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Abstract

The combination of Large Language Models (LLMs) and
Federated Learning (FL) to leverage privacy-preserving
data has emerged as a promising approach to further en-
hance the Parameter-Efficient Fine-Tuning (PEFT) capa-
bilities of LLMs. In real-world FL settings with resource
heterogeneity, the training process of Low-Rank Adapta-
tion (LoRA), the representative PEFT method, still faces
two major challenges: aggregation noise and aggrega-
tion misalignment. In this paper, we propose a novel
Tensor-aggregated LoRA (Te-LoRA) in Federated Fine-
tuning based on an alternating-freeze training strategy
to avoid aggregating noise without additional server-side
computational costs, while mitigating aggregation subopti-
mality caused by parameter misalignment between hetero-
geneous LoRAs. Especially in addressing the aggregation
suboptimality issue, we design the Pre-Aggregation Align-
ment strategy (PAA-strategy) and Tensor-to-Matrix strategy
(T2M-strategy) for aligning heterogeneous LoRAs and ag-
gregating them into an united tensor, which is then decom-
posed into matrices adapted for client download. Extensive
experiments demonstrate the effectiveness and robustness of
Te-LoRA in both homogeneous and heterogeneous settings.

1. Introduction
Large Language Models (LLMs) have demonstrated excep-
tional performance across various task scenarios, such as
search engines [20], chatbots [4], healthcare [37], and more.
When using pre-trained LLMs to adapt to downstream
tasks, significant computational resources are required to
fine-tune the model parameters. Therefore, to improve the
applicability of LLMs, it is necessary to fine-tune specific
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Figure 1. Comparison of different federated fine-tuning LoRAs.
Compared to methods (a), (b), and (c), our Te-LoRA performs
better in addressing aggregation noise, communication cost, and
aggregation misalignment issues.

datasets [9, 17, 25]. However, collecting such datasets
comes with associated costs and privacy concerns [5, 18,
38]. Consequently, researchers have turned to Federated
Learning (FL) as a technical approach to fine-tune LLMs
using distributed client data without compromising data
privacy [2, 30, 33]. In this context, researchers have ex-
plored the application of Parameter-Efficient Fine-Tuning
(PEFT) [11, 19, 23] methods for federated fine-tuning of
LLMs, saving substantial computational resources. Among
these, Low-Rank Adaptation (LoRA) [14] has gained atten-
tion due to its significant reduction in the number of com-
munication parameters.

However, simply applying LoRA in real FL environment
presents several challenges, one of the key issues being ag-
gregation noise. In detail, traditional federated fine-tuning
of LLMs [36, 46] averages modules A and B of local LoRAs
separately, leading to discrepancies between the aggregated
and ideal global LoRAs, thereby introducing noise into the
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update process. To address this issue, as shown in Fig. 1,
the two main solutions are as follows: 1) Merging modules
A and B [3, 43], where A and B are first merged by ma-
trix multiplication and then aggregated. 2) Alternating the
training of modules A and B [22, 34], where either A or
B is kept frozen for consistency at each round, with only
the learning B or A being individually aggregated. Com-
pared to the “Merging” strategy, the “Alternating” strategy
reduces communication costs by nearly half, as it transmits
only A or B per round.

The existing “Alternating” method [22] further reduces
communication costs by selecting weights from a global
LoRA with a unified initial rank. However, this homog-
enized assumption contradicts the core feature of resource
heterogeneity in FL [16, 35, 40], where real-world scenarios
involve clients with local LoRAs of different initial ranks.
When LoRA modules A or B with heterogeneous ranks are
uploaded and aggregated, an explicit rank dimension mis-
alignment arises. Even when adopting the “merging” strat-
egy for weight aggregation through matrix multiplication,
semantically driven feature alignment issues may still per-
sist. This multi-level parameter/feature mismatch caused by
rank heterogeneity and data heterogeneity can be referred to
as the aggregation misalignment problem.

To simultaneously mitigate the issues of aggregation
noise and aggregation misalignment in heterogeneous set-
tings, as shown in Fig. 1, we propose a novel Tensor-
aggregated LoRA called Te-LoRA. Te-LoRA consists of
two main strategies: First, due to the impact of heterogene-
ity, the ranks of the matrices uploaded by each client to the
server are often inconsistent. We present a Pre-Aggregation
Alignment strategy (PAA-strategy) to align rank while min-
imizing information loss or conflict. Second, to preserve
the potential relationships and dependencies between dif-
ferent clients, we design the key Tensor-to-Matrix strategy
(T2M-strategy) for decomposing the tensor stacked from
aligned matrices. T2M-strategy can adapt to the aggrega-
tion of heterogeneous LoRAs while effectively preserving
the key components from each client. The main contribu-
tions of this work are summarized as follows:

• Alternating-freeze training for Tensor version of
LoRA. We propose a novel Tensor-aggregated LoRA
(Te-LoRA) in Federated Fine-tuning to efficiently ag-
gregate the main components of each client based on
an alternating-freeze training approach, avoiding aggre-
gation noise while alleviating aggregation suboptimality
among heterogeneous LoRAs.

• Alignment of heterogeneous LoRAs for server aggre-
gation. We design a Pre-Aggregation Alignment strategy
(PAA-strategy) to align heterogeneous LoRAs, while pre-
serving the unique features of each client and minimizing
general information loss.

• Decomposition of aggregated LoRAs for client down-

load. We devise a Tensor-to-Matrix strategy (T2M-
strategy) that decomposes the tensor into matrices
adapted for client download, after aggregating LoRAs
into an united tensor covering relationships and depen-
dencies among LoRAs.

2. Related Work

2.1. Parameter-Efficient Fine-Tuning
To effectively fine-tune LLMs while reducing compu-
tational resources and storage requirements, Parameter-
Efficient Fine-Tuning (PEFT) techniques have emerged.
Among these, Prefix-Tuning [27] guides the pre-trained lan-
guage model’s generation process by optimizing a continu-
ous sequence of task-specific vectors (called prefixes) while
keeping the model parameters frozen. Soft prompts [23]
enable frozen language models to perform specific tasks by
propagating signals of labeled examples. Both methods are
effective for task-specific adaptation. LoRA [14] reduces
memory overhead by representing weight updates with low-
rank matrices. AdaLoRA [47] optimizes incremental up-
dates of pre-trained language models by adaptively allocat-
ing parameter budgets and using singular value decomposi-
tion, effectively reducing the parameter budget and avoiding
intensive computation. LongLoRA [6] extends the context
length of LLMs at low computational cost through sparse
local attention and parameter-efficient fine-tuning. Split-
LoRA [28], based on Split Federated Learning (SFL), im-
proves training efficiency by partitioning the model and
combining the parallel training of federated learning with
the model splitting advantage of split learning. PEFT-based
methods for LLMs, especially LoRA and its variants, have
advanced fine-tuning techniques, showing excellent perfor-
mance due to their simplicity and ability to reduce parame-
ters. Thus, we fine-tune LLMs with LoRA in this paper.

2.2. Federated Fine-Tuning Homogeneous LoRA
In federated learning, several works have applied LoRA to
achieve reduced communication and improved efficiency.
For example, Zhang et al. [46] fine-tuned LLMs by aggre-
gating heterogeneous instruction data from multiple clients
in a federated learning framework, improving the model’s
generalization ability on new tasks while ensuring user
privacy and data security. Wu et al. [44] introduced the
FedBiOT algorithm, which compresses LLMs and splits
them into two components, using a dual-layer optimiza-
tion approach to achieve efficient fine-tuning and reduce
computational and communication costs. FLoCoRA [12]
also reduces communication overhead by freezing the orig-
inally randomized neural network parameters during train-
ing, and only training and transmitting the added LoRA
adapters. However, it does not fully address the stability is-
sues brought about by extremely low-bit quantization. Sun

1059



Figure 2. An overview of the proposed Te-LoRA. It is based on a framework for alternating training of the LoRA modules B and A. When
the clients’ LoRA have different ranks, the B or A modules are obtained after client training and subsequently uploaded to the server for
aggregation. On the server, the heterogeneous B or A modules are first aligned using the PAA-strategy. In the PAA-strategy, µ and ν are all
1-column vectors of size having rmax and rk, respectively. Then, the aligned B or A are aggregated using the T2M-strategy. The detailed
operations will be discussed in Sec. 3.

et al. [39] pointed out that separately integrating the two
LoRA matrices does not fully approximate the original, and
proposed FFA-LoRA, which fixes the randomly initialized
matrices while fine-tuning only the zero-initialized ones.
Compared to FFA-LoRA, the proposed Te-LoRA, based on
an alternating freezing framework, not only preserves the
training of all LoRA modules but also effectively addresses
the issue of aggregation noise.

2.3. Federated Fine-tuning Heterogeneous LoRA

Due to non-IID data heterogeneity [26] sampled from
the Dirichlet distribution and heterogeneous hardware re-
sources, clients need to adjust the LoRA rank accordingly.
Existing work has proposed methods to address this is-
sue. For instance, SLoRA [2] addresses LoRA’s limita-
tions in high data heterogeneity scenarios with data-driven
initialization, achieving performance similar to full fine-
tuning while reducing training time and communication
costs. FLoRA [43] uses a stacked aggregation method to
eliminate noise in low-rank adapter (LoRA) aggregation,
ensuring noise-free global updates. It supports heteroge-
neous LoRA configurations across clients, allowing dy-
namic adjustments based on data complexity and resources.
However, this approach leads to linear growth in com-
munication complexity, higher computational and storage
demands, and reduced flexibility for supporting multiple
task-specific adapters. Cho et al. [8] deploy LoRA mod-
ules with different ranks across clients, using zero-padding
and truncation for aggregation, combining the benefits of
high- and low-rank LoRA. However, the padded zeros di-
lute useful information from high-quality clients, reduc-
ing optimization efficiency and potentially limiting perfor-

mance. FlexLoRA [3] dynamically adjusts the LoRA rank
for clients and uses Singular Value Decomposition (SVD)
to reallocate global weights, enhancing resource utilization
and model generalization. However, SVD truncation adds
computational and storage overhead, and the resulting er-
rors may limit performance.

LoRA-A2 [22] alternates freezing the A and B compo-
nents of the module and dynamically selects key parameters
based on the importance of each client’s data, effectively re-
ducing parameter inconsistencies during the aggregation of
low-rank adapters and significantly cutting communication
costs. However, the method assumes that the global LoRA
has a uniform initial rank, whereas in practice, each client’s
LoRA begins with a different rank. Compared to the related
LoRA-A2, we train the initial heterogeneous-rank LoRA di-
rectly on the clients. While LoRA-A2 focuses on adaptively
selecting client ranks, we emphasize the effective alignment
of heterogeneous ranks on the server side. During align-
ment, unlike FlexLoRA and FLoRA, which use merging
strategies, we designed the PAA-strategy and T2M-strategy
for adaptive alignment, preserving the effective information
within clients and dependencies across clients.

3. Method

3.1. Preliminaries

Low-Rank Adaptation. The application of Low-Rank
Adaptation (LoRA) [15] facilitates a reduction in the num-
ber of trainable parameters during the fine-tuning of a pre-
trained model. Specifically, the weight matrix W ∈ Rd×l

in the fine-tuned model can be represented as the sum of
the original weight matrix W0 ∈ Rd×l and an updated
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weight matrix △W ∈ Rd×l. △W is implemented by low-
rank decomposition into smaller matrices B ∈ Rd×rand
A ∈ Rr×l:

W = W0 +△W = W0 +BA, (1)

where rank r is much smaller than both dimensions d and
l, thereby significantly reducing the number of trainable pa-
rameters for the weights.
Aggregation Noise. Currently, FedAvg [30], a widely used
FL algorithm, updates the global model by performing a
weighted average of n local clients in each communica-
tion round. When LoRA is applied to FL, training and
transmitting only the updated low-rank matrices B and A
significantly reduces both computational and communica-
tion costs, compared to directly updating and transmitting
△W . Combining the aforementioned FedAvg and LoRA,
FedIT [46] is proposed for federated fine-tuning, where the
global LoRA matrices A and B are updated by weighted
averaging of the local LoRA matrices Ai and Bi from n
clients, as follows:

△W =
1

n

n∑
i=1

△Wi =
1

n

n∑
i=1

Bi ×
1

n

n∑
i=1

Ai. (2)

However, when each weight is averaged and aggregated
separately, there is a bias between the aggregated param-
eters (left) and ideal (right), as shown below:

1

n

n∑
i=1

Bi ×
1

n

n∑
i=1

Ai ̸=
1

n

n∑
i=1

(BiAi). (3)

One solution is to first merge Ai and Bi from each client
by matrix multiplication and then perform average aggre-
gation, i.e., △W = 1

n

∑n
i=1 (BiAi). Subsequently, the

aggregated △W ∈ Rd×l must be decomposed into the
new Ai ∈ Rr×l and Bi ∈ Rd×r for each client. This
method introduces complex matrix decomposition, making
post-decomposition training prone to instability. The details
of another simple and effective solution are as follows.
Alternating Freezing Technique. In [22], a simple alter-
nating freezing technique is introduced to mitigate the issue
of aggregation noise when applying LoRA in FL. Specifi-
cally, in round t, the aggregated Ā(t) remains frozen, and
each client only trains B(t)

i , as follows:

1

n

n∑
i=1

B
(t)
i ×

1

n

n∑
i=1

Ā(t) =
1

n

n∑
i=1

(
B

(t)
i Ā(t)

)
. (4)

Then, in round t + 1, the aggregated B̄(t+1) is frozen, and
only A

(t+1)
i is trainable on each client, as shown below:

1

n

n∑
i=1

B̄(t+1) × 1

n

n∑
i=1

A
(t+1)
i =

1

n

n∑
i=1

(
B̄(t+1)A

(t+1)
i

)
.

(5)

Finally, A and B complete iterative training and aggregation
through the alternating freezing technique. However, when
faced with data heterogeneity and rank heterogeneity at the
client, this approach does not achieve good alignment of
modules A or B at the server.

3.2. Proposed Method
In real FL environments with resource heterogeneity, the
training of Low-Rank Adaptation (LoRA) faces two ma-
jor challenges: aggregation noise and aggregation misalign-
ment. To address these issues, we propose a novel feder-
ated fine-tuning method with Tensor-aggregated LoRA (Te-
LoRA) based on an alternating freezing training strategy, as
shown in Fig. 2. Te-LoRA consists of three strategies: the
alternating freezing training strategy, the Pre-Aggregation
Alignment Strategy (PAA-strategy), and the Tensor Decom-
position Aggregation Strategy (T2M-strategy). Based on
the existing alternating freezing training strategy (Eqs. (4)
and (5)), Te-LoRA first effectively avoids aggregation noise
(Eq. (3)). Subsequently, the PAA-strategy aims to achieve
parameter alignment between different rank modules A and
B with minimal information loss. Furthermore, the T2M-
strategy adaptively aligns and aggregates the main compo-
nents among clients to achieve more fine-grained feature
alignment. The PAA and T2M strategies complement each
other, effectively mitigating the issue of aggregation mis-
alignment.
Pre-Aggregation Alignment strategy (PAA-strategy).
The PAA-strategy is presented to achieve the optimal trans-
formation from heterogeneous LoRAs to homogeneous Lo-
RAs with minimal information loss for parameter alignment
on the server side. In the implementation of the alternating
freezing FL training strategy, the modules transmitted be-
tween the client and server are either B or A. Assuming
that the module B is uploaded in the current round, mod-
ule A remains frozen and stays on the client side. After
the upload, the server receives a set of K modules B, i.e.,
{Bk ∈ Rd×rk}Kk=1. The module with the highest rank is se-
lected as the target module Bmax = Barg max

k=1,...,K
rk , and the

remaining modules are aligned towards the target module.
Specifically, the distance matrix C between Bk and Bmax is
calculated as follows:

C (m,n) =

d∑
i=1

(
bimk − binmax

)
, (6)

where C ∈ Rrk×rmax , bimk and binmax are the elements of the
ith row, mth column of matrix Bk, and nth column of matrix
Bmax, respectively. To smooth the matching relationship
between the source and target matrices, the matrix C is reg-
ularized: K = exp

(
−C

η

)
, where η is the regularization

parameter. Next, based on the matrix K, we first assume
that the source distribution p and the target distribution q
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follow a uniform distribution, i.e., p =
[

1
rk
, 1
rk
, . . . 1

rk

]⊤
, q =

[
1

rmax
, 1
rmax

, . . . 1
rmax

]⊤
. Then, using the Sinkhorn-

Knopp algorithm [31], we iteratively update the adjustment
factors µ and ν to make the probability matrix G converge
to a solution that satisfies the marginal constraints of p and
q, as follows:

µ =
p

K · ν
, ν =

q

K⊤ · µ
, (7)

where the adjustment factors µ and ν are both 1-column
vectors of size rmax and rk, respectively. By iteratively
updating until convergence, the probability matrix G, repre-
senting the optimal alignment between the source and target
features, is shown below:

G = µ · K · ν⊤. (8)

Subsequently, the source matrix Bk is transformed using
the matrix G to achieve alignment of different ranks with
minimal information loss, as follows:

B̃k = Bk · G, (9)

where B̃k ∈ Rd×rmax is the aligned matrix. The remaining
module B and the module A from another round both use
the same pre-aggregation process for parameter alignment.
Discussions. Although previous research in FL, such as Fe-
dOTP [24] and FedAli [10], has explored Optimal Trans-
port (OT) for fine-grained feature alignment, FedOTP [24]
uses OT to align local visual features with global and local
text features, smoothing the global consensus and local per-
sonalization. To balance personalization and generalization,
FedAli [10] quantifies the cost of embedding inputs into
prototypes using OT, effectively aligning embeddings and
reducing client inconsistencies. Compared to these stud-
ies, our PAA strategy differs in three ways: 1) The others
focus on data heterogeneity in personalized FL, while our
work addresses resource heterogeneity in real FL; 2) Pre-
vious work aligns personalized with global knowledge via
OT, while our work aligns heterogeneous weights into ho-
mogeneous ones using OT to address rank mismatches from
resource heterogeneity; 3) Previous studies focus on align-
ing prompts and prototypes, while our work targets align-
ment methods for heterogeneous LoRAs. To the best of our
knowledge, this is the first research to apply OT for hetero-
geneous LoRA alignment in resource-heterogeneous FL.
Tensor-to-Matrix strategy (T2M-strategy). To main-
tain the relationships and dependencies between different
clients, the Tensor-to-Matrix strategy (T2M-strategy) is de-
signed to adaptively aggregate the LoRAs aligned by the
PAA-strategy, rather than simply averaging them. Specif-
ically, given the rank-aligned set {B̃k}Kk=1 of modules B,
B̂ can be stacked from {B̃k}Kk=1 to form a new tensor

Algorithm 1: Te-LoRA

Initialization: each client k initializes the LoRA△Wk =
BkAk with Bk ∈ Rd×rk and Ak ∈ Rrk×d.

1. for t = 1, 2, . . . , T do:

2. Select K participants for round t

3. if t%2 = 1 then:

4. for k = 1, 2, · · · , K in parallel do:

5. B
(t+1)
k = LocalTraining

(
B(t), k

)
6. B̃

(t+1)
k ← PAA

(
B

(t+1)
k

)
7. B(t+1)

∗ ← T2M
(
B̃

(t+1)
1 , B̃

(t+1)
2 , ..., B̃

(t+1)
K

)
8. A

(t+1)
= A(t)

9. end for

10. else:

11. for k = 1, 2, · · · , K in parallel do:

12. A
(t+1)
k = LocalTraining

(
A(t), k

)
13. Ã

(t+1)
k ← PAA

(
A

(t+1)
k

)
14. A(t+1)

∗ ← T2M
(
Ã

(t+1)
1 , Ã

(t+1)
2 , ..., Ã

(t+1)
K

)
15. B

(t+1)
= B(t)

16. end for

17. end if

18. end for

representing the intermediate state before aggregation, i.e.,
B̂ =

⋃K
k=1 B̃k, where B̃k ∈ Rd×rmax and B̂ ∈ Rd×rmax×K .

Here, the aggregation process can be viewed as a tensor de-
composition process. Inspired by [21], three versions of the
T2M-strategy (T2M1, T2M2, and T2M3) is explored to de-
compose B̂ into the result B∗. The generalized form of the
decomposition is as follows:

B̂ = B∗ ×1 U ×2 V ×3 X, (10)

where B∗ is a core tensor, U , V , and X serve as the factor
matrices, and the symbol ×i (i = 1, 2, 3) denotes mode-i
tensor-matrix multiplication. T2M1 is as follows:

B̂ = B(1)
∗ ×1 U

(1) ×2 V
(1) =

[[
B(1)
∗ ;U (1), V (1), I

]]
, (11)

where B(1)
∗ ∈ R1×1×K , U (1) ∈ Rd×1, V (1) ∈ Rrmax×1,

and X = I is the K × K identity matrix. [[·]] denotes the
shorthand. B(1)

∗ represents the weight coefficient of differ-
ent clients, reflecting the importance scores. And the ag-
gregated module is B̄, where B̄i,j =

∑K
k=1 B̂i,j,k · B∗

(1)
1,1,k.

The formulate of T2M2 is as follows:

B̂ = B(2)
∗ ×3 X

(2) =
[[
B(2)
∗ ; I, I, X(2)

]]
, (12)
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where B(2)
∗ ∈ Rd×rmax×1, X(2) ∈ RK×1, U = I and V =

I are the d×d and rmax×rmax identity matrices. B(2)
∗ is the

aggregation result capturing the common and representative
information, i.e., B̄ = B(2)

∗ . T2M3 is a combined version of
T2M1 and T2M2, as shown below:

B(3)
∗ = T2M2(B̂ ⊙ T2M1(B̂)), (13)

where B(1)
∗ = T2M1(B̂),⊙ denotes hadamard product used

to obtain the new weighted tensor B̂(1) ∈ Rd×rmax×K ,
i.e., B̂(1)i,j,k = B̂i,j,k · B∗

(1)
1,1,k. The final outcome, B(3)

∗ ∈
Rd×rmax×1, is the aggregated module, i.e., B̄ = B(3)

∗ . Af-
ter completing aggregation on the server side, the module
B̄ is distributed to each client for the next round of training.
The T2M-strategy is also applicable to the decomposition
of module A when module B is frozen for aggregation. Al-
gorithm 1 provides the pseudo-code for Te-LoRA.

4. Experiments
4.1. Experiment Setup
Comparison methods. We compare the proposed Te-
LoRA with three state-of-the-art approaches that sup-
port federated fine-tuning of heterogeneous LoRA. “Zero-
padding” [8] scales the lower ranks of heterogeneous Lo-
RAs from clients by padding them with zeros up to
the maximum rank on the server side. “FLoRA” [43]
stacks all heterogeneous LoRAs together and then per-
forms matrix multiplication for aggregation on the server
side. “FlexLoRA” [3] aggregates heterogeneous LoRAs af-
ter matrix multiplication, then decomposes them into mod-
ules A and B via SVD. “Local” refers to the average test
results from all clients independently training on their lo-
cal data, serving as an important baseline to validate the
effectiveness of FL. To ensure a fair comparison, we repro-
duced the comparison methods based on the existing code-
base [45], with the same LLM, data splits, and training con-
figurations, and conducted all the experiments.
Datasets and evaluation. We used three datasets to
train Te-LoRA: Alpaca-GPT4 [32], an English instruction-
following dataset consisting of 52k samples generated by
GPT-4 [1] based on Alpaca’s self-learning [42]; Databricks-
dolly-15k (Dolly) [46], an open-source dataset created by
Databricks’ staff, which includes tasks such as brainstorm-
ing, classification, closed quizzes, open quizzes, and sum-
marization; and Wizard dataset [29] is a quiz dataset in-
cluding 70k instruction-output pairs. For federated train-
ing, datasets were partitioned using a Dirichlet distribution
(α = 0.5). Furthermore, we separately consider closed [7]
and open evaluation benchmarks, using MMLU [13] for
closed evaluation and MT-Bench [48] for open evaluation.
MMLU is a widely used Q&A dataset for LLM fine-tuning,
including 14,024 questions across 57 different topics to as-
sess the logical reasoning ability of LLMs. MT-Bench is

Method MMLU MT-Bench
Homo Wizard Dolly Alpaca-GPT4 Wizard

Local 20.87 25.13 38.66 2.92
Zero-padding [8] 22.03 26.59 44.88 3.17
FLoRA [43] 22.91 27.73 45.15 3.22
FlexLoRA [3] 22.97 28.21 45.34 3.26
Te-LoRA (Ours) 23.35 28.44 45.86 3.31

Table 1. Comparison of Te-LoRA with other methods on MMLU
and MT-bench. ‘Homo’ represents settings with homogeneous
LoRA ranks.

a set of challenging multi-round open-ended questions for
assessing chat assistants [48].
Training details. For the model configurations, we use the
pre-trained Llama2-7B [41] as the base model and conduct
200 rounds of FL communication. The initial learning rate
is set to 5e-5 and decays to 1e-6 after 200 rounds using a
cosine scheduler. In each round, two clients are randomly
selected, each training for 10 epochs with a batch size of 16.
Referring to FLoRA’s setup [43] in Homogeneous LoRA,
the rank of LoRA is 16. Referring to FLoRA’s simulation
of a real-world scenario where clients have heterogeneous
computational resources, in Heterogeneous LoRA, we as-
sign [64, 32, 16, 16, 8, 8, 4, 4, 4, 4] as different local LoRA
ranks applied to 10 clients. All experiments are conducted
on a single NVIDIA 3090 GPU.

4.2. Comparison Experiment

Homogeneous LoRA. In the homogeneous LoRA setup,
we configure all clients to share the same LoRA rank of 16.
As shown in Tab. 1, we draw the following conclusions: 1)
All four federated fine-tuning LoRA methods outperform
“Local” with Te-LoRA achieving a 7.2 improvement in
the MMLU benchmark compared to “Local” under Alpaca-
GPT4 training. 2) Among the comparison methods, Zero-
padding, which is affected by aggregation noise, performs
the worst. Notably, in homogeneous LoRA, Zero-padding
degrades to a traditional approach where modules B and
A are aggregated separately on the server. 3) FlexLoRA
outperforms FLoRA. Both aggregate the matrix-multiplied
weights from modules B and A, but FlexLoRA uses SVD
to decompose the aggregated weights and sends new mod-
ules to clients, while FLoRA merges the aggregated weights
with the client LLM and reinitialized LoRA training. The
reinitialized LoRA may cause instability in client training.
4) Te-LoRA outperforms all methods across tasks by effec-
tively resolving aggregation noise and misalignment.
Heterogeneous LoRA. As described in Sec. 4.1, to simu-
late the scenario of resource heterogeneity among clients in
real-world settings, we apply different local LoRA ranks of
[64, 32, 16, 16, 8, 8, 4, 4, 4, 4] to 10 clients. By com-
paring the results of Heterogeneous LoRA (Heter) in Tab. 2
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Method MMLU MT-Bench
Heter Wizard Dolly Alpaca-GPT4 Wizard

Local 20.53 25.10 38.54 2.89
Zero-padding [8] 21.86 26.48 44.47 3.15
FLoRA [43] 22.79 27.60 44.94 3.20
FlexLoRA [3] 23.49 28.18 45.48 3.28
Te-LoRA (Ours) 23.71 28.37 46.16 3.33

Table 2. Comparison of Te-LoRA with other methods on MMLU
and MT-bench. ‘Heter’ represents settings with heterogeneous
LoRA ranks.

Figure 3. Comparison of the communication cost. Te-LoRA
achieves lower overhead compared to the other methods.

with Homogeneous LoRA (Homo) in Tab. 1, we make sev-
eral interesting observations. First, both Zero-padding and
FLoRA show a performance drop in the Heter configura-
tion compared to Homo, with Zero-padding decreasing by
up to 0.41 and FLoRA by up to 0.21. Since FLoRA miti-
gates aggregation noise, it still outperforms Zero-padding.
Second, Te-LoRA and FlexLoRA under Heter outperform
Homo in most evaluation tasks, demonstrating their ability
to effectively handle resource heterogeneity and optimize
resource utilization. Because Te-LoRA more effectively ad-
dresses the aggregation misalignment issue, it still main-
tains the best performance under Heter. Finally, Te-LoRA
and FlexLoRA show slight performance drops when tran-
sitioning from Homo to Heter on the Dolly dataset. This
may be due to Dolly’s smaller dataset (15k) compared to
Alpaca-GPT4 (52k) and Wizard (70k). In the Heter config-
uration, the 64 and 32 rank LoRA models may overfit on
clients with less data, leading to poorer aggregation results.
Communication overhead. Communication cost plays a
crucial role in real-world FL. Therefore, we compared the
total upload and download communication costs in a single
round across different methods. To ensure a fair compari-
son, we normalized the transmission parameters. As shown
in Fig. 3, the proposed Te-LoRA has the lowest communi-
cation cost, as it uploads only module A or B per round. In
contrast, FlexLoRA and Zero-padding require both mod-
ules to be uploaded and downloaded each round, while

Figure 4. Impact of different ranks (64, 32, 16, 8, and 4).

FLoRA incurs the highest cost due to transmitting the re-
sult of multiplying matrices B and A during download. The
quantitative comparison highlights the advantage of the al-
ternating freezing technique.
Impact of rank. To further investigate the impact of differ-
ent rank configurations on homogeneous-rank clients, we
conducted experiments on the “Local” baseline with five
rank settings (64, 32, 16, 8, and 4). Training was per-
formed on the Wizard and Alpaca-GPT4 datasets, and eval-
uation was conducted using MT-Bench and MMLU, respec-
tively. As illustrated in Fig. 4, setting the rank to 4 for
all clients, which aligns with the most resource-constrained
ones, leads to a significant performance decline. While
higher ranks can improve performance, they are not feasible
for resource-limited clients. Therefore, adopting a hetero-
geneous rank configuration enables better resource utiliza-
tion and further enhances performance.

4.3. Ablation Experiment
To demonstrate the effectiveness of the PAA-strategy and
T2M-strategy in Te-LoRA, we conducted several ablation
experiments. Specifically, “w/o PPA” refers to replacing the
PAA-strategy with zero-padding in the heterogeneous ex-
periment, which combines the alternating freezing method
with zero-padding. “w/o T2M” indicates replacing the
T2M-strategy with the weighted average aggregation of Fe-
dAvg in the heterogeneous experiments.
The effects of PAA-strategy. To compare with the align-
ment effect of zero-padding and PAA-strategy, we visual-
ized the cosine similarity between clients after alignment
using zero-padding and PAA-strategy, as well as the change
curves of the singular value distribution before and after
alignment. As shown in Fig. 5, we visualized the cosine
similarity between four clients, where most clients exhibit
higher cosine similarity after alignment with the PAA strat-
egy compared to zero-padding. This indicates that the PAA-
strategy not only aligns the parameters between heteroge-
neous LoRAs on the server side but also reduces the infor-
mation loss caused by the alignment. To better illustrate
the differences before and after alignment, we compared
the normalized singular value distribution curves, as shown
in Fig. 6. It can be observed that the distribution of singular
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(a) On PAA-strategy. (b) On Zero-padding.

Figure 5. Cosine similarity visualization of the local model pro-
cessed by PAA-strategy or Zero-padding with the global model.

(a) In round four. (b) In round seven.

Figure 6. Singular value distribution curves. The source LoRA and
those transformed by zero-padding and the PAA strategy undergo
SVD to plot the singular value distribution curves.

values after applying the PAA strategy is closer to that of the
original LoRA, while the distribution after zero-padding is
relatively farther away. This indicates that the PAA strategy
retains more of the major components to a certain extent and
is closer to the original LoRA compared to zero-padding.

To further validate the effect of PPA quantitatively, we
conducted an ablation study, as shown in Tab. 3. In all
scenarios, “w/o PAA” performs worse than T2M2, with a
performance drop of at least 1.3 points in each case. This
validates that the PAA-strategy, compared to Zero-padding,
can more effectively reduce information loss when aligning
parameters between different levels of the A and B mod-
ules. Meanwhile, compared to the FlexLoRA in Tab. 2,
“w/o T2M” performs better in both the Dolly and Alpaca-
GPT4 scenarios. This suggests that combining the PAA-
strategy and alternating freezing strategy avoids aggregation
noise while achieving parameter alignment between differ-
ent levels of modules A and B, reducing information loss.
The effects of T2M-strategy. To evaluate the impact of
this strategy, as shown in Tab. 3, we performed an abla-
tion experiment with “w/o T2M”. First, “w/o T2M” per-
forms worse in all three scenarios compared to the T2M2

method, especially in the Alpaca-GPT4 dataset, where w/o
T2M is about 0.63 points lower than T2M2. This validates
that the T2M-strategy, compared to the weighted average

Method MMLU
Heter Wizard Dolly Alpaca-GPT4

w/o PAA 22.40 27.10 44.77
w/o T2M 23.38 28.21 45.53
T2M1 22.91 28.14 45.30
T2M2 23.71 28.37 46.16
T2M3 23.67 28.30 45.99

Table 3. Validation of Te-LoRA components. ‘Heter’ represents
settings with heterogeneous LoRA ranks.

aggregation operation of FedAvg, better preserves the key
information from each client, enabling finer feature align-
ment. In comparison to Zero-padding in Tab. 2, “w/o PAA”
achieves higher MMLU scores for all three datasets: 0.54,
0.38, and 0.3 points higher on Wizard, Dolly, and Alpaca-
GPT4, respectively. This indicates that the T2M-strategy
combined with alternating freezing more effectively aligns
features while avoiding aggregation noise.
The effects of T2M1, T2M2, and T2M3. As observed
from Tab. 3, T2M1 performs slightly worse than T2M2. In
the Wizard, Dolly, and Alpaca-GPT4 datasets, T2M2 scores
0.2, 0.23, and 0.86 points higher than T2M1, respectively.
While T2M3 outperforms T2M1 on all three datasets, it still
trails T2M2, though the results are nearly identical. For ex-
ample, in the Wizard, Dolly, and Alpaca-GPT4 datasets,
T2M2 scores 0.004, 0.007, and 0.005 points higher than
T2M3. This suggests that although the tensor B1

∗ ∈ R1×1×k

obtained from the compression of B̂ ∈ Rd×rmax×k can pre-
serve the proportion of each client, it is slightly less ef-
fective in retaining client information. On the other hand,
the tensor B∗ ∈ Rd×rmax×1 obtained from the compres-
sion of B̂ better preserves the key information from each
client and does not introduce redundancy in information
like B3

∗ ∈ Rd×rmax×1 does.

5. Conclusion
In this paper, we introduce a novel Tensor-aggregation
LoRA method (Te-LoRA) to address the noise and mis-
alignment issues in the aggregation of low-rank adapta-
tion within federated learning under resource heterogene-
ity. Building upon an alternating freezing strategy, Te-
LoRA incorporates Pre-Aggregation Alignment (PAA) and
Tensor Decomposition Aggregation (T2M) strategies. The
PAA strategy utilises OT technology to align the weights
of heterogeneous LoRA modules A and B from different
clients into homogeneous weights, while the T2M-strategy
adaptively aggregates key components to preserve inter-
dependencies. Experimental results demonstrate that Te-
LoRA effectively reduces communication costs and sig-
nificantly improves fine-tuning performance, offering a vi-
able solution for efficient federated fine-tuning in resource-
constrained environments.
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