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Abstract

Spatiotemporal video grounding aims to localize target
entities in videos based on textual queries. While existing
research has made significant progress in exocentric videos,
the egocentric setting remains relatively underexplored, de-
spite its growing importance in applications such as aug-
mented reality and robotics. In this work, we conduct a sys-
tematic analysis of the discrepancies between egocentric and
exocentric videos, revealing key challenges such as shorter
object durations, sparser trajectories, smaller object sizes,
and larger positional shifts. To address these challenges, we
introduce EgoMask, the first pixel-level benchmark for fine-
grained spatiotemporal grounding in egocentric videos. It is
constructed by our proposed automatic annotation pipeline,
which annotates referring expressions and object masks
across short-, medium-, and long-term videos. Additionally,
we create EgoMask-Train, a large-scale training dataset
to facilitate model development. Experiments demonstrate
that the state-of-the-art spatiotemporal grounding models
perform poorly on our benchmark EgoMask, but fine-tuning
on EgoMask-Train yields significant improvements, while
preserving performance on exocentric datasets. Our work
thus provides essential resources and insights for advancing
egocentric video understanding. Our code is available at
https://github.com/LaVi-Lab/EgoMask.

1. Introduction

Video grounding has been extensively studied in recent
years [11, 12, 16, 22, 44, 47, 62]. It requires models to
generate a temporal tube for target entities based on a given
language query. As illustrated in Figure 1, this tube can be
represented as a sequence of consecutive frames [11, 22]
(temporal grounding), or a set of bounding boxes and masks
that localize entities within these frames [12, 44] (spatiotem-
poral grounding). The mask output further requires a pixel-
level localization on the fine-grained object geometry. It is
worth noting that existing works [1, 59] predominantly focus
on spatiotemporal grounding in exocentric videos [9, 44],
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Figure 1. Comparison of video grounding tasks. We propose the
first pixel-level benchmark for fine-grained spatiotemporal ground-
ing in egocentric videos.

while egocentric video grounding remains relatively under-
explored. This is despite the growing interest in egocentric
video understanding [4, 7, 56], driven by its potential applica-
tions in augmented reality (AR) glasses, household robotics,
and other real-world scenarios.

Meanwhile, existing studies have observed a gap between
egocentric and exocentric videos [11, 20, 46]. For instance,
egocentric videos are characterized by rapid camera move-
ments, causing objects to frequently enter and exit the field
of view, while also undergoing rapid appearance changes.
However, a systematic and statistical analysis of these dif-
ferences remains lacking. Therefore, we conducted a study
that quantitatively analyzes the discrepancies between ego-
centric and exocentric videos. Our findings reveal several
key differences: entities in egocentric videos exhibit shorter
total durations, sparser continuous trajectories, smaller ob-
ject sizes, and larger positional shifts compared to their
counterparts in exocentric videos. This study raises a key
question: Can existing models perform well on fine-grained
spatiotemporal grounding in egocentric videos?

To answer the question, however, there lacks a bench-
mark specifically designed for fine-grained spatiotemporal
grounding in egocentric videos. The most relevant datasets
are EgoTracks [46] and RefEgo [20]. EgoTracks focuses
on long-term object tracking in egocentric videos but only
provides object category labels and bounding box annota-


https://github.com/LaVi-Lab/EgoMask

tions. RefEgo, on the other hand, evaluates referring expres-
sion comprehension in egocentric videos and includes text
queries, yet it also provides only bounding box annotations.
Importantly, RefEgo consists solely of short video segments
(under 1 minute), which do not align with the typical visual
inputs in egocentric Al applications, where models process
long egocentric video streams.

In this work, we propose an automatic annotation pipeline
to construct a benchmark that provides pixel-level annota-
tions and enables the evaluation of spatiotemporal grounding
in egocentric videos across various durations. To generate
mask annotations, we leverage the pre-trained segmentation
model SAM2 [42], using the bounding boxes provided by
the EgoTracks dataset. To generate object expressions as
language queries, we employ the vision-language model
GPT-40 [33] through two strategies to ensure data diversity:
(1) prompting GPT-40 to directly generate both short and
long expressions, and (2) first prompting GPT-40 to produce
metadata about the target object, such as visual attributes
and world knowledge, which is then combined to construct
referring expressions. Finally, both mask and expression
annotations are refined and verified by human annotators.
As a result, we introduce the first egocentric, fine-grained
spatiotemporal grounding benchmark, EgoMask, built upon
a subset of EgoTracks and RefEgo. The benchmark com-
prises 700 queries across 315 videos, spanning short-term
(under 1 minute), medium-term (1 to 3 minutes), and long-
term (over 3 minutes) durations to enable a comprehensive
evaluation. Moreover, to support model training, we create
EgoMask-Train, a large-scale training set created by our
automatic pipeline. It includes 2,624 videos with mask an-
notations for 9,592 objects and a total of 47,968 referring
expressions.

With our newly proposed benchmark, we systematically
evaluate the state-of-the-art (SOTA) spatiotemporal ground-
ing models on egocentric videos. Experiment results reveal
that existing SOTA models [1, 59] perform significantly
worse on our benchmark compared to their performance on
existing exocentric benchmarks. Going further, we fine-tune
pre-trained SOTA models on our created training dataset,
EgoMask-Train, leading to large performance improvements
(e.g., an average relative increase of 41.30%). These results
highlight the effectiveness of our dataset as a valuable re-
source for advancing egocentric spatiotemporal grounding.
Notably, we observe that models fine-tuned on our egocentric
dataset still retain their performance on existing exocentric
benchmarks. This suggests that our dataset is complemen-
tary to existing exocentric datasets and can serve as a unique
and orthogonal data source for training future video founda-
tion models. In addition to end-to-end trained SOTA models,
we also evaluate a baseline method, Grounded-SAM2 [43],
a pipeline framework that first runs GrondingDino [27] to lo-
calize objects based on text queries, followed by SAM?2 [42]
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for object tracking. Even though it uses the same tracking

model as our annotation pipeline, this method also fails to

perform well on egocentric videos, which further verifies the

difficulty of our proposed benchmark and the challenges of

fine-grained spatiotemporal grounding on egocentric videos.
Overall, our contributions are as follows:

* We explore spatiotemporal video grounding for egocentric
videos and develop an automatic data annotation pipeline,
resulting in the first pixel-level benchmark EgoMask and
a large-scale training dataset EgoMask-Train.

We conduct in-depth analysis to quantitatively and system-
atically measure the gap between exocentric and egocen-
tric videos, providing insights for future modeling.
Extensive experiments reveal that existing spatiotemporal
grounding models fail to perform effectively on egocentric
videos, and our collected training data can remarkably
improve existing models.

2. Related work

Referring Video Segmentation Dataset. Referring video
object segmentation (RVOS) [2, 10, 23, 31, 49, 50], a subtask
of spatiotemporal video grounding. It aims to segment the
target objects in a video based on a given natural language
expression. Compared to standard video object segmenta-
tion [55], RVOS is more challenging as it requires models
to effectively integrate both visual and linguistic informa-
tion. The RVOS task was first introduced by [10] along
with the A2D-Sentences and J-HMDB Sentences datasets,
which primarily focus on actor segmentation. Subsequent
works [1, 9, 18, 44] have expanded the scope of RVOS by
scaling up datasets, increasing task complexity, or enhanc-
ing task diversity. Specifically, Ref-DAVIS [18] extends the
DAVIS datasets [35, 37] by replacing segmentation masks
with language descriptions, introducing a multi-object seg-
mentation setting. Given its relatively small scale, Refer-
YouTube-VOS [44] was built on YouTube-VOS [53], featur-
ing diverse object categories and longer videos. MeViS [9]
incorporates more complex scenes with a higher density of
objects, with expressions focusing on object motion. Rea-
sonVOS [1] emphasizes complex reasoning over language
queries and temporal object tracking with explicit motion un-
derstanding. However, these datasets predominantly feature
exocentric videos which are generally shorter and exhibit
less rapid camera movement. In contrast, we focus on ego-
centric videos which present additional challenges due to
their longer durations, frequent and large camera movements,
and increased object density.

Egocentric Dataset. Egocentric video understanding [11,
24, 34, 38] has recently emerged as a pivotal research area in
Embodied Al [32, 36], presenting challenges distinct from
those in exocentric video analysis. Unlike conventional
exocentric datasets [14, 51, 52, 58], egocentric videos are



captured from a first-person perspective using wearable de-
vices, resulting in long-form, dynamic footage characterized
by frequent camera motion. To advance egocentric video
understanding, numerous datasets have been introduced [6—
8, 11, 20, 29, 45, 46]. Ego4D [11] laid the foundation by
providing a large-scale, comprehensive egocentric dataset.
Building upon Ego4D, several datasets have been developed
to extend the scope of egocentric video understanding. For
instance, EgoSchema [29] focuses on long-form egocentric
video question-answering (VideoQA), while [7, 8] addresses
grounding in VideoQA. EgoTracks [46] is designed for long-
term object tracking, and RefEgo [20] evaluates referring
expression comprehension. However, these datasets do not
support pixel-level spatiotemporal grounding due to the lack
of mask annotations. EPIC-Visor [6] provides pixel-level
masks. However, it has only 158 videos that are in kitchens,
and its clips with consistent mask annotations are 12 sec-
onds on average, failing to support long video grounding.
In contrast, our EgoMask provides diverse textual queries
alongside mask annotations, covering video lengths ranging
from seconds to minutes. This facilitates more fine-grained
and comprehensive spatiotemporal grounding.

Multimodal Large Language Model. Multimodal large
language models (MLLMs) [25, 33, 48] have made signifi-
cant progress in visual-language tasks [13, 57, 60]. Recently,
many studies explore their capabilities in pixel-level under-
standing [1, 21, 59, 61]. A common practice is using special
tokens to enable MLLMs with grounding ability, such as
the Segment Anything Model (SAM) [19, 42]. LISA [21]
and VideoLISA [1] introduce a special “[SEG]” token to
connect the MLLM with SAM and perform independent
image segmentation, while Sa2VA [59] integrate SAM2 [42]
into MLLMs, allowing the utilization of other frames to
perform video segmentation. However, these models primar-
ily focus on exocentric videos. It is still unclear whether
they can perform well on egocentric videos. In this work,
we create a benchmark to evaluate them on egocentric spa-
tiotemporal grounding and a training dataset to enhance their
performance. The fine-tuned models achieve large improve-
ments on egocentric videos, without performance loss on
exocentric videos.

3. Method

Our work fills a critical gap in pixel-level spatiotemporal
grounding for egocentric videos, better supporting egocentric
applications in augmented reality and robotics. Specifically,
we design an automatic pipeline that utilizes existing segmen-
tation models to generate pixel-level object masks and lever-
ages visual-language models to produce object expressions
as text queries. This pipeline enables the construction of both
a training dataset and an evaluation benchmark, laying the
foundation for advancing egocentric video understanding.
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[1] the object with the following
attributes: metallic blade with a
dark handle, located

Object Caption
Kitchen Knife

Visual Attributes
Metallic blade with a
dark handle, located
on a countertop...

2] kitchen knife with the following
attributes: metallic blade with a
dark handle, located

3] the object that can cut
vegetables or other food items with
the following attributes: metallic
blade with a dark handle, located

Affordance description|
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Annotated Frames,
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The knife on the cutting board

Long description
The metallic kitchen knife with a straight blade and
black handle, placed on the cutting board

Expressions

‘ Short description

Mask Generation Referring Expressions Generation

Figure 2. Automatic Annotation Pipeline. The inputs include video
frames, the annotated bounding boxes, and the object category from
the Egotracks dataset. The annotation process contains two parts:
(1) Mask Generation (Bottom Left): utilizing SAM2 as annota-
tor to generate mask throughout the input frames; (2) Referring
Expression Generation (Bottom Right): prompting GPT-40 to
directly generate referring expressions (blue arrow) or first gener-
ate metadata about the labeled object and then adopt pre-defined
templates to generate expressions (green arrow).

3.1. Automatic Annotation Pipeline

Existing egocentric datasets are not directly suitable for
pixel-level spatiotemporal grounding tasks. For instance,
EgoTracks [46] provides long-term object tracking with only
bounding box annotations and lacks referring expressions
for the annotated objects. Given the high cost of manually
annotating object masks, we build upon the densely anno-
tated bounding boxes in EgoTracks and introduce additional
annotations to address the absence of pixel-level masks and
language queries. Specifically, we propose an automatic
annotation pipeline that: (1) generates object masks using
existing segmentation tools guided by the provided bounding
boxes, and (2) produces referring expressions (i.e., language
queries) for the target objects using vision-language models,
as illustrated in Figure 2.

Pixel-level mask generation. In order to reduce the anno-
tation time and avoid segmentation errors caused by object
absence, we only select the clip segments that contain the
target object to annotate. For each clip segment, the bound-
ing box in the first frame is selected as the box prompt input
of SAM?2 [42], a powerful unified model that can segment
objects across images and generate their masks throughout
the video clip. We then post-process the generated masks by
only keeping the areas that overlap with box annotations. In
this way, we can minimize hallucination errors and ensure
that the generated masks are within or near the area of the
target objects.

Referring expression generation. In grounding tasks, the



referring expression should correspond to the unique target
object without any ambiguity, which requires the annotation
tool to fully understand the distinction of the target object
from the surroundings. Furthermore, for better supporting
egocentric applications in complex situations, the referring
expressions should cover diverse aspects of the objects [63],
including simple object captions, various visual attributes,
and world knowledge about the objects. Thus, to guaran-
tee the diversity of referring expressions, we propose two
different strategies to generate referring expressions.

* Prompting GPT-40 to directly generate a short description
and a long description. We first select three frames that
have the most clear objects (e.g., large bounding boxes)
from the video and make sure they come from different
trajectories. Then, We draw boxes of the target object on
video frames and prompt GPT-40 to generate descriptions.
Prompting GPT-40 to generate metadata first and then pro-
duce expressions based on designed templates. Inspired
by [63], the metadata includes object caption, visual at-
tributes (e.g., physical locations, color, shape, dynamics),
and world knowledge (e.g., object affordance). Once these
metadata are obtained, we utilize the templates shown at
the top of Figure 2 to form expressions.

The detailed prompts can be found in the Appendix.

3.2. Dataset Curation

Our automatic pipeline is used to construct both an evalua-
tion set and a training set. The evaluation set undergoes addi-
tional verification by human annotators to ensure annotation
quality, while the training set is used to train spatiotemporal
grounding models.

Training dataset curation. Our training set EgoMask-
Train comes from the filtered subset of Egotracks. It contains
2,624 videos and mask annotations of 9,592 objects with
47,968 expressions. The detailed statistics are shown in Ta-
ble 1, alongside the comparison with the existing exocentric
training dataset. Note that we annotate the video at 1 FPS,
while the sampling rate of the original Egotracks dataset is 5
FPS. From Table 1, we can observe that our EgoMask-Train
is characterized by:
 Shorter total duration: On average, the referred objects
show in the video for only 21.56% time, compared to over
75% time in previous datasets.
 Sparser continuous trajectories: On average, the length of
continuous trajectory (i.e., consecutive appearance) is only
1.33% of the whole video, while in the exocentric video,
the object trajectory length is over 65%. Also, the disap-
pearance of target objects is about six times longer than
their appearance on average (655.82% Disappear Ratio),
while in exocentric videos, the disappearance duration is
much shorter (under 21%).
Smaller object size: The average mask area is only 1.20%
of the whole frame, while objects in the previous bench-
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marks are five times larger (over 5%).

» Larger positional shift: The average IoU of masks on the
adjacent frames is only 14.96%, while in the exocentric
video, the IoU value is over 50%. It is caused by the large
and frequent camera movement in egocentric videos.

Evaluation benchmark curation. Our benchmark Ego-
Mask includes 315 videos ranging from 5 seconds to 16 min-
utes, categorized into short-term (under 1 minute), medium-
term (between 1 minute and 3 minutes), and long-term (over
3 minutes). It contains 700 expressions in total with an av-
erage of 15 words. All samples are manually refined and
verified by using the semi-automatic labeling tool [15] that
supports SAM2 tracking.

EgoMask-Short: The short videos and the corresponding
expressions are sampled from RefEgo [20]. The annotators
manually label the object masks and refine the expressions
to make them more precise.

EgoMask-Long: The long videos are sampled from the val-
idation set of Egotracks [46]. We use the above pipeline to
generate the masks and expressions for human annotators
to refine, which can largely reduce the annotation time.
EgoMask-Medium: The medium videos are extracted
from the above annotated long videos. For each object
in the long video, we randomly extract two different clip
segments that contain the target object.

The statistics of EgoMask are shown in Table 2, along-
side the comparison with existing exocentric benchmarks.
Same as our training dataset, our egocentric benchmark is
characterized by shorter total duration, sparser continuous
trajectories,smaller object size, and larger positional shift.

4. Experiments

In this section, we first introduce the evaluation dataset,
evaluation metrics, the baseline models, and implementation
details. Then we present our results, including the results of
our egocentric benchmark, exocentric benchmarks, detailed
analysis, and visualizations.

4.1. Setup

Dataset. We evaluate pixel-level spatiotemporal video
grounding on one egocentric benchmark (our proposed Ego-
Mask) and three exocentric benchmarks (Ref-Davis [18],
Mevis [9], and ReasonVOS [1]). For model fine-tuning,
apart from our proposed dataset EgoMask-Train, we also
use a mixture of image-based and video-based segmentation
datasets [1, 3, 5,9, 17, 18, 30, 39, 44, 53, 54, 64], following
the previous works [1, 59]. These segmentation datasets
focus on exocentric videos, while our training dataset is tai-
lored for egocentric videos and has distinct characteristics.

Metrics. For fine-grained spatiotemporal grounding on ego-
centric videos, we adopt four metrics. We refer “target
frame” as the video frame where the target (ground-truth)



.. Video Total Mask . Avg. Traj. Disappear | Adj. Mask . . Avg. Expr.
Training dataset | y o o (s) Duration(%) ‘ Area(%) | U Length(%) Ratio(%) | ToU(%) | "video #Object #Expr. “yo o th
Existing Exocentric Training Dataset
Ref-Davis 71.18 94.33 5.84 1.22 87.45 5.85 64.96 60 142 572 6.27
Mevis 69.67 77.51 5.34 1.43 68.52 20.29 54.83 1,662 6,719 23,051 7.05
Ref-YT-VOS 26.53 93.57 10.23 1.11 89.65 5.97 61.62 3,471 6,459 12913 9.63
Our Egocentric Training Dataset

EgoMask-Train | 369.94 2156 | 120 | 17.00 1.33 65582 | 1496 | 2,624 9,592 47,968 21.67

Table 1. The statistics of our proposed training dataset and the comparison with existing egocentric training datasets. The “Total
Duration (%)” means the percent of the total appearance of the objects. The “Mask Area (%)’ means the average area of the annotated
mask over the frame size, which can reveal the object size. The “# Traj.” means the number of object’s continuous trajectories throughout
the video, where the trajectory is defined as one consecutive appearance in the video. The “Avg. Traj. Length (%)” means the average of
each trajectory duration over the whole video and the “Disappear. Ratio(%)” is formulated as the mean of disappearance duration over
trajectory duration. These two values can reveal the sparsity of the continuous trajectory. the “Adj. Mask IoU(%)” shows the positional
shifts over the adjacent frames by calculating the IoU value of the masks of the target object. The notion “Expr.” refers to the expressions.

Video Total Mask . Avg. Traj. Disappear | Adj. Mask . . Avg. Expr.
Benchmark | § ength (s) Duration(%) | Area(%) | """ Length(%) Ratio(%) | loU(%) | "viaeo #Object #Expr Ty .
Existing Exocentric Benchmark
Ref-Davis 65.31 98.77 5.92 1.10 95.88 1.09 71.13 30 61 244 6.11
Mevis 76.55 88.14 4.92 1.36 74.77 11.44 60.82 50 198 793 7.70
ReasonVOS 98.12 89.34 1247.75 1.34 72.03 15.73 66.61 91 105 458 14.09
Our Egocentric Benchmark

Short 12.15 80.31 1.83 1.66 57.13 21.92 8.51 200 200 400 13.27
EgoMask Medium 116.30 36.69 1.87 4.62 11.10 187.84 21.15 100 100 200 17.34
Long 361.32 27.48 1.86 14.60 1.81 450.29 19.53 15 50 100 17.34

Table 2. The statistics of our proposed benchmark and comparison with existing exocentric benchmarks.

entity presents, “background frame” as the video frames that
do not have the target entity, and “predicted frame” as the
video frame with predicted masks from the models.

Trecarr: It is defined as the proportion of predicted frames
among target frames. It evaluates the temporal grounding
performance of models.

IoU,y;: It is calculated by the average of Intersection-over-
Unions (IoUs) value among all the video frames, which is
also called region similarity (/) and commonly adopted
in the previous works [1, 37].

I0oUgo1q: It is defined by the average of IoU among tar-
get frames. This metric only focuses on the prediction
results over target masks and ignores the predictions on
the background frames.

IoUgo1d_preq: It is defined by the average of IoUs among
all target frames and predicted frames. It excludes the
frames where the ground-truth mask and predicted mask
do not exist. This metric is more challenging as it penalizes
the hallucinated predictions on the background frames.

Baselines. We choose one pipeline tracker and two end-to-
end VideoLLMs as our baselines.

Grounded-SAM?2 [43], a pipeline tracker. It first uses
GroundingDino [26] to perform image-based object detec-
tion and output a bounding box. Then, the box is viewed
as the box prompt for the SAM?2 model to get the segmen-
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tation masks. For the first stage, we apply GroundingDino
on all the frames and select the frame whose generated
bounding box has the highest detection confidence score
as the initial frame for SAM2 tracking.

Sa2VA [59], an open-sourced VideoLLM which links
LLaVA and SAM2 to perform video grounding. It first gen-
erates the mask for a few key frames, and then uses SAM2
to perform video propagation based on these frames. Dur-
ing inference, it uses the first five frames as the key frames.
We test its 4B and 26B versions in our evaluation.
VideoLISA [1], an open-source VideoLLM which uses
“[SEG]” token to link LLaVA-Phi-3-V [40] and SAM. It
performs independent image segmentation on the frames
using the same [SEG] token. Its model size is 3.8B.

Fine-tuning Implementation. We build two fine-tuned
VideoLLMs, which are shown as follows,

Sa2VA-4B (+FT): We fine-tune Sa2VA-4B [59] on our pro-
posed egocentric dataset EgoMask-Train, alongside three
video segmentation datasets (Mevis [9], ReasonVOS [1],
Ref-YouTube-VOS [44]) that the original model is trained
on. The fine-tuning is deployed on 8 NVIDIA 80G A100
GPUs for about 10 hours, with AdamW [28] optimizer
and learning rate as 4e-6. The batch size is set to 16.

VideoLISA-3.8B (+FT): We fine-tune VideoLISA [1] us-
ing 4 NVIDIA 80G A100 GPUs based on DeepSpeed [41]



for a total of 20 epochs, with AdamW [28] optimizer and
learning rate as 3e-5. The fine-tuning data contains two
parts, with 80% sampled from our proposed egocentric
dataset EgoMask-Train and 20% sampled from a suite of
image and video segmentation datasets that the original
model is trained on. The batch size is set to 16, and the
number of steps for each epoch is set to 500. The whole
process takes about 12 hours.

4.2. Main Results

We conduct experiments with various grounding methods on
our proposed egocentric benchmark EgoMask (Table 3) and
three existing exocentric benchmarks (Table 4).

Existing models perform poorly on egocentric videos.
As Table 3 shows, all grounding methods fail to achieve
satisfactory performance on our benchmark. For the least
challenging subset of our benchmark (EgoMask-Short), the
best ToUgo1d prea score is under 50%. And for EgoMask-
Medium and EgoMask-Long, the challenging subsets with
longer video lengths, the performance drops largely for all
models (i.e., less than 30% IoUgo1q prea score). Our Bench-
mark annotations have been manually verified to minimize
the bias from annotation tools. Even though some baselines
adopt the SAM2 model, which is also used in our annota-
tion pipeline, they still fail to perform well on our bench-
mark (i.e., Grounded-SAM?2 only achieves 49.95%, 25.73%,
and 24.80% on Short, Medium, and Long, respectively).
These results reveal that our pixel-level egocentric ground-
ing benchmark is challenging, and there is a significant gap
between egocentric and exocentric videos.

Our training dataset is beneficial. The models fine-tuned
on our training set achieve large improvements on our bench-
mark, while maintaining their grounding ability in exocen-
tric benchmarks. As in Table 3, VideoLISA-3.8B (+FT)
achieves a noticeable performance improvement on all sub-
sets, with an average relative increase of 41.30% and abso-
lute increase of 3.67%. Similarly, Sa2VA-4B (+FT) achieves
an average relative increase of 5.74% and absolute increase
of 1.20%. On the other hand, when evaluated on exocen-
tric benchmarks, the fine-tuned models achieve comparable
or even better results than the original pre-trained models.
VideoLISA-3.8B (+FT) achieves a 1.77% performance im-
provement in the ReasonVOS benchmark and drops slightly
in Ref-Davis (-0.22%). Sa2VA-4B (+FT) surpasses its base-
line on all benchmarks. These results indicate that our train-
ing dataset is complementary to previous exocentric datasets.
Overall, these experiments verify the effectiveness of our
proposed training dataset EgoMask-Train for improving fine-
grained egocentric spatiotemporal grounding, providing a
unique resource for future video foundation models.

Our defined metrics can better reflect the grounding
capabilities on both egocentric and exocentric videos.
The commonly-used metric JoU,;; (also known as J) is not
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proper for our egocentric benchmark, especially in EgoMask-
Medium and EgoMask-Long. This arises from the large
portion of background frames. The IoU,;; metric considers
all frames and thus is dominated by the background frames,
failing to reflect the model performance at target frames. In
contrast, our proposed metrics ToUyo1q/I0Ugo1d_preqd Will ig-
nore/penalize the predictions on background frames, thereby
better reflecting model performance. Take Sa2VA in Table 3
as an example. We can observe that from short to long, the
model retrieves fewer target frames (7}.¢.q; is small), while
the IoU,; score gets higher. In comparison, our defined met-
rics are more stable and align with the subset difficulty (i.e.,
10Ugo1a/T0U 414 preqd drops as T.ccqy decreases). Mean-
while, exocentric benchmarks include fewer background
frames, and thus, our proposed metrics degenerate to the
old metric. As shown in Table 4, our proposed metrics are
consistent with ToU,;;. Therefore, our defined metrics well
reflect grounding abilities on both ego and exo videos.

Model design tailored for egocentric videos is lacking.
The comparison between VideoLISA and Sa2VA suggests
that transferring video segmentation ability from the SAM?2
model is better than performing independent image segmen-
tation on individual frames. We also compare Sa2VA and
Grounded-SAM?2, both of which are SAM2-based methods.
Their major difference lies in their architectures: Sa2VA is an
end-to-end model while Grounded-SAM?2 follows a pipeline
design. We find that Sa2VA shows better text query under-
standing than the pipeline model, as reflected by the results
on ReasonVOS, and performs better on exocentric bench-
marks (Table 4). The main reason is that Grounded-SAM?2
relies on the boxes predicted from GroundingDino, which
fails to fully understand the expressions. It thus achieves low
grounding scores due to the wrong boxes and the error prop-
agation. In contrast, Sa2VA can take advantage of the rea-
soning capabilities of LLMs to better understand the queries.
However, on EgoMask, even the largest Sa2VA model (26B)
achieves inferior performance to Grounded-SAM2. These
observations indicate that the existing modeling fails to ex-
plore the full potential of the pre-trained grounding models
on egocentric videos.

4.3. Analysis

We conduct further analysis to evaluate the modeling design
and reveal corresponding challenges.

Effects of Initialization State of SAM2. From Table 3,
the SAM2-based models (Grounded-SAM?2 and Sa2VA) per-
form better than the SAM-based model (VideoLISA) as
they can utilize information from the context frames. How-
ever, for these SAM2-based models, the initialization of
the inference state is of vital importance and influences the
performance a lot due to the information propagation. We
conduct experiments with the SAM2-based methods (shown
in Table 5 and Table 6). (1) For Grounded-SAM?2, its infer-



Methods | Short | Medium | Long
| Trecar IoUa  I0Ugoia  I0Ugoiaprea | Trecar IoUa I0Ugota  IoUgotaprea | Trecan  I0Uar  I0Ugora  I0Ugotd pred
Pipeline Baseline
Grounded-SAM2 ‘ 91.31 54.75 51.00 49.95 ‘ 65.85 54.35 28.23 25.73 ‘ 61.44 61.54 27.36 24.80
End2End Open-Source VideoLLMs
Sa2VA-26B 70.08 48.23 39.20 37.30 44.15 73.06 28.83 25.83 28.53 72.01 15.45 12.96
Sa2VA-4B 69.33 40.41 31.01 29.00 36.83 66.10 18.68 17.02 21.55 68.67 8.68 8.11
Sa2VA-4B (+FT) 72.62  41.70 32.92 30.97 (+1.97) | 39.27 67.42 20.12 18.52 (+1.50) | 21.60 69.50 9.14 8.24 (+0.13)
VideoLISA-3.8B 98.37 18.14 20.94 17.85 96.99 9.28 11.87 6.48 96.13 8.48 12.11 5.15
VideoLISA-3.8B (+FT) | 97.95 23.98 27.33 23.36 (+5.51) | 95.52 14.05 17.28 9.98 (+3.50) 95.33 12.03 14.82 7.16 (+2.01)

Table 3. Experimental results on our egocentric benchmark EgoMask. FT means the fine-tuning on our training dataset EgoMask-Train.

Methods | Ref-Davis | Mevis | ReasonVOS
| Trecan IoUai  T0Ugota  ToUgotapred | Trecau 10Uan  I0Ugota  I0Ugotaprea | Trecar  10Uan  T0Ugoia  I0Ugotd prea
Pipeline Baseline
Grounded-SAM2 ‘ 98.48 62.74 62.41 62.39 ‘ 97.27 41.07 40.69 40.65 ‘ 0.00 991 0.00 0.00
End2End Open-Source VideoLLMs
Sa2VA-26B 96.90 73.77 74.12 73.58 95.98 56.38 55.24 54.80 79.84 57.34 53.21 52.47
Sa2VA-4B 96.21 69.87 70.22 69.75 96.54 51.24 50.41 50.01 77.69 47.50 43.35 42.35
Sa2VA-4B (+FT) 96.22 70.09 70.45 69.97 (+0.22) | 96.21 57.45 56.05 55.55 (+5.54) | 79.10  50.11 46.34 45.54 (+3.19)
VideoLISA-3.8B 99.99 65.84 66.26 65.82 99.75 49.36 51.18 49.20 99.66 4243 45.48 4241
VideoLISA-3.8B (+FT) | 99.96 65.60 66.01 65.60 (-0.22) 99.54 4946 51.31 49.20 (-0.00) 99.09 44.27 47.13 44.18 (+1.77)

Table 4. Experimental results on existing exocentric benchmarks. FT means the fine-tuning on our training dataset EgoMask-Train.

Detection | ST-Grounding

EgoMask | Ground with highest |

‘ detection confidence ‘ Accuracy IoU ‘ Trecatt 10Ugotd pred
Short v 87.00 52.97 91.31 4995
© 82.75 42.49 (-10.48) | 87.64  40.42(-9.53)
Medium 4 51.50 31.56 65.85 2573
Y 67.00 18.24 (-13.32) | 6538  15.11 (-10.62)
Lon 4 47.00 32.74 61.44 2480
e 34.00 14.20 (-18.54) | 5436  11.65 (-13.15)

Table 5. Experimental results for different initialization states
of SAM2 in Grounded-SAM?2, where ST means spatiotemporal,
and the initialization state refers to the box prompt detected by
GroundingDino.

Type Valid Key | #Test Sa2VA-26B Sa2VA-4B
P Frames | sample | Ticcan  ToUgotdpred | Trecat  10Ugold_pred
Short v 394 70.93 37.87 70.38 29.44
6 14.58 0.00 0.00 0.00
Medi v 150 54.64 34.15 42.96 22.44
edium 50 | 1267 0.86 18.42 0.78
v 48 46.24 25.59 32.73 16.42
Long
52 12.18 1.29 11.23 0.44

Table 6. Experimental results for different initialization states of
SAM?2 in Sa2VA, where the initialization state means the mask
generated for key frames. The “Valid Key Frames” means the first
five frames contain targeted frames.

ence state is initialized by the detected bounding box from
GroundingDino. Thus, we implement a naive variant that,
instead of using the detected bounding box with the highest
confidence for grounding, we simply use the first detected
bounding box as the prompt, regardless of its confidence

Methods VideoLLM SAM-2 Variation Speed (FPS)
w. highest conf. 3.17
Grounded-SAM2 w.o highest conf. 7.14
Sa2VA-4B v v - 6.47
VideoLISA-3.8B v - 0.42

Table 7. Comparison of grounding speed. For Grounded-SAM?2,
the “w. highest conf.” means it performs grounding with the highest
detection confidence score and “w.o highest conf.” means the naive
variant that uses the first detected object as the box prompt.

score. The results are shown in Table 5. As the detection
performance drops in the naive variant, the grounding perfor-
mance also drops, essentially at the average of 11.1%. We
also witness the same situation on exocentric video ground-
ing tasks, with the average of 4.65% score reduced. (2) For
Sa2VA, the inference state of SAM?2 is initialized by the
generated mask on the input key frames. As we mentioned
before, the Sa2VA model usually takes key frames as the
first five frames of the input video. When the referred entity
does not show in these frames, the key frames are viewed
as invalid. The performance in Table 6 shows that when
the model fails to initialize the SAM2 properly, the overall
grounding performance will suffer from rapid deduction and
drop to nearly 0.00%. These results reveal that Utilizing
SAM? is beneficial for grounding, yet a proper initialization
state is critical to fully unleash its capability.

The initialization state poses a challenge for modeling
design. On one hand, the limited input tokens of the current
grounding models restrict them from taking more frames to
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Golden Mask

VideoLISA-3.8B

VideoLISA-3.8B (+FT)

Figure 3. Visualization of one example from EgoMask-Short with
sampled frames. The language query is “black container bottle
on the left side of a wooden table behind computer tablet”. The
fine-tuned models perform better than their zero-shot counterparts.

provide initial information for SAM2. On the other hand,
the ego videos are usually long, and the target objects have
shorter total durations and sparser continuous trajectories.
So the sampled frames are more likely to be the background
frames. Possible solutions could be: (1) enhancing long
video understanding capabilities, and (2) optimizing frame
selection to capture the target entities.

Inference Speed. We measure the inference speed of each
method in Table 7. The results demonstrate that performing
image-level segmentation is inefficient (e.g., only 0.42 FPS),
while SAM2-based methods with video-level segmentation
generally achieve higher speed (e.g., at least 3.17 FPS).

The above analysis suggests that:

Utilizing SAM? for spatiotemporal grounding offers
advantages in both effectiveness and efficiency; how-
ever, careful initialization is crucial to fully unleash
its pre-trained capability.

4.4. Visualization examples

We visualize a few examples from EgoMask and compare
the results from different models (Figure 3 and Figure 4).

Small object size poses a challenge to existing methods.
As Figure 4 shows, the object is very small and usually near
the edge of the view, which challenges existing methods.
Both Sa2VA-4B and VideoLISA fail to ground the target.

Our training dataset is beneficial. The fine-tuned Vide-
oLISA model can correct grounding errors compared with
its zero-shot counterpart. In Figure 3, where the pre-trained
model ignores the less salient target near the edge and locates
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Input

Sa2VA-4B

Sa2VA-4B (+FT)

VideoLISA-3.8B

VideoLISA-3.8B (+FT)

Figure 4. Visualization of one example from EgoMask-Long with
sampled frames. The language query is “small blue cylindrical
container near the floor”. The small target poses a challenge to
existing methods.

the wrong object (#2 frame), the fine-tuned model identifies
the object correctly. Also in Figure 4, the fine-tuned model
successfully locates the small object (#3 - #5 frame), which
the pre-trained model fails to ground. Similarly, the fine-
tuned Sa2VA-4B performs better than its original version
and outputs more precise masks (i.e., #2 frame in Figure 3).
These results indicate that our training data can facilitate the
models in addressing the challenges in egocentric videos.

Ultilizing SAM2 provides benefits. From Figure 3, we
notice inconsistent segmentation from two VideoLISA mod-
els (#5 frame), while other SAM2-based models can cor-
rectly segment the target across video frames without hallu-
cinations. This verifies the effectiveness of the SAM2 model
as it can utilize information from the context frames through
its memory module.

5. Conclusion

To address the absence of benchmarks for egocentric spa-
tiotemporal grounding, we introduce EgoMask, a benchmark
with pixel-level annotations, alongside a large-scale train-
ing dataset EgoMask-Train. Through extensive experiments,
we demonstrate that existing state-of-the-art models strug-
gle with egocentric videos but significantly improve when
fine-tuned on our training data, while retaining performance
on exocentric benchmarks. These findings, along with our
in-depth analysis on ego-exo video gaps, highlight the im-
portance of egocentric training data and suggest that our
benchmark can serve as a valuable resource for future re-
search in video grounding and embodied Al.
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