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Abstract

Current video models fail as world model as they lack fine-
graiend control. General-purpose household robots require
real-time fine motor control to handle delicate tasks and
urgent situations. In this work, we introduce fine-grained
multimodal actions to capture such precise control. We con-
sider senses of proprioception, kinesthesia, force haptics,
and muscle activation. Such multimodal senses naturally en-
ables fine-grained interactions that are difficult to simulate
with text-conditioned generative models. To effectively simu-
late fine-grained multisensory actions, we develop a feature
learning paradigm that aligns these modalities while pre-
serving the unique information each modality provides. We
further propose a regularization scheme to enhance causal-
ity of the action trajectory features in representing intricate
interaction dynamics. Experiments show that incorporat-
ing multimodal senses improves simulation accuracy and
reduces temporal drift. Extensive ablation studies and down-
stream applications demonstrate the effectiveness and prac-
ticality of our work."

1. Introduction

For general-purpose household robots to operate dexterously
and safely like humans, they need to be enabled with multi-
potent sensory systems. Our interoceptive senses, including
kinesthesia, proprioception, force haptics, and muscle acti-
vation, work together to enable us to dynamically engage
with our surroundings. The ability to simulate such multi-
sensory actions is crucial for developing robust embodied
intelligence and guiding future directions for sensor design.

Traditionally, physics engines are used to simulate state
changes of the environment [23, 36, 42, 62, 63], but creating
a physics simulator with fine-grained multisensory capabili-
ties for diverse tasks is both computationally expensive and
complex in engineering. Recent works [17, 71] demonstrate
the potential to use text-conditioned video models as simula-
tors, but text struggles to capture the delicate control needed
for tasks such as culinary or surgical activities. In this work,
we introduce multisensory interaction signals in generative
simulation to enable fine-grained control.
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Figure 1. Overview. We introduce a new task for fine-grained
control of video generative model using multisensory interaction
signals.

We focus on learning an effective multimodal represen-
tation to control generative simulation. Prior works on mul-
timodal feature learning [16, 19, 28, 37, 59, 76] focus the
task of cross-modal retrieval. They thus emphasize multi-
modal alignment but overlook the unique information each
modality provides. As a result, they are insufficient for
conditioning generative simulators. For our task, we intro-
duce an multimodal feature extraction paradigm that align
modalities to a shared representation space while preserving
the unique aspects each modality contributes. Addition-
ally, we propose a generic feature regularization scheme to
ensure the encoded action trajectories to be more context-
and-consequence-aware, allowing for seamless integration
with downstream video generation frameworks.

In this work, we introduce multisensory interoceptive
signals of haptic forces, muscle stimulation, hand poses,
and body proprioception to generative simulation for fine-
grained responses. We focus on learning effective multisen-
sory action representation to control generative video mod-
els. Our proposed multimodal feature extraction paradigm
aligns different sensory signals while preserving the unique
contributions from each modality. Additionally, we intro-
duce a novel feature regularization scheme that the extracted
latent representations of action trajectories to capture the
intricate causality in context and consequences in interac-
tion dynamics. Extensive comparisons to existing methods
shows that our multisensory method helps increase accu-
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racy by 36 percent and improve temporal consistency by
16 percent. Ablation studies and downstream applications
further demonstrate the effectiveness and practicality of our
proposed approach. To summarize, our contributions are:

* To the best of our knowledge, we are the first to introduce
multisensory signals, including touch, pose, and muscle ac-
tivity, to generative simulation for fine-grained responses.

* We devise a multimodal feature extraction paradigm that
aligns modalities to a shared representation space while
preserving the unique information each modality provides.

* We propose a novel feature regularization scheme to en-
hance encoded action trajectories to be context and conse-
quence aware, capturing intricate interaction dynamics.

* We compare our proposed framework with prior ap-
proaches and also provide various possible downstream
applications in policy optimization, planning, and more.

2. Simulating Multi-Sensory Interactions

We focus on two perspectives of modeling multi-sensory
interactions. We first consider ways of working with
multimodal signals, arriving at a multi-sensory action con-
ditioning feature. We then focus on effective interaction
modeling to capture the relationship between context and
consequences in the learned representation. Finally, we cast
our multisensory action feature into a generative video model
to simulate accurate exteroceptive visual responses.
Problem Statement. Simulators, at core, are next state
prediction models. They estimate the consequential state
changes of the world resulted from actions. Let ¢ € [0, 7]
denote time frames, where tyy € [0, — 1] denotes the
history horizon, and tgwe € [t,T] are the future frames.
For our task, at a snapshot of time ¢, we describe the state
of the external world s; as visual observations z; € O, that
are the video frames. We observe set of sensory modalities
denoted as a;,, of total number of M modalities, m &
[1, M]. Given past observations ({a[o,t—1],m }, Z[o,+—1]) and
current action sequence {a[t,T],m}’ the goal of the simulator
is to predict the consequential future states s(; 7} represented
as a set of frames z[; 77. We denote the encoded video frame
feature as z,, that corresponds to x|t € [1,7], and we
denote the encoded modality-specific features are denoted
as z,m, and cross-modal feature is denoted as y;. Under
the generative simulation framework, we focus on extracting
effective multimodal action representation y; from a set of
multisensory actions {(I[t,T],m} to condition a downstream
generative simulator gy to accurately predict future states
@[, 7). We include a notation chart in Appendix Table. 4.

2.1. Multi-Sensory Action Representation

Multisensory actuation data are composed of temporal se-
quences of various sensory modalities of different granular-
ity, dimension, and scale. How to effectively represent them,
synchronize them, and combine them so they can accurately
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Figure 2. Overview. We focus on learning effective multimodal
action representations and propose a generative simulation method.

control a generative simulator are the three key challenges
in generative multimodal feature learning.

One straight-forward way to extract feature representa-
tions from various sensory modalities is through mixture-of-
expert (MoE) encodings. It is a commonly employed method
for encoding heterogeneous data [44, 52, 55]. Various ex-
pert encoder heads f,,,(-) are used to extract features z; ,,, =
fm(a¢m) that represent each sensory modality m € [1, M]
at each time step ¢. To ensure that the encoded information in
z¢,m 1s meaningful, a self-supervised reconstruction scheme
is introduced through MoE decoding branches d,, (-) across
each sensory modality G, = dp, (fm(ar,m)) supervised by
reconstruction loss, Lsst, = ||Gt,m — @t.m||%, which gives
rise to a set of MoE features {2; ,, }/, as shown in Fig. 2.

Before we combine these modality-specific features into
a coherent multimodal feature, we need to synchronize them
into the same representation space. Ideally, the synchro-
nization strategy should align different MoE features to im-
plicit follow some shared latent structure and simultaneously
preserve uniqueness of each modality, e.g. hand pose can
inform the action direction, while forces and muscle EMG
both indicate action magnitude. These information should be
meaningfully packed into different dimensions of the action
feature. To encourage such association, we introduce an
implicit cross-modal anchoring through channel-wise cross
attention. We encode context video frames into latent vectors
Zuo.,_,y Of dimension d, and obtain an anchor feature z,, by
averaging across frames. We then use a learnable linear layer
to project MoE features z; ,,, to anchor dimension d. Taking
a channel-wise cross-attention between the anchor feature
2, and action features {2 ,,, }2 allows channels of the ac-
tion latents {2; .} to be associated through the channels
of z,. In this way, we can train the linear projection layer
to implicitly encourage a shared latent structure to arise. Let
Z¢,m,; denote the j-th dimension of the action latent vector
2t m of modality m and timestep ¢.

d

CXP Zag ;-2t,m,
= § d Zt,m,j (1)
T D=1 €XP Zag; t Atym,l

Zt,m,j
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We are now ready to combine this set of modality-specific
features {2, }24_, into a cross-modal feature y;. Different
sensory modalities reflect different aspects of our actuation.
These sensory modalities complement each other to provide
comprehensive information about different actuations. This
intuition suggests two properties of our multi-sensory in-
put, over-completeness and permutation invariance. A good
feature fusion function works as an information bottleneck
to only select the most useful information. Moreover, un-
like text sentences or image pixels, data of various sensory
modalities is an unordered set. Therefore, the fusion scheme
needs to be permutation-invariant regardless the modality
order of the input. These properties encourage us to use sym-
metric functions for feature fusion. After comparing various
symmetric functions (Sec. 3.3), we choose softmax weight-
ing function to aggregate different modalities of actuation,
M

Yt = Z WimZt,m, Where wi, = =M 5
m=1 Zm’:l emem

Remark. We avoid explicit alignment of the features
through contrastive learning, as the task requires us to pre-
serve differences between as some modalities that are com-
plementary. The channel-wise softmax function helps us
obtain a final vector allowing substitutional modalities to
work together on the same dimensions. We observe that
hand forces and the muscle EMG are highly correlated. In
this way, these latent dimensions are implicitly attributed
to reflect similar action property, e.g. strength for muscle
and haptic forces, and thus increase robustness to missing
modalities at test-time.

z
e*t.m

2.2. Context-Aware Latent Interaction

Previous steps have taken us to learn features that represent
actions. Interaction is a special subset of action that bears
the notion of contexts and consequences. We take one step
further to investigate ways to represent interaction. An
effective interaction feature should not only summarize the
action property itself but engage with its contexts and hint at
potential consequences.

Latent Projection Interaction. Under our task setting, inter-
action describes a way to take the observed context x[g ;1
to the consequential states x[; 7. In the latent space, vectors
that represent interactions are analogous to flow vectors that
can be applied to various context states zy, , ,, to the con-
sequential changes states 2z, ,,. We wish to capture such
effects in the latent vector itself. Intuitively, the direction of
latent interaction vectors {y; } should consistently introduce
similar effects relative to any context frames where they are
applied. In other words, a good interaction vector should
be locally constrained to its context frame, at the same time
when applied to different contexts, the interaction vector
should introduce similar behavior relative to the new context.
These observations encourage us to constrain the behavior of
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Figure 3. Latent Interaction

action vectors through projective regularization. By remov-
ing the projected components on the context vector from the
action vector, we extract the orthogonal component of the
actions that reflects the dominant direction of change that an
action can impose onto its context

Zivt—l > Zwt—l (2)

|Z$f,—1| |Z$t—l‘

yé =Yt — <yt7

In addition to direction constraint, we further capture the
rate of such changes through an additional supervision sig-
nal, by matching the norm of the interaction vector y;
with the magnitude of frame-wise differences, Lnoryv =
Ilyi| = |22, — 2z, |||*. As shown in Fig. 3, these constraints
help introduce the desired behavior in latent space. The
two latent trajectories are formed by imposing the same in-
teraction vector y; to two different context frames z,, and
Zy . Because the direction of change follows the orthogonal
direction locally to the specific context frames and by the
same magnitude, the two trajectories are similar.

Relaxed Hyperplane Interaction. A geometric interpreta-
tion of the latent interaction y; reveals that the relative angle
between context x;_; and interaction y; depicts two spaces
partitioned by a hyperplane defined by the normal vector
Zz,_,- This observation encourages us to rethink latent inter-
action modeling. The previous projection perspective forms
a hard constraint where the interaction must follow the or-
thogonal direction of the context. In reality, behaviors of
interactions might be slightly different when context changes.
Hence, we relax the hard orthogonal projection constraint.
Through a geometric lens, the context vector z,, , can be
viewed as a normal vector that defines a partitioning hyper-
plane, where interaction y; with significant consequence to
x—1 lies in the positive hemisphere, and negligible interac-
tion resides below the hyperplane is clipped and projected.

y; = i(yta zltfl) =

Frpq Fry_q .
— . otherwise
Yt <y“ |th,1\> B

We use this formulation to regularize interaction feature
vectors 3’ and adopt the frame-wise difference magnitude
constraint. The learned interaction feature y; is used to
condition diffusion network to simulate future video frames.
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2.3. Conditioning Generative Visual Simulator
Inspired by [33, 71], our simulator employs a video diffu-
sion model to solve for future observations. Denoising diffu-
sion [26], in the forward process, predicts noise € ~ N (0, I)
applied to video frames [, 1) according to a noise schedule
a™ € R over several steps n € [1, N|, where a™ = IT7_; a°.
The optimization objective to train model gy is,

2
Lvpm = H€ — 96 ( anzy )+ V1—aren | 33t—17a) H

For the task of future observation prediction, we use the
learned model gy and reverse the process by iteratively de-
noising an initial noise sample xf;7)" = ¢ ~ N(0,I) to
recover video frames xﬁ_Tl] at denoising step n — 1. When
n = 0, we obtain the estimated future video frames ;. 7).

ot = L Tl — Lot (x” n|x a)
7 — J [t,T] WQG [t,T]> t—15
1— ~n—1
+o,0 NN(O,%(I — O[)I)

We use 12VGen [74] as our diffusion backbone. It uses a 3D
UNet [64] with dual condition architecture that generates
future video frames x[; 7 based on text prompt a and context
image x;_1. We modify I2VGen [74] replacing the single
context frame with a history horizon of & context frames by
concatenating in the channel dimension. We also replace the
text conditioning with our learned multimodal action feature
yt+, where the cross attention is applied between noise frame
samples and our conditioning feature y;. Different from text-
prompted simulation [71, 74], where a single text prompt
a is repeatedly used for all frames, our action condition
is temporal, allowing our temporal attention to be frame-
specific. (moved from end of sec. 2.2) We train the model
end-to-end using a weighted sum of the aforementioned loss
functions. The final supervision signal is given by £ =
MLvpum + MoLsst, + A3Lxorm, Where Ap = 10.0, Ay =
1.0, A3 = 0.1. The relative weighting between different loss
components {\} are chosen to align the magnitude of each
component to the same level. We provide the details of our
network architecture in Appendix Sec. 7.4 and in Fig. 11.

3. Experiments

We design experiments to answer the following questions:

* Do we need multisensory action data to achieve fine-
grained control over simulated videos?

* How do our multimodal feature extraction compare with
existing ones when used for conditioning?

¢ Is our method robust to missing modalities at test time and
how they influence prediction?

Experimental Setup. We use the ActionSense [13] dataset

for our experiments. It includes five different interoceptions,

including hand haptic forces, EMG muscle activities, hand

Method MSE| PSNR1T LPIPS| FVDJ]
UniSim verb 0.131 14.1 0.332 337.9
UniSim phrase 0.118 14.6 0.321 275.9
UniSim sentence 0.117 14.6 0.317 251.7
Body-pose only 0.127 144 0.345 295.9
Hand-pose only 0.122 14.5 0.349 307.6
Muscle-EMG only 0.134 13.8 0.364 348.2
Hand-force only 0.120 14.5 0.334 278.9
Ours multisensory 0.110 16.0 0.276 203.5
Ours w/ phrase 0.113 16.0 0.274 200.4
Ours w/ sentence 0.111 16.0 0.274 201.7

Table 1. Quantitative comparison
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pose, body pose, and gaze tracking. To the best of our knowl-
edge, it is the first and only multi-sensory dataset with paired
actuation monitoring and video sequences. While we focus
our efforts on multimodal representation, to show the gener-
ality of our proposed method, we provide additional qualita-
tive results on other unimodal handpose datasets, H20 [34]
and HoloAssist [65] in Sec. 7.8.12 in Appendix. For our
main experiments, we use ActionSense dataset and subject
five as our test set, and the remaining four subjects as training
and validation set. We parse the dataset into paired sequences
of 12 frames, and use first 4 frame as the context frames and
predict the following 8 frames. All experiments and meth-
ods use the same diffusion backbone, modified 12VGen [74]
(Sec. 2.3), which is a dual condition video network that
predicts frames x[; 7 based on conditioning prompt a and
context image(S) x[o,;—1)- We vary the conditioning type a
for all experiments. All methods are trained from scratch on
the same data with the same hardware and software setup.
Due to computational constraints, our experiments and com-
parisons are conducted with videos of 64 x 64 resolution. We
provide higher resolution results of our model of 128 x 128
and 192 x 192 (Sec. 7.8.11). Experiments on out-of-domain
generalization is shown in Sec. 7.8.8.

Evaluation Metric. We are interested in how various types
of data and method used for conditioning can have different
effects when simulating videos. We evaluate on a withheld
test set from ActionSense [13], and use three different met-
rics to evaluate the quality of predicted video trajectories
and the ground truth video trajectories, following [71]. We
use MSE, PSNR, LPIPS, and FVD scores as evaluation met-
rics to quantify the quality and accuracy of predicted video
frames. In all tables, | means lower is better for the metric,
and 1 indicates higher is better.
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Comparison with Unimodal Simulations
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text and each action sensory modality. The first four frames are the context frames, and the last eight frames are predictions by each method.

3.1. Conditioning Action Modalities

We are interested in understanding whether we need mul-
tisensory action data to achieve fine-grained control over
simulated videos. To answer this question, we investigate
the benefit of different action signal modalities, including
text description, unimodal action, and multisensory action
as input. For fairness of comparison, we use the same video
generation model while varying the condition type.

Comparison with Text-conditioned Simulation. We
first compare our proposed method and the state-of-the-art
text-based video-diffusion simulator, UniSim [71]. We
vary the input condition with increasing details in de-
scription, using verb, phrase, sentence. Phrase
are composed of verbs and subjects, e.g. cut potato.
We add more detailed descriptions to form sentences,e.g.
person cut potato in a very fast manner,
while holding it with left hand. As shown
in Table. 1, our proposed method can achieve more accurate
future frame prediction, because it takes temporally fine-
grained action trajectories with subtle differences as inputs
to control the video prediction to match the action signals for
each time step, whereas the subtle differences in the action
trajectory are difficult to be accurately captured by text
descriptions. Fig. 7 further demonstrates that our method

Method MSE| PSNR{1 LPIPS| FVD|
Mutex 0.164 12.4 0.431 410.1
Imagebind 0.134 13.9 0.390 315.6
Languagebind 0.143 13.7 0.387 332.0
SignalAgnostic 0.127 14.3 0.361 267.5
Ours 0.110 16.0 0.276 203.5

Table 2. Quantitative comparison on multimodal feature extraction.
can be used to generate more diverse video trajectories from
the same context frames, whereas text-conditioned video
simulation is more prone to mode collapse, converging to
similar future frame predictions from similar context frames.
These new video trajectories generated with our method can
be used for data augmentation to compensate the scarcity
of paired action video data. As shown in Table. 1 and
Fig. 7, adding text phrase as an additional modality to
our method can help reduce model confusion. Additional
discussion is included in Appendix Sec. 7.8.1.

Comparison with Unimodal Action Simulation. We ex-
tend our experiments to test the necessity of multimodal
interaction by comparing to each action modality alone. As
there lacks direct baseline method that utilizes these action
modalities for simulation, we use our own method for en-
coding these modalities and conditioning video models. The
closest work to one of our unimodal baseline setting is [30],
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Comparison with Multimodal Feature Binding
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Figure 6. Comparison with multimodal feature extraction baselines. We compare with various multimodal feature extraction methods for
conditioning the video simulator. Similarly, the first four frames are context frames and the last eight frames are predictions.

which uses a two stage finetuning of stable diffusion to gener-
ate full-body videos from pixel-level dense poses assuming
static camera. The assumptions of dense poses, static cam-
era, and full-body video make it difficult and unfair for this
method to tackle our task setting with egocentric videos.

The middle section in Table. 1 shows that future video
frame prediction is most accurate when all modalities are
combined together. This is because not all modalities are
created equal, and our ability to swiftly control and operate
with our surroundings is a multiplicative effect of different
functions working together. As shown in Fig. 5, a simple task
of removing the pan from the stove top requires us to reach to
the pan (body pose), grab the pan (hand pose and force), lift
the pan (muscle and body pose), and finally turn around(body
pose). When training only with hand-forces, the model has
no information to locate the hand, and thus generate hand
holding random things in the image instead of the pan and
results drift off (Fig. 5). We almost never entirely isolate one
sense to interact with the world. Therefore, training with
a single modality is not enough for such tasks, even when
each signal is temporally fine-grained.

3.2. MultiModal Feature for Generative Simulation
For the task of multisensory action controlled simulation,
we study how multimodal action representations impacts
explicit pixel space. We compare our method with various
state-of-the-art multimodal feature extraction paradigms:

e Mutex [59] proposes to randomly mask out and project
some of the input modalities and directly align and match
the remaining modalities to future frames.

* LanguageBind [76] proposes to use text as a binding
modality instead of using images.

* ImageBind [19] is a contrastive binding technique that
leverages InfoNCE [47] contrastive loss to bind different
modality of features to clip-encoded image features.

» Signal-Agnostic learning [16, 37] extracts cross-modal
feature using signal-agnostic neural field.

As shown in Table 2, our multi-sensory interaction feature
outperforms baseline methods for multi-modal feature ex-
traction in controlled generative simulation. Different mul-
timodal tasks require distinct representations. Previous ap-
proaches [19, 40, 53, 57, 76] , designed mainly for cross-
modal retrieval, extract shared information via contrastive
learning or modality anchoring, emphasizing interchange-
ability between modalities. However, in generative simula-
tion, each action modality captures unique, complementary
aspects of human behavior. For example, TextBind [76]
uses contrastive loss to align various modalities with text
descriptions, which can erase the fine-grained temporal de-
tails of action signals, leading to compromised predictions.
Similarly, ImageBind [19] and Mutex [59] align action fea-
tures with visual frames, either by contrastive loss or L2
regression against pretrained CLIP features, but the inherent
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Figure 7. Simulating new video trajectories Comparing our multisensory method and text-based Unisim in generating diverse video

trajectories from same or different context frames. We show the last context frame ;1 and the predicted video frames ;7).

one-to-many mapping between similar actions and differ-
ent visual contexts hampers the network’s ability to extract
intrinsic motion, resulting in error accumulation and mode
collapse. Signal agnostic learning [16, 37] avoids contrastive
loss by letting gradients from different modalities optimize a
shared latent manifold, yet its loose coupling between action
and video modalities also leads to larger error. Therefore,
generative simulation demands representations that preserve
the complementary nature of signals, To meet these require-
ments, our propose method is better suited for this task.

3.3. Ablation Experiments

We provide comprehensive ablation studies to show how
different senses help with video prediction. We also conduct
ablation studies to validate various design choices and effect
of history horizon length (Appendix Sec. 7.8.5).
Robustness to Test Time Missing Modalities. We eval-
uate our model trained on all modalities with each of the
modalities removed, shown in Table 3a. We can see that the
prediction accuracy of our model is slightly influenced by
ablated modalities during test time. From the right side of
Fig. 8, we can see that our model can still make sensible
predictions under missing modalities, although prediction is
most accurate with all modalities included. The left side of
the Fig. 8 shows a stress test evaluating our model provided
with only one modality. We see when that the hand pose
trajectory is more accurate compared to other ones, which
hint at a task-specific critical modality. Comprehensive test-
time robustness tests are included in Appendix Sec. 7.8.3.
Additional results on training with ablated modalities are
included in Appendix Sec. 7.8.2.

Multimodal Feature Extraction We investigate how dif-
ferent multi-sensory fusion strategies affect simulated video
trajectories. To validate our softmax-ensemble approach,
we compare it with common symmetric fusion functions.
As shown in Table 3b, softmax outperforms mean and max
pooling. We avoid direct feature concatenation to maintain

Table 3. Ablation Experiments

Method MSE| PSNR{ LPIPS| FVD|
No hand pose 0.111 15.3 0.304 205.1
No hand force 0.113 15.5 0.307 205.0
No body pose 0.115 15.3 0.304 205.6
No muscle EMG 0.113 15.2 0.291 204.7
All sensory used 0.110 16.0 0.276 203.5
(a) Testing with missing modalities
Method MSE| PSNR{ LPIPS| FVDJ
Max 0.128 14.1 0.294 284.8
Mean 0.126 144 0.293 285.3
Concatenation 0.117 15.0 0.282 279.9
Without 3’ 0.142 13.7 0.327 339.0
Projection y’ 0.116 14.5 0.288 265.5
Ours full 0.110 16.0 0.276 203.5

(b) Ablation of network components

permutation invariance and ensure robustness when some
modalities are missing at test time. We also perform an ab-
lation study on our interaction feature 3y’ learning scheme.
Table 3b shows that removing the interaction module and us-
ing the action feature y as a condition significantly degrades
performance. Although the action feature contains all action
information, it does not effectively modify the context frame,
leading the downstream video model to focus on irrelevant
details and causing mode collapse. Adding hard projection
regularization on ¢’ greatly improves video prediction accu-
racy, though it remains slightly inferior to our full pipeline
that employs the relaxed hyperplane interaction scheme.

4. Downstream Applications

We show two potential downstream applications of our work
in policy optimization shown below and multimodal action
planning shown in Appendix Sec. 7.8.10.

Low-level Policy Optimization One downstream applica-
tion of our proposed action-conditioned video generative
simulator is to optimize a policy of low-level actuation. In-
spired by [71], We set up task as goal-conditioned policy
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optimization, where we optimize a policy to generate a trajec-
tory of low-level actuation a[; 7} that brings the environment
from start state sy to target sp. States are described by
images s; = x;. We show one use case of our model in goal-
conditioned policy optimization. We compare training of the
same policy network p(-)r, under two conditions. First, we
define the baseline method using the commonly employed
goal-conditioned policy training approach [10, 15, 54]. This
baseline is the policy network taking the starting state and
target state, depicted by two video frames zy and x7, and di-
rectly regress policy mp minimizing the L2 distance between
the predicted action a[1, 7] = mp(zg, 1) and ground truth
expert action trajectorya; 7). This L2 loss term is defined as
Lo =22 4t — atll2 = [|p(x0, 21) 7 — apr,1yll2- The sec-
ond condition is to train the same policy 7y in conjunction
with our pretrained simulator. We feed the action trajectory
predicted by policy network aj; 1) = mg(xo, z7) into our
pretrained simulator model g(-) to predict the video frames
from this action trajectory Zr = g(p(zo,21)r,)r- This
additional loss term is defined as Ly, = |7 — x7||2 =
llg(p(x0, 27)x, )T — 2 ||2- The total loss term for the sec-
ond condition is Lsimpoticy = La + Lsim. We evaluate the
effectiveness of by using L2 distance between the predicted

action a7 and ground truth action ay 1, which is defined
llaj, ) — ap,mylla. 27 MSE is a supporting metric that
compares target state and the simulated end state using our
simulator. Unfortunately, no other multisensory action simu-
lator exist to use for further validation. We see from Fig. 9
that adding our additional supervision signal helps to im-
prove policy optimization. Directly regressing multi-sensory
actions with a policy network is difficult because the action
space in our task setting is quite large, 2292 dimensional.
More results are shown in Fig. 15 in Appendix Sec. 7.8.9.

5. Conclusion

In this work, we introduce the concept of multisensory in-
teraction for fine-grained generative simulation. We focus
on learning effective multisensory feature representations to
effectively control a downstream video generative simula-
tor. Our proposed multimodal feature extraction paradigm
along with regularization scheme to extract action feature
vectors capable of accurately controlling video prediction
and robust to missing modalities at test time. We conduct ex-
tensive comparisons, ablations, and downstream applications
to showcase the merits of our method. We hope our work
brings insights and inspirations to the research community.
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