki,
Jose Gallego-Posada, Zhijing Li, Kaushik Rangadurai,
Dheevatsa Mudigere, and Michael Rabbat. A distributed
data-parallel pytorch implementation of the distributed
shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023. 1, 2, 8

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 6

[45] Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momentum
in deep learning. In International Conference on Machine
Learning, pages 1139–1147. PMLR, 2013. 1, 6

[46] Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam
Rajbhandari, Conglong Li, Xiangru Lian, Ji Liu, Ce Zhang,
and Yuxiong He. 1-bit adam: Communication efficient large-
scale training with adam’s convergence speed. In Inter-
national Conference on Machine Learning, pages 10118–
10129. PMLR, 2021. 2, 4

[47] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-
rmsprop: Divide the gradient by a running average of its re-
cent magnitude. COURSERA: Neural networks for machine
learning, 4(2):26–31, 2012. 2

[48] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023. 1, 6

[49] Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi.
Powersgd: Practical low-rank gradient compression for dis-
tributed optimization. Advances in Neural Information Pro-
cessing Systems, 32, 2019. 2

[50] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira,
David Brandfonbrener, Lucas Janson, and Sham Kakade.
Soap: Improving and stabilizing shampoo using adam. arXiv
preprint arXiv:2409.11321, 2024. 2

[51] Sike Wang, Jia Li, Pan Zhou, and Hua Huang. 4-bit sham-
poo for memory-efficient network training. arXiv preprint
arXiv:2405.18144, 2024. 2, 3, 4, 8

[52] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan
Wang, Yiran Chen, and Hai Li. Terngrad: Ternary gradients
to reduce communication in distributed deep learning. Ad-
vances in neural information processing systems, 30, 2017.
2

[53] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet
strikes back: An improved training procedure in timm. arXiv
preprint arXiv:2110.00476, 2021. 6

[54] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim Dabravolski, Mark
Dredze, Sebastian Gehrmann, Prabhanjan Kambadur, David
Rosenberg, and Gideon Mann. Bloomberggpt: A large lan-
guage model for finance. arXiv preprint arXiv:2303.17564,
2023. 1

[55] Nachuan Xiao, Xiaoyin Hu, Xin Liu, and Kim-Chuan Toh.
Adam-family methods for nonsmooth optimization with
convergence guarantees. Journal of Machine Learning Re-
search, 25(48):1–53, 2024. 3

22642

[56] Tian Xie and Jeffrey C Grossman. Crystal graph convolu-
tional neural networks for an accurate and interpretable pre-
diction of material properties. Physical review letters, 120
(14):145301, 2018. 1

[57] Xingyu Xie, Zhijie Lin, Kim-Chuan Toh, and Pan Zhou.
Loco: Low-bit communication adaptor for large-scale model
training. arXiv preprint arXiv:2407.04480, 2024. 2, 4

[58] Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and
Shuicheng Yan. Adan: Adaptive nesterov momentum algo-
rithm for faster optimizing deep models. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024. 1, 5

[59] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xi-
aoxia Wu, Conglong Li, and Yuxiong He. Zeroquant: Ef-
ficient and affordable post-training quantization for large-
scale transformers. Advances in Neural Information Process-
ing Systems, 35:27168–27183, 2022. 3

[60] Hongwei Yong, Ying Sun, and Lei Zhang. A general regret
bound of preconditioned gradient method for dnn training.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7866–7875, 2023. 1,
2, 3

[61] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international con-
ference on computer vision, pages 6023–6032, 2019. 5

[62] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 5

[63] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit,
Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and Suvrit
Sra. Why are adaptive methods good for attention mod-
els? Advances in Neural Information Processing Systems,
33:15383–15393, 2020. 1

[64] Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang,
Anima Anandkumar, and Yuandong Tian. Galore: Memory-
efficient llm training by gradient low-rank projection. arXiv
preprint arXiv:2403.03507, 2024. 6, 5

[65] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and
Yi Yang. Random erasing data augmentation. In Proceed-
ings of the AAAI conference on artificial intelligence, pages
13001–13008, 2020. 5

22643

	Introduction
	Related Work
	Preliminaries
	Practical Shampoo
	Linear Square Quantization for Compression

	Memory-Efficient Shampoo Via Compensated Cholesky Quantization
	Quantization for Shampoo Compression
	Efficient and Stable Cholesky Quantization
	Compensated Cholesky Quantization

	Theoretical Analysis
	Smooth Nonconvex Training Loss
	Nonsmooth Nonconvex Training Loss

	Experiments
	Test Performance
	Memory and Computational Efficiency
	Ablation Study

	Conclusion
	Practical 32-bit Shampoo
	Proofs in Theoretical Analysis
	Smooth Nonconvex Training Loss
	Nonsmooth Nonconvex Training Loss

	Experimental Details
	Toy Example
	Matrix Distance
	Training Hyperparameters
	Memory Efficiency

