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Figure 1. We introduce a dynamic SLAM system to tackle the proactive scene decomposition and reconstruction from egocentric live
streams (first row). Only objects that are under proactive interactions will be decomposed (second) to maintain a consistent granularity.
This fashion leads to photorealistic modeling of the environment (third to fifth rows), enabling progressive scene decomposition (fifth row)

and robust object tracking (third and fourth rows).

Abstract

Human behaviors are the major causes of scene dynamics
and inherently contain rich cues regarding the dynamics.
This paper formalizes a new task of proactive scene decom-
position and reconstruction, an online approach that lever-
ages human-object interactions to iteratively disassemble
and reconstruct the environment. By observing these inten-
tional interactions, we can dynamically refine the decompo-
sition and reconstruction process, addressing inherent am-
biguities in static object-level reconstruction. The proposed
system effectively integrates multiple tasks in dynamic en-
vironments such as accurate camera and object pose esti-
mation, instance decomposition, and online map updating,
capitalizing on cues from human-object interactions in ego-
centric live streams for a flexible, progressive alternative
to conventional object-level reconstruction methods. Aided
by the Gaussian splatting technique, accurate and consis-

9780

tent dynamic scene modeling is achieved with photorealistic
and efficient rendering. The efficacy is validated in multiple
real-world scenarios with promising advantages.

1. Introduction

Understanding the ever-changing environment is vital but
fundamentally challenging for the vision and robotics com-
munities. While many existing methods attempt to solve
this problem by breaking down complex environments into
manageable and semantically meaningful components, they
often rely on passive data acquisition and pre-defined mod-
els to tackle 4D reconstruction or dynamic SLAM prob-
lems. While these methods can be effective in certain sce-
narios, they often struggle to capture the true dynamic na-
ture of the environments, resulting in incomplete or inac-
curate models. A key issue is the lack of consideration for
human activity, which is often the dominant force in shap-



ing the dynamics of most real-world environments. Con-
sequently, the methods miss out on valuable contextual in-
sights derived from human-object interactions, which can
provide critical context for understanding spatiotemporal
relationships in a dynamic setting. By leveraging cues from
these interactions, we can iteratively decompose indepen-
dently moving regions, creating a more flexible and adap-
tive approach to modeling dynamic environments.

In this paper, we formalize a new task of proactive scene
decomposition and reconstruction: an online process of
dynamically disassembling and reassembling the environ-
ment given observations of ongoing human-object interac-
tions. Traditional object-level scene reconstruction meth-
ods [2, 4, 14, 26, 38] have primarily focused on static en-
vironments, where the major challenge lies in the inherent
ambiguity of decomposition. Besides, the intersected ar-
eas between objects lead to incomplete observations. At-
tempts have been made to either enforce consistency across
views [2, 26] or perform inpainting for surface comple-
tion [16, 43]. However, as illustrated in Fig. 1, both the
completion and the static decomposition are ill-posed. For
instance, should we separate the drawer from the cabinet, or
treat the contents of the drawer as part of the cabinet? What
does the inside view look like if the drawer is closed during
the data capture? We argue that effective decomposition
should not be static, as the granularity is highly context-
dependent. Instead, the decomposition process should be
progressive and guided by interaction. Unlike 4D recon-
struction or dynamic SLAM, which aim to handle arbitrary
scene dynamics, we restrict the task to recovering a compo-
sitional scene representation from first-person live streams
under intentional interactions, allowing for more control-
lable scene decomposition and accurate reconstruction by
best exploiting the interaction cues.

Simultaneously addressing both scene decomposition
and reconstruction in dynamic environments leads to a com-
plicated system with the need for accurate camera pose es-
timation, object pose estimation, instance decomposition,
and the fusion of past observations into a globally consis-
tent map. The integration of these modules is usually diffi-
cult, as they are unstable and sensitive to outliers. However,
as we demonstrate in the following section, hand-object in-
teractions offer a stable and controllable definition of the
compositional granularity as the individually moving part,
allowing for progressively accurate object masks to be gen-
erated in a dynamic context. With this approach, the pose
estimation task, both for the camera and the objects, be-
comes simplified, effectively reducing them to locally static
problems that are trivial to solve, leading to accurate and
holistic modeling of the environment.

For the proposed new task, we also introduce an online
algorithm. Compared to offline methods, the online ap-
proach enables users to receive timely feedback, providing
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guidance during capturing and laying the foundation for in-
cremental map updates. For streaming inputs, our method
performs online camera pose tracking, object pose tracking,
scene decomposition, and reconstruction. We fully leverage
the interaction information available in egocentric inputs to
achieve a high-quality object-level decomposed map recon-
struction. To summarize, our main contributions include:

* We introduce a new task of proactive scene decomposi-
tion and reconstruction, aiming to decompose and recon-
struct the environment based on online human-object in-
teractions, offering a flexible alternative to conventional
object-level reconstruction methods, allowing adaptive
and progressive processes in response to the interaction
cues.

We propose an online dynamic SLAM system for proac-
tive scene decomposition. Guided by the interaction pri-
ors, our system achieves more accurate scene decompo-
sition, pose estimation, and reconstruction in an online
fashion.

We effectively combine the temporal constraints of foun-
dation models and spatiotemporal consistency for model-
ing scene dynamics. The integration of both constraints
along with fixed granularity induced by interactions en-
ables our algorithm to achieve promising local homo-
geneity.

2. Related Work
2.1. Object-decomposed radiance fields

Recent advances in radiance fields have garnered
widespread attention due to the photorealistic render-
ing results. As a global representation, decomposing
the radiance field into individual components is one
natural extension for downstream tasks that require local
editing and reasoning, such as scene editing [43] and
realistic simulation [27, 36].  [20] introduces a neural
rendering technique and decomposes dynamic scenes
with scene graphs. [35] designs a novel two-pathway
architecture, where the scene branch encodes the geometry
and appearance of the background, and the object branch
encodes prior-conditioned learnable representations. Ob-
jectSDF [31] and ObjectSDF++ [32] establish a connection
between the semantics of each object and the corresponding
geometry, enabling the creation of object-compositional
neural implicit surfaces guided by RGB images and their
corresponding instance masks. However, these methods
generally require ground-truth instance masks and object
association information as inputs.

To address the object decomposition problem, Panoptic
Lifting [26] and Contrastive Lifting [2] adopt the linear as-
signment and contrastive learning to achieve object separa-
tion in 3D radiance fields given image segmentation predic-
tions across views. With the emergence of Segment Any-



thing (SAM) [11] and the video segmentation models like
SAM2 [23], the training of object-level radiance fields can
be supervised directly from the predicted masks [4, 14, 38].
However, these methods often encounter issues due to am-
biguous segmentation granularity. D2NeRF [33] and Neu-
ralDiff [28]] attempt to decouple dynamic scenes through
a simple motion segmentation, which can be defined pre-
cisely as the moving part of the environment. Additionally,
some methods [30, 37] focus on modeling dense deforma-
tion fields to capture the spatiotemporal information of the
scene. However, most existing methods neglect the strong
cues inherited in the interaction between agent and environ-
ment. We share a similar motivation with a concurrent work
of EgoGaussian [41], which leverages the hand-object inter-
action in egocentric videos for spatial-temporal modeling
of dynamic environments and tracking rigid object motion.
In contrast to the offline optimization process, our method
extends the paradigm further by exploiting the instant feed-
back and temporal continuity within the streaming data to
enable progressive scene decomposition and online holistic
reconstruction of the dynamic environment.

2.2. Agent-in-the-loop scene understanding

Besides the passive scene understanding, agent-in-the-loop
exploits the agent engagement to actively perceive and an-
alyze the environment. For instance, Roboexp [10] intro-
duces action-conditioned scene graphs, where robots accu-
mulate information through active interactions to capture
the geometry and the structure of the surroundings. Sim-
ilarly, Nagarajan and Grauman [18] introduce affordance
landscapes, enabling robots to learn about the actions that
can be performed within a 3D environment. The approach
helps robots recognize the potential for interaction with
novel objects and enhance their ability to adapt to new en-
vironments. The cluttered environment always poses chal-
lenges for object recognition and segmentation. In [31], ro-
bust object recognition is achieved by combining percep-
tion with interaction. A similar system is adopted in Au-
toscanning [34] to couple scene reconstruction with proac-
tive object analysis. In [17], scene segmentation is im-
proved by selectively attending to certain areas, highlight-
ing the role of fixation in active segmentation. Recent work
has also delved into uncertainty-aware segmentation. Yu
and Choi [39] propose a self-supervised method for interac-
tive object segmentation through singulation-and-grasping
approach. This demonstrates how robots can learn from
their interactions without requiring explicit supervision, a
significant step toward autonomous scene understanding.
Fang et al. [7] explore how robots reduce the uncertainty of
object segmentation through physical actions. This concept
is also adopted in RISEG [22] by exploiting body frame-
invariant features and robot interaction to correct inaccurate
segmentation.
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We refer readers to [3], a comprehensive review on in-
teractive perception. This work sets a foundation for how
robots can use their actions to improve scene understanding
and vice versa. Besides the robot-in-the-loop scene under-
standing, human interventions also help to reduce the per-
ception ambiguities. Many works study the visual percep-
tion in an egocentric video given hand-object interaction
priors [6, 19, 40]. There are also studies working on 3D
object decomposition through live annotations. iLabel [42]
exploits the shared embedding space of jointly optimized
neural fields, enabling efficient scene labeling given sparse
clicks. Similarly, in Total-decom [15], extensive involve-
ment of human labeling is reduced to enforce real-time con-
trol of quality and granularity of the scene decomposition
with minimal interaction. These works collectively con-
tribute to the advancement of agent-in-the-loop scene un-
derstanding, while we take a step further to directly per-
form online scene reconstruction and decomposition given
an egocentric live stream of hand-object interaction. The
scene is progressively decomposed and reconstructed in a
unified SLAM system to jointly optimize scene radiance,
camera motion, object poses, and instance segmentation.

2.3. Dynamic SLAM

The presence of dynamic objects introduces significant
challenges to camera tracking and mapping as common
consistency across views is assumed under static scenar-
ios. The aim of dynamic SLAM is to remove features
that violate the cross-view consistency constraints, ensur-
ing precise camera tracking and reliable static map recon-
struction. Relevant methods are commonly divided into
two categories. The first approach utilizes warping or re-
projection, as in [5, 21, 25], to detect inconsistencies in
visual appearance or spatial geometry, thereby identifying
dynamic regions in images. The second approach [8] lever-
ages prior knowledge, such as semantic categories, to deter-
mine whether an object is dynamic. Some methods further
combine these two approaches. DynaSLAM [1] and DRG-
SLAM [29] remove features that belong to pre-defined cat-
egories or bypass geometric constraints. In contrast, SLA-
MANTIC [24] and CFP-SLAM [9] use projection to verify
observations within pre-defined categories, selectively re-
moving only those features that exhibit inconsistencies.

Our method can also be seen as a combination of these
two approaches, leveraging both inconsistencies between
observations and the map, and prior knowledge from user
interactions to identify dynamic objects. However, unlike
these existing methods, which primarily focus on recon-
structing the static part of the environment, our approach
not only reconstructs the static background but also decou-
ples and reconstructs all interacted objects. This allows us
to obtain a more informative and holistic understanding of
the dynamic environment.



!

Current frame segmentation with refinement

Interacted

I:l Currently interacted object mask . Hand mask objects

Previously interacted object masks

Background & ﬁ %

I
Gagd !ba

; / ’ \
Camera tracking - . B . ‘. -
Back round 2 Jeg7 AN
reconstruction
—\ ’.
.
Joint - . £
optimization o =
3D object decomposition ~ 6-DoF object pose tracking ‘_/ \ ..
- .,
Objects /N A @
) >
— H oa\ /
= =

reconstruction
3D decomposed scene map

Figure 2. Overview of our method. With well-defined decomposition granularity induced by motion, the online system achieves reliable
camera tracking and scene reconstruction, allowing progressive decomposition and robust instance tracking.

3. Overview

We aim to achieve online scene decomposition and recon-
struction from egocentric RGB-D videos. The system takes
streaming observations as inputs, where hand-object inter-
actions are proactively carried out. The proposed system
assumes that all objects moved by interactions exhibit ap-
proximately rigid body motion. The primary output is a
scene representation that consists of background areas G p
along with the decomposed instances Go, (1 = 1,...,n)
as {Gp,Go,,-..,Go, }. The decomposition is carried out
progressively, where a new instance will be initialized once
the hand-object interaction is identified.

In practice, we maintain a Gaussian-based representation
for better photorealism. To ensure fast convergence and pre-
vent overfitting during the online optimization, the Gaussian
primitive is parameterized by RGB color ¢ € R, center po-
sition u € R3, isotropic variance r € R, and opacity o € R.
Each object, once decomposed, is tracked and reconstructed
independently. View-dependent color, depth, silhouette im-
ages and instance segmentation can be rendered using the
Gaussian splatting technique as follows:
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where k; is the ID of the decomposed instance G, the
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Gaussian belongs, f;[u, v] is computed as:

U, V| — 2

fluv] = oexp ('” ]21“%1521)” ) )
E -

H2p = K%'u Top = %7 d= (Ep)z,  (6)

where E, represents the relative pose of the corresponding
object with respect to the camera at time ¢.

The overarching goal of the scene decomposition and re-
construction is the joint optimization of camera pose, object
pose, Gaussian parameters, and the assignment of instance
labels:

L =MLy + XaLa+ ArpLip, (7

where L,,, L4, L;p are the expected L1 loss of color, depth,
and instance segmentation given pixels within the mask M.

As illustrated in Fig. 2, the key to the problem, as also
indicated in Eq. (7), is the decomposition that enforces the
joint optimization of the map and poses as independent
tasks for each decomposed instance under a local static as-
sumption. We will show as follows that the priors origi-
nated from hand-object interactions and the spatiotemporal
consistency maintained within the map jointly assures the
accurate decoupling of objects from the background pro-
gressively, facilitating both pose estimation and scene re-
construction.

4. The Proactive Mapping System

We formulate the online scene decomposition and recon-
struction under proactive hand-object interactions as an
object-decomposed dynamic SLAM problem. The pro-
posed system includes four modules: prompted segmenta-
tion, camera and object pose estimation, mask refinement,
and decomposed scene reconstruction. The system under-
goes iterative optimization that progressively decomposes
instances under interactions and updates the locally inde-
pendent maps.



Gaussian Grouping

Ours
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segmentation granularity of the foundation models, whereas our
method achieves adaptive decomposition given live interaction.
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4.1. Prompted segmentation

As clarified above, we aim to maintain a fixed granularity
for scene decomposition, defining it as the independently
moving part. To achieve this, we extract information from
the 3D scene map to determine the prompts for the seg-
mentation module, effectively controlling the decomposi-
tion granularity. Specifically, as multi-view consistency
only holds under static assumptions, the motion leads to
inconsistency between the rendering results from the map
and the instant observation. Similar to [12], we render a
depth map based on the estimated camera pose and compute
the differences compared to the observed depth map. Pix-
els with significant differences are regarded as inconsistent
regions. Note that inconsistency may not only be caused
by motion, but also by inaccurate pose estimation and map
parameters. We adopt a filtering mechanism to divide the
image into uniform grids and quantify the proportion of in-
consistent pixels within each grid. A grid will be marked as
dynamic if the portion exceeds a certain value:

Z(U7U)€Sgrid 1 (b[ua ”U] - D[U, ’U] > td)
|Sgrid|

>ty (8)

where ¢4 and ¢, are hyperparameters for thresholding.

Subsequently, we detect connected marked grids to form
coherent inconsistent area, then extract its centroid as
SAM?2 prompt for segmenting the interacted object. To val-
idate segmentation accuracy, we concurrently execute hand
localization via YOLO and SAM2, then verify spatial adja-
cency between the segmented object mask and hand region
in both RGB and depth domains. This dual-space proxim-
ity check enforces physical interaction constraints to ensure
logical segmentation results.

Note that SAM?2 is a video segmentation model, where
the mask decoder does not merely take encoded prompt fea-
tures as input. A memory bank of previous observations is
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maintained and cross-attended with the prompted features
for predicting the segmentation. Therefore, the prompted
segmentation will only occur when a new instance under-
takes the hand-object interactions for the first time. The fol-
lowing frames will track the activated instance through the
cross-attended memory bank. To label the entire instance
in the 3D space instead of merely the corresponding Gaus-
sian primitives associated with the current view, we need to
propagate the mask back to all past keyframes. We empir-
ically find that the encoded prompt features can be directly
utilized for segmenting previous keyframes as they remain
temporally consistent across views for the same instance.

4.2. Camera and object pose estimation

In the online reconstruction setting, for each input frame,
we estimate both the camera pose and the poses of
all interacted objects, which are prerequisites for global
scene reconstruction and object-level refinement. The
optimization is performed over rotation and translation
parameters, corresponding to the camera and interacted
objects, respectively, and is guided by Eq. (7), with
weights \cfrack gtrack ztrack for camera tracking and
Agirack xgtrack \otrack for object tracking.

A key difference between the two lies in the masking ap-
proach. Both employ a silhouette mask Mg to exclude pre-
viously unobserved pixels during optimization. However,
to mitigate the interference of human and interacted object
motion on camera localization, the camera pose estimation
further incorporates the previously mentioned human mask
Mj, and interacted object mask M, from the current frame,
along with the rendered mask M, of the interacted object
from the scene map.

Once object tracking is complete, we follow the Gaus-
sian Splatting-based SLAM approach to densify previously
unobserved regions using depth information. For back-
ground areas, we directly initialize new Gaussians at the
corresponding positions, while for regions of the interacted
object, we warp the positions back to their expected loca-
tions based on the current estimated object pose.

4.3. Segmentation refinement

Though SAM?2 achieves promising results for video seg-
mentation, the spatial consistency is not well exploited due
to the image domain inputs. As illustrated in Fig. 4, we no-
tice typical failure modes during the proactive interactions.
Benefiting from the unified framework to keep track of the
entire sets of instances within the environment, the dense
SLAM system is complementary to handle these failures.
One typical issue is that objects may be partially or fully
outside the camera’s field of view due to factors like cam-
era angles or hand occlusion. Thanks to the photorealistic
and efficient rendering of Gaussian primitives, we can as-
sign a virtual camera to check if the instance is fully within
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Figure 4. Comparison of segmentation results between SAM?2 [23] and our method given instances under proactive interactions.

the field of view. As illustrated in Fig. 4(a), the kettle lid
is erroneously excluded from the segmentation when the
kettle reappears in the frame. To address this, we design
a flexible-length memory bank to ensure that at least one
complete observation of the object is retained in the mem-
ory queue. Based on the current state of the memory bank,
we dynamically adjust the length of the memory queue to
best retain the most complete observations. This strategy
effectively mitigates segmentation errors caused by incom-
plete or occluded observations in specific periods of the
video sequence.

Another issue is the inter-frame segmentation inconsis-
tencies. The reliance on 2D information constrains the
segmentation accuracy and temporal consistency. As il-
lustrated in Fig. 4(b,c), we first check whether the pre-
viously identified inconsistent area is covered by the pre-
dicted mask. We then perform rigid object pose tracking
and verify whether the rendered region of the interacted ob-
ject matches the mask. Additional positive or negative point
prompts will be added if the mask fails to cover the areas
adequately or if it excessively overlaps with the rendered
region. The conditions for mask refinement are defined as:

(S (5 <o (B <

Moreover, experiments show that SAM?2 often produces
noisy segmentation when the object is absent in certain
frames. To prevent excessive refinement prompts, we first
check for such cases. Assuming constant camera speed, if
the object was absent in the previous frame and expected to
stay out of view, any noisy segmentation is discarded, and
the object mask is automatically set to zero.
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S
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4.4. Decomposed Scene Reconstruction

In the previous section, we outlined the process for obtain-
ing accurate segmentation results for the interacted object
in the 2D image. Now, we will focus on how to utilize these
2D segmentation results to construct and optimize our 3D
decomposed map.

Progressive decomposition. Upon detecting a new in-
stance that undergoes interactions, we decouple it from the
original 3D map and represent it separately using a dedi-
cated set of Gaussians. This process begins by extracting
the object’s mask from the current frame and propagating
it to the past keyframes using the prompted segmentation
method described earlier. With segmentation results avail-
able from multiple viewpoints, we project each Gaussian
onto the 2D camera plane of these frames based on the es-
timated camera poses. As shown in Eq. (10), Gaussians g
that frequently appear within the mask are considered part
of the object, and they are decoupled into an independent
set, assigned a new object ID.

Zfej:valid 1 (P(g) € Mr)

10
|]:valid| ( )

> t3d7

where F,iq represents the set of keyframes containing a
complete observation of the interacted object, and M, rep-
resents the refined mask in these keyframes.

Joint optimization. Once the camera and object poses are
estimated, the next step is to perform global optimization to
refine both object decomposition and reconstruction. The
optimization is guided by a global objective function, as de-
fined in Eq. (7), where the scene’s color, depth, and object
ID serve as supervision signals with weights A7, \7'“?
and 75", For each training iteration, keyframes are sam-
pled from the keyframe buffer and trained alongside the cur-



rent frame. All parameters, including camera poses, object
poses, and Gaussian parameters, are jointly optimized, ex-
cept for object poses outside interaction periods. This joint
optimization serves a role similar to bundle adjustment in
SLAM, where keyframe replay mitigates catastrophic for-
getting and improves the consistency and quality of the re-
constructed decomposed map.

5. Experiments

Our method aims to fully leverage the proactive interaction
information contained in egocentric videos, while simul-
taneously achieving scene decomposition and reconstruc-
tion. To validate the effectiveness of our approach, we con-
ducted evaluations from multiple perspectives. We tested
our method on the HOI4D dataset [13], which is an egocen-
tric dataset containing hand-object interactions. However,
since the sequences in HOI4D contain only a small num-
ber of interacted objects, they do not adequately demon-
strate our method’s ability to accurately decompose scenes.
Therefore, we propose a more challenging dataset, named
the MHOI dataset, which contains ten egocentric RGB-D
video sequences, each involving proactive interactions with
3 to 8 different objects. We conducted experiments on both
datasets.

5.1. Experimental Setup

The experiments are performed on a desktop PC with an
Intel 19-12900K CPU and an NVIDIA RTX 4090 GPU.

In our experimental implementation, we set the pa-
rameters as follows: loss function coefficients A;”“k =
)\gtrack — 05’ )\Z‘ltrack — )\Strack: — )\;uzp — /\Zmp — 10’
Agipack — 0.0, A9track = \'T'OP = 2.5; thresholds for iden-
tifying interacted objects: t; = 0.3, t, = 0.5; thresholds
for segmentation refinement: ¢,,, = t,,, = 0.9, t,,, = 0.7;
threshold for decoupling interacted objects from the back-
ground: ¢33 = 0.8. For each incoming frame, we per-
form camera tracking and 6-DoF object tracking. Every 10
frames, we conduct joint optimization, and every 30 frames,
we store the corresponding frame as a keyframe.

5.2. Segmentation and Decomposition

As shown in Fig. |, our method achieves accurate segmenta-
tion of interacted objects and progressive scene decomposi-
tion. Unlike most current object-level scene reconstruction
methods that rely on images captured under static condi-
tions, our approach utilizes proactive interaction to clearly
define segmentation granularity and eliminate its ambigu-
ity. Fig. 3 clearly illustrates this point. Without leverag-
ing motion information, Gaussian Grouping fails to sepa-
rate components such as the thermal container and its lid,
or the cabinet and its drawers. In contrast, our method ac-
curately decouples each moving unit individually, which is
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more beneficial for downstream tasks like robotic manipu-
lation.

In our workflow, we use depth inconsistencies as cues
to generate prompts, applying SAM?2 to obtain the mask of
the interacted object and perform mask association. How-
ever, depending solely on the results from SAM?2 is unre-
liable. Fig. 4 illustrates the significant role of our mask
refinement by presenting several common failure cases of
SAM?2. As discussed in Sec. 4.3, to address the scenario de-
picted in Fig. 4 (a), we designed a flexible-length memory
bank to mitigate the negative impact of problematic mem-
ory features on segmentation, thereby enabling a complete
segmentation of the entire kettle. In Fig. 4 (b) and (c), errors
are observed in the masks obtained by SAM2’s mask asso-
ciation. To correct these segmentation errors, we compare
the obtained masks with the inconsistency area and the ren-
dered mask after object tracking, and then add new prompts
to refine the results accordingly. Fig. 4 (d) demonstrates
how SAM2 often produces noisy and incorrect segmenta-
tion when the object is entirely out of frame. To avoid
adding excessive prompts, we determine the object’s status
based on its 3D position. If the object is projected outside
the frame at a given moment, we directly assign a mask with
all zeros.

We also conduct quantitative evaluations of decomposi-
tion on the HOI4D dataset, using the four sequences shown
in Fig. 5. It can be clearly observed in Tab. | that our ren-
dered masks are more accurate compared to those directly
provided by SAM2, especially in Sequence 3, where the
interacted object is a structurally complex pair of scissors.
Without refinement, SAM?2 often segments only the tip of
the scissors, failing to capture the entire object.

Method Seq1l Seq2 Seq3 Seq4
SAM2 0913 0.884 0.318 0.941
Rendered Mask (Ours) 0.925 0.920 0.835 0.947

Table 1. Comparison of mask quality (mlIoU) across sequences on
HOI4D dataset.

Method HOI4D MHOI
ATE PSNR(s) PSNR() ATE
Co-SLAM 0.172  17.35 - 0.221
SplaTaM 0.156  18.61 - 0.293
NeuDySLAM  0.094  25.15 - 0.189
Ours 0.076  29.12 27.58 0.093

Table 2. Comparison with recent SLAM methods in terms of cam-
era localization accuracy (ATE [m]) and rendering quality. Unlike
NeuDySLAM and other dynamic SLAM methods that only recon-
struct the static scene, our method also reconstructs the interacted
objects that are in motion.
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Figure 5. Qualitative comparison of rendering results on HOI4D dataset.

Method Static Dynamic Iterations
SSIM t PSNR 1 LPIPS | SSIM 1 PSNR 1 LPIPS |

° 4DGS [30] 0.88 2533  0.13 089 2534 0.13 30k

£ 4DGS w/o hands 094 2869 0.08 094 2733  0.10 30k

Z Def-3DGS [37] 0.90 25.85 0.11 0.90 2571 0.12 30k
Def-3DGS w/o hands  0.94  28.09  0.08 094 2692 0.10 30k
EgoGaussian [41] 096 3099 0.08 095 3033 0.09 30k
Ours 096 29.12  0.08 092 2758  0.10 ~4k

Table 3. Quantitative comparison of novel view synthesis results
with 4DGS, Def-3DGS, and EgoGaussian.

5.3. Camera Tracking and Scene Reconstruction

Camera tracking. We compared our method with three re-
cent SLAM approaches: Co-SLAM and SplaTaM, which
are based on a static scene assumption, and NeuDyS-
LAM [12], the state-of-the-art NeRF-based dynamic SLAM
method. As shown in Tab. 2, our approach achieves superior
localization accuracy on both datasets. This difference is es-
pecially pronounced on the MHOI dataset, which contains
multiple interacted objects. For NeuDySLAM, We attribute
this to the fact that it masks out all objects that have expe-
rienced motion when optimizing the camera pose, whereas
our method only masks out objects that are currently mov-
ing due to interaction. Therefore, when there are numerous
interacted objects, NeuDySLLAM discards too many useful
features, resulting in a decrease in accuracy due to the lack
of available features.

Scene reconstruction. We use novel view synthesis results
to evaluate the quality of the reconstructed map. Fig. |
and Fig. 5 show the qualitative results of our method on
the MHOI and HOI4D datasets, respectively. Our method,
as shown, produces high-quality rendering for both the
background and interacted object parts. Moreover, it also
achieves accurate object tracking'. These results demon-
strate the effectiveness of our decomposed scene recon-
struction. Notably, our method also possesses the capabil-

1Visualization results are provided in the supplementary material
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ity to accurately reconstruct articulated objects and estimate
their kinematics.!.

We also perform quantitative evaluations on the HOI4D
dataset, using the experimental settings from EgoGaus-
sian [41] and including some results in Tab. 3 based on
the original EgoGaussian experiment. Specifically, four se-
quences are selected to evaluate the rendering quality of
both dynamic and static parts separately. We compare our
method against 4DGS [30], Def-3DGS [37], and EgoGaus-
sian. The first two methods are designed for non-rigid mo-
tion, whereas EgoGaussian and our method are targeted at
scenes involving hand interactions with rigid objects. For a
fairer comparison, modifications are made to the other two
methods so that hands can be masked out.

As to the quantitative results, our method outperforms
4DGS and Def-3DGS while achieving metrics close to
EgoGaussian, yet requires only a small fraction of the op-
timization iterations used by the other methods. Addition-
ally, they rely on accurate camera poses as input, whereas
our method performs its own camera tracking as a SLAM
system.

6. Conclusion

In this paper, we introduce the task of proactive scene de-
composition and reconstruction, which aims to adaptively
decompose and reconstruct dynamic environments on the
fly based on human-object interactions. To tackle the prob-
lem, we propose an online dynamic SLAM system that iter-
atively refines the map representation and the corresponding
composition through interaction cues. Our approach is ver-
ified through experiments in camera pose estimation, object
decomposition, and scene reconstruction, achieving high-
quality and accurate modeling of dynamic environments.
The results confirm the effectiveness of our system in cap-
turing and representing the dynamic nature of the environ-
ment through proactive interactions.
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