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Figure 1. A typical scenario involving a complex dynamic group that cannot be tackled by existing monocular depth estimation methods.
We contribute the first Group Instance Depth Dataset and a novel instance-aware depth estimation framework. Our method effectively
captures instance-wise depth relationships, mitigating occlusion ambiguities and improving depth accuracy in dynamic multi-object scenes.

Abstract

Depth estimation in dynamic, multi-object scenes remains a
major challenge, especially under severe occlusions. Exist-
ing monocular models, including foundation models, strug-
gle with instance-wise depth consistency due to their re-
liance on global regression. We tackle this problem from
two key aspects: data and methodology. First, we intro-
duce the Group Instance Depth (GID) dataset, the first
large-scale video depth dataset with instance-level anno-
tations, featuring 101,500 frames from real-world activ-
ity scenes. GID bridges the gap between synthetic and
real-world depth data by providing high-fidelity depth su-
pervision for multi-object interactions. Second, we pro-
pose InstanceDepth, the first occlusion-aware depth esti-
mation framework for multi-object environments. Our two-
stage pipeline consists of (1) Holistic Depth Initialization,
which assigns a coarse scene-level depth structure, and (2)
Instance-Aware Depth Rectification, which refines instance-
wise depth using object masks, shape priors, and spatial re-
lationships. By enforcing geometric consistency across oc-
clusions, our method sets a new state-of-the-art on the GID
dataset and multiple benchmarks. Our code and dataset can
be found at https://github.com/ViktorLiang/
GID.

*Corresponding author: Shengfeng He (shengfenghe@smu.edu.sg).

1. Introduction

The success of monocular depth estimation has been largely
driven by the availability of large-scale datasets, which en-
able models to learn depth relationships from diverse visual
cues. Recent advancements in foundation models, such as
Depth Anything V1 [52] and Depth Anything V2 [53], have
demonstrated that large-scale training improves generaliza-
tion across various domains. These models leverage ex-
tensive data and powerful neural architectures to estimate
depth from a single image without scene-specific supervi-
sion. However, despite their large-scale training, they still
struggle in complex real-world scenarios, particularly those
involving occlusions.

One key limitation stems from the nature of existing
datasets, which predominantly focus on structured environ-
ments such as indoor scenes [14, 44] and autonomous driv-
ing [19], where objects are mostly static and occlusions
are minimal. In contrast, real-world activity scenes, such
as sports events, performances, and crowded environments,
feature multiple interacting objects that frequently occlude
one another. These occlusions introduce depth ambiguities
that pose significant challenges for monocular depth esti-
mation models.

Beyond dataset limitations, most monocular depth esti-
mation methods, even those trained on large-scale datasets,
formulate depth estimation as a global regression problem,
optimizing per-pixel depth errors [16, 41, 52, 53, 55]. While
this approach allows models to generalize across diverse
scenes, it fails in cluttered environments where depth dis-
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continuities arise due to overlapping objects. Since these
methods do not explicitly model object-level depth relation-
ships, they struggle to infer occluded regions correctly, of-
ten producing depth inconsistencies in multi-object interac-
tions (see Figure 1b). Some approaches [2, 4, 18] attempt
to address this issue using relative depth decoders, but their
predictions are constrained by a global depth range and do
not explicitly account for occluded object structures. As a
result, they fail to maintain depth consistency in occluded
regions, particularly in complex, multi-object environments
(see Figure 1c).

To overcome these challenges, we argue that depth es-
timation must incorporate instance-level semantics, explic-
itly modeling object interactions, occlusion boundaries, and
relative depth hierarchies to handle occlusions and depth
discontinuities. A naive approach might be to use off-the-
shelf instance object detectors, but these models also suffer
from occlusions. When objects overlap, they often fail to
segment occluded instances, miss detections, or lose object
identities across frames. Since these detectors struggle with
the same occlusion challenges as depth estimation, address-
ing these issues requires advancements in both training data
and methodology.

From a dataset perspective, we introduce the Group
Instance Depth (GID) dataset, the first large-scale video
depth dataset explicitly designed for dynamic, multi-object
scenes. GID comprises over 101,500 frames covering di-
verse activities, including sports, dance, and animal inter-
actions. Each frame is annotated with instance-wise depth,
bounding boxes, segmentation masks, and consistent object
identities. Unlike existing datasets that rely on optical flow
or stereo matching for depth annotation [5, 47], which of-
ten introduce inconsistencies in dynamic settings, GID pro-
vides high-fidelity depth annotations captured using depth
sensors, ensuring greater accuracy in real-world scenarios.

Building on this dataset, we propose a novel depth es-
timation framework, InstanceDepth, that explicitly incor-
porates instance-wise depth information to improve depth
accuracy in occluded and multi-object scenes. Our method
follows a two-stage training paradigm: (1) a Holistic Depth
Initialization, which estimates coarse depth layers to cap-
ture the overall scene structure, and (2) an Instance-Aware
Depth Rectification, which corrects depth inconsistencies
by incorporating instance masks, object shapes, and rel-
ative spatial relationships between overlapping instances.
Given that depth discontinuities often arise from occlusions
and missing contextual information, we refine the initial
depth predictions by ensuring that each instance’s depth bet-
ter aligns with its intrinsic shape characteristics, category
constraints, and spatial positioning relative to other occlud-
ing or occluded objects. This refinement enforces geomet-
ric consistency across instances, mitigating depth ambigui-
ties in cluttered scenes. By explicitly integrating instance-

level depth cues, our approach not only preserves the global
scene structure but also enhances fine-grained depth estima-
tion at the object level (see Figure 1d & 1e).

In summary, our main contributions are as follows:
• We introduce the Group Instance Depth (GID) dataset, the

first large-scale video depth dataset for multi-object dy-
namic scenes, comprising 101,500 frames with instance-
wise depth, segmentation, and tracking annotations.

• We propose InstanceDepth, the first occlusion-aware
depth estimation framework designed for complex multi-
object environments.

• We develop a two-stage training paradigm: (1) Holis-
tic Depth Initialization, which establishes a coarse depth
structure for the scene, and (2) Instance-Aware Depth
Rectification, which refines instance-wise depth using ob-
ject masks, shape priors, and spatial relationships be-
tween overlapping instances.

• Our method achieves state-of-the-art performance on our
GID dataset and multiple depth estimation benchmarks,
demonstrating superior occlusion handling and robust
depth consistency in dynamic scenes.

2. Related Work
Image Monocular Depth Estimation. Monocular depth
estimation infers depth from a single image and is primar-
ily approached through supervised or self-supervised learn-
ing. Supervised methods [10, 15, 18, 32, 33, 41] rely on
ground truth depth, but acquiring such data is costly and
labor-intensive. DPT [42] introduced transformer-based ar-
chitectures to enhance feature extraction, while synthetic
datasets [36] and structure-from-motion techniques [30, 31]
have been explored to mitigate data limitations.

Recent foundation models, such as Depth Anything [52]
and Depth Anything V2 [53], leverage large-scale pseudo-
labeling pipelines to improve generalization. Depth Any-
thing V2 further replaces real labels with synthetic data
and scales up model capacity for finer depth predictions.
Similarly, self-supervised methods [20–22, 29] estimate
depth without ground truth, relying on stereo pairs [20] or
occlusion-aware losses [21]. RA-Depth [24] dynamically
adapts resolution, while Shi et al. [43] address reflective
surfaces by distilling multi-view 3D information.

While foundation models [52, 53] demonstrate strong
generalization, they struggle with occlusions and instance-
wise depth consistency. Our work follows the supervised
paradigm and introduces a video depth dataset tailored for
dynamic activity scenes, complementing these models by
improving depth estimation in complex environments with
object interactions and occlusions.
Video Monocular Depth Estimation. Video depth es-
timation extends monocular depth learning by enforcing
temporal consistency across frames. One approach re-
fines single-frame predictions at inference using geomet-
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ric constraints [35], pose optimization [28, 59], motion
adaptation [45, 57], or embedded correlation [8, 58], but
these methods require test-time training, making them com-
putationally expensive. Alternatively, training-based ap-
proaches integrate spatial-temporal information to enable
inference without finetuning. ST-CLSTM [56] employs an
LSTM with GAN supervision, while Feng et al. [17] in-
troduce an occlusion-aware cost volume by separating ob-
ject motion. NVDS [47] ensures temporal consistency via
cross-attention, with NVDS+ [48] stabilizing predictions
through a plug-and-play module. DepthCrafter [25] gener-
ates long-term coherent depth sequences via stitching-based
inference.

To enhance scalability, Depth Any Video [51] introduces
synthetic training pipelines and generative diffusion priors,
while Video Depth Anything [9] extends Depth Anything
V2 for long-video inference. Our work diverges by address-
ing long-term video depth estimation in dynamic activity
scenes with multiple objects, ensuring robustness against
occlusions and prolonged interactions.
Video Depth Dataset. The progress of video depth es-
timation is constrained by the lack of diverse datasets.
KITTI [19] provides high-quality ground truth for driving
scenes but lacks variety. NYU Depth [44] and ScanNet [14]
focus on indoor environments, while synthetic datasets like
Sintel [5] and Tartanair [46] expand dataset diversity. More
recently, Wang et al. [47] introduced a large-scale dataset
for in-the-wild depth estimation.

Despite these advancements, most datasets emphasize
static scenes with minimal occlusions and lack instance se-
mantics. To bridge this gap, we introduce a new video depth
dataset enriched with dynamic human activities across in-
door and outdoor settings, incorporating instance labels to
better model real-world depth estimation challenges.

3. GID Dataset
Existing video depth datasets primarily rely on synthetic
depth for multi-object scenes [14, 26] or animated con-
tent [5, 54], lacking real-world fast-moving and deformable
objects. To bridge this gap, we introduce the Group Instance
Depth (GID) dataset, capturing real-world activity scenes
with commercial depth cameras. GID is recorded using two
high-quality depth sensors, the Intel RealSense D455 and
Microsoft Azure Kinect DK, which provide synchronized
RGB and depth images, ensuring precise depth representa-
tion in dynamic human and animal activities.
Image and Depth Capturing. To capture diverse real-
world activities, we recorded scenes in sports courts (bas-
ketball, badminton, volleyball, dance, table tennis) and a
zoo environment. Data collection occurred both day and
night to include varied lighting conditions. Cameras were
intentionally moved during recording to create dynamic
scenes featuring primary subjects such as humans, basket-

RGB Image Object Mask Ground Mask Depth

Figure 2. Illustrative mask and depth annotations for various ac-
tivities, including badminton, basketball, dance, and table tennis.
The “Object Mask” images distinguish objects with unique colors,
while the “Ground Mask” images highlight prompt dots with red
circles. The “Depth” images visualize depth values within a range
of 0.01 to 10.0 meters.

Table 1. Comparison of video depth datasets by video length and
object count. Datasets using optical flow for depth annotation are
listed in the second section, while those using depth cameras are
in the last. For KITTI, only deformable moving objects (e.g., per-
sons) are counted.

Dataset # Videos Avg Video Len Avg # Objects

Sintel [5] 20 50 2.3
KITTI [19] 151 311.2 1.2

NYUDV2 [44] 284 128.2 0
GID (Ours) 112 625.9 8.7

balls, and rackets.
Mask Generation. Mask annotations for GID were gener-
ated in two stages: prompt creation and mask extraction us-
ing SAM [27]. Bounding boxes outlined objects, while dots
marked ground areas to enhance annotation accuracy. These
prompts were processed through SAM to produce distinct
object and ground masks. Figure 2 showcases sample anno-
tations, capturing intricate details like human limbs, which
are often underrepresented in optical flow-based datasets.

We compared GID with existing datasets, including Sin-
tel, KITTI, and NYU Depth [5, 19, 44], in terms of video
length and moving object diversity (see Table 1). GID of-
fers longer sequences and a broader range of deformable
objects, highlighting its unique contribution to real-world
depth estimation research.
Tracking Identity Generation. Tracking identity is essen-
tial for consistent video depth estimation. While detection-
based tracking methods [7, 49] are viable, we adopt
segmentation-based tracking [13] due to its pre-training on
large datasets like SAM [27] and open-world datasets [1],
ensuring more stable tracking over long sequences. We use
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(a) Distribution of total amount of person in different depth ranges for the
human involved sport videos.

(b) Average number of objects and the total number of frames in
each video. Each point is a video.

Figure 3. Statistical distributions of our proposed GID dataset.

DEVA [13], an off-the-shelf tracker, to generate initial ob-
ject masks with unique identities. These masks are then
matched to prior masks using the highest Intersection over
Union (IoU) to maintain identity consistency. Figure 2 il-
lustrates different identities in varying colors.
Statistical Distribution Analysis. We analyze the dataset’s
statistical distribution, focusing on object counts across
depth ranges (Figure 3a). Most objects fall within 4.0–8.0
meters, with fewer at shallow (< 2m) or deep (> 8m)
ranges. Additionally, we examine object counts and frame
distributions across video categories (Figure 3b). The
Dance category contains the most objects, often exceeding
10 per video, while other categories generally have fewer.
Most videos range between 0–1,000 frames, though some

exceed this limit. The Table Tennis category has fewer
samples due to the difficulty of capturing complete scenes
with depth cameras. For the dataset split, we randomly se-
lected 21 videos as the test set, comprising 20,223 frames
that encompass motion scenarios and human-animal inter-
action scenarios. Unlike the train/test split ratios in other
datasets [19, 44], we assign a larger proportion (20%) to
the test set, which poses an even greater challenge for depth
estimation in group scenarios.

4. InstanceDepth
As illustrated in Figure 4, we introduce InstanceDepth,
a novel depth estimation framework designed to improve
depth accuracy in multi-object, occlusion-heavy environ-
ments. It follows a two-stage process: Holistic Depth
Initialization, which establishes a coarse scene-level depth
structure, and Instance-Aware Depth Rectification, which
refines depth estimates by incorporating instance segmenta-
tion, shape priors, and spatial relationships to enforce geo-
metric consistency.

4.1. Holistic Depth Initialization
Holistic Depth Initialization serves as the first stage of our
framework, providing a structured depth estimation that
captures the overall scene layout. It establishes depth pri-
ors by segmenting depth space and refining relative depth
estimates, laying the foundation for precise instance-level
depth refinement.

To incorporate object-level information in depth esti-
mation, we first apply depth range segmentation to assign
depth references to pixels. Prior methods rely on predefined
depth ranges per image or pixel, but complex scenes with
occlusions require a more adaptive approach. Objects at dif-
ferent depths within overlapping regions should be treated
separately.

As shown in Figure 4, we design a multi-scale depth de-
coder (detailed in Figure 5) that progressively refines fea-
tures from coarse to fine depth scales, generating depth
range features. Based on these features, we first obtain an
initial depth range segmentation S and depth estimation D
using a lightweight convolutional network. The depth is
then refined iteratively at multiple segmentation levels.

Let Fi represent the depth range features at the i-th level,
with Si and Di denoting the corresponding depth range seg-
mentation and initial depth estimation. The maximum depth
value, MAXd, is divided into rd depth ranges. We evaluate
depth range confidence using a small network Φd, which
takes the depth range features Fi and depth Di at level i:

Ci = Sigmoid(Φd(Fi, Di)) (1)

The pixel-wise relative error score Ri is then computed by
summing the segmentation Si and confidence Ci along the
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Figure 4. Overview of the proposed method, consisting of three key components. The upper section illustrates the depth estimation training
process, incorporating cascaded global depth range blocks and relative depth error prediction. The lower left depicts the layered instance
segmentation, which generates instance depth layers and segmentation masks. The lower right presents the instance 3D relation reasoning
stage, where instance-wise relative depths are predicted to refine the initial depth estimation.
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Figure 5. Depth range feature decoder pipeline. It extracts multi-
scale features using patch-wise convolution, a linear layer, and
patch attention for improved scene geometry understanding.

depth range dimension:

Ri =

rd∑
i=0

(Ci · Si) (2)

Relative error scores are adjusted for each depth range to
improve estimation precision. The relative depth error Ei

and refined depth at level (i + 1), denoted as D(i+1), are
computed as:

Ei = 2 · (Ri − 1) ·
(
MAXd

rd

)
. (3)

Instance Depth Layer Depth Error

Figure 6. Illustrative mask and depth error visualization. Depth er-
rors frequently occur at occlusions between instances, highlighting
the need to model instance relationships for accurate depth estima-
tion in dynamic multi-object environments.

D(i+1) = Di + Ei (4)

This process is repeated across all depth levels to gen-
erate the initial holistic depth, establishing a coarse scene-
level depth structure.

4.2. Instance-Aware Depth Rectification

With the initialized holistic depth, we refine instance-wise
depth predictions by integrating instance segmentation,
depth layer priors, and geometric consistency to address
occlusions (see Figure 6). This stage consists of two key
components: instance depth layer prediction and occlusion-
aware depth refinement, which collectively enhance depth
accuracy in multi-object interactions.
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Figure 7. Instance depth layer decoder architecture. Task-specific
query embeddings (circles and squares) and pixel decoder param-
eters (dashed and solid lines) are used for instance depth layer pre-
diction and segmentation. A transformer-decoder-followed query
fusion module generates instance-aware depth layers per query.

4.2.1. Instance Depth Layer Prediction
We employ a Mask2Former-based [6, 11, 12] instance seg-
mentation decoder to predict instance masks and their cor-
responding depth layers, as illustrated in Figure 7. The de-
coder produces a fixed set of N predictions, each compris-
ing an instance mask Mski, category Clsi, and instance
depth layer Depi, representing the average depth of the in-
stance. To align predictions with ground truth, we formu-
late a bipartite matching cost that incorporates depth layer
differences, mask IoU, and category classification:

min
σ

∑N

i=1
λ1Lm(M̂sk

(i)
,Mskσ(i))+ (5)

λ2Lc(Ĉls
(i)
, Clsσ(i))+ (6)

λ3Ld(D̂ep
(i)
, Depσ(i)), (7)

where Lm (mask IoU loss) and Lc (cross-entropy loss)
follow Mask2Former [12], while Ld applies a smoothed L1
loss for depth layer regression. σ(i) denotes the index of the
corresponding ground truth object. This formulation jointly
optimizes instance segmentation and depth layers while pre-
serving object identities and spatial relationships.

4.2.2. Occlusion-Aware Depth Refinement
To resolve depth ambiguities in occluded regions, we en-
force geometric consistency using predicted instance masks
and depth layers, as shown in the Occlusion Pair Relation
Reasoning module in Figure 4. First, candidate instances
are filtered based on category confidence (> 0.9) and mask
confidence (> 0.8). For each main instance, overlapping in-
stances (IoU > 0.1) are identified, and the nearest in depth
(termed the guest instance) is retained.

Multi-scale depth features F i
obj ∈ R2×C×Hp×Wp and

geometric priors Gobj (including mask logits, normalized

coordinates, and global depths) are extracted via ROI align-
ment [23]. These inputs are processed by an MLP Φo to
predict relative depth errors Eobj :

Eobj = Sigmoid(Φo([Fobj , Gobj ])) (8)

which refines instance depths as:

D̂obj = [(Eobj × 2)− 1]×Dobj +Dobj (9)

To supervise the refined depths, we apply a scale-
invariant logarithmic loss [16]:

Lobj = SigLog(D̂obj , DT obj) (10)

Additionally, relative depth consistency between
occluder-occludee pairs is enforced via Ldist:

Ldist =
∑M

i=1,j ̸=i
||(D̂i − D̂j)

2 − (DTi −DTj)
2||

(11)

The total refinement loss combines both terms:

Lref = λ1 ∗ Lobj + λ2 ∗ Ldist (12)

This dual-loss strategy ensures accurate depth recovery
for occluded objects while maintaining coherent spatial hi-
erarchies across instances.

By integrating instance-wise depth information with
occlusion-aware geometric reasoning, our approach miti-
gates depth ambiguities in crowded scenes, achieving robust
depth consistency even under severe occlusions.

4.3. Training Details
Our method is implemented using the PyTorch frame-
work [38] and trained on an NVIDIA RTX 4090 GPU. We
employ the pretrained DINOv2 [37] as the backbone net-
work for feature extraction.

The training process consists of three progressive phases
to ensure effective depth learning at both the scene and in-
stance levels:
• Global Depth Range Pretraining: In the first phase, we

train the depth range module for 55k iterations with an
initial learning rate of 1×10−5. This stage establishes
scene-wide depth priors by learning global depth distri-
butions across varying scales.

• Instance Depth Layer Specialization: After pretrain-
ing the global depth range, we freeze the depth en-
coder and train the instance decoder for 25k iterations
(LR=1×10−5). This phase focuses on learning object-
level depth segmentation, enabling the model to distin-
guish depth layers for individual instances.
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Table 2. Depth estimation results on the GID test set. All models
are trained on the GID training set for fair comparisons.

Method RMS ↓REL ↓RMSlog ↓Log10 ↓ σ1 ↑
CDMOV [57] 0.657 0.078 0.128 0.182 0.768

NeWCRFs [55] 0.497 0.067 0.098 0.029 0.938
ZoeDepth [4] 0.487 0.068 0.107 0.034 0.949
NVDS [48] 0.511 0.062 0.116 0.037 0.942

DepthAnything V1 [52] 0.433 0.052 0.086 0.024 0.973
DepthAnything V2 [53] 0.435 0.053 0.088 0.026 0.971

PromDep [34] 0.431 0.051 0.084 0.024 0.974
InstanceDepth 0.397 0.045 0.077 0.019 0.983

• Occlusion-Aware Joint Refinement: In the final stage,
we reverse the freezing strategy—fixing the instance de-
coder while fine-tuning both the depth encoder and de-
coder for 25k iterations with a lower learning rate of
1×10−6. This phase enhances depth consistency in oc-
cluded regions by refining depth estimates based on spa-
tial relationships between overlapping objects.

5. Experiments

5.1. Datasets and Evaluation Metrics
Since our focus is on depth estimation in dynamic,
object-centered activities scenes, we evaluate our method
on additional static dataset alongside our GID dataset:
NYUDv2 [44], a depth camera-captured dataset featuring
indoor environments.

For performance evaluation, we use standard depth esti-
mation metrics, including root mean squared error (RMS),
average relative error (REL), and accuracy within thresh-
olds σi(i = 1, 2, 3), which measure depth estimation preci-
sion and robustness across different environments.

5.2. Comparisons with State-of-the-Art Methods
To comprehensively evaluate our approach, we compare In-
stanceDepth with leading depth estimation methods [4, 34,
48, 52, 53, 55]. Our evaluation covers both dynamic multi-
object scenarios and static indoor environments to assess
the generalizability of our method.

We first conduct experiments in dynamic multi-object
settings using the GID test set. Table 2 presents quanti-
tative comparisons, where InstanceDepth outperforms ex-
isting state-of-the-art methods, particularly in occlusion-
heavy scenes where depth discontinuities pose significant
challenges. Notably, our method surpasses large-scale
foundation models, such as Depth Anything V2 [53] and
PromDep [34], demonstrating its ability to maintain fine-
grained instance-wise depth consistency even in complex
object interactions.

Beyond dynamic scenarios, we evaluate InstanceDepth
on the NYUDv2 dataset [44] to test its effectiveness in

Table 3. Depth estimation comparison results on the NYU Depth
V2 test set. All methods are trained on NYU Depth V2.

Method REL ↓ RMS ↓ σ1 ↑ σ2 ↑
AdaBins [3] 0.178 0.595 0.698 0.937

TransDepth [50] 0.106 0.365 0.900 0.983
P3Depth [39] 0.104 0.356 0.898 0.981
ZoeDepth [4] 0.077 0.282 0.951 0.994

UniDepth-V [40] 0.058 0.201 0.886 0.984
DepthAnything V1 [52] 0.056 0.206 0.984 1
DepthAnything V2 [53] 0.056 0.206 0.984 0.998

InstanceDepth 0.056 0.202 0.985 0.999

structured indoor environments. For this experiment, we
train the Holistic Depth Initialization stage on NYUDv2 us-
ing the pretrained encoder from Depth Anything V2 [53].
The results in Table 3 show that our depth range relative er-
ror strategy remains effective even in static indoor scenes.
However, the performance gains are marginal compared to
dynamic environments, likely due to the structured depth
layering present in indoor scenes (e.g., walls as persistent
background planes), where explicit depth range segmenta-
tion is less critical than in cluttered outdoor settings.

Furthermore, we provide qualitative comparisons in Fig-
ure 8. As shown, InstanceDepth produces more accurate
depth maps than existing methods, particularly in occluded
regions where competing models struggle with depth incon-
sistencies. Our method effectively captures inter-instance
relationships and preserves geometric consistency in dy-
namic, multi-object scenes, reinforcing its robustness in
challenging real-world scenarios.

5.3. Ablation Studies
To assess the effectiveness of the proposed two-stage train-
ing scheme, we first establish a baseline model using a
DepthAnything V2 pretrained encoder combined with a
DPT decoder [41]. We then incrementally incorporate the
two training stages onto this baseline. Table 4 presents the
performance comparisons among these variants. By inte-
grating holistic depth initialization, the model captures the
coarse scene structure more effectively, leading to improved
performance over the baseline.

5.3.1. Ablation on Holistic Depth Initialization
The depth range partitioning strategy plays a crucial role
in the holistic depth initialization stage. In this ablation
study, we evaluate different partitioning strategies, rang-
ing from fine-grained to coarse-grained depth segmentation.
The results in Table 5 indicate that both overly fine-grained
and excessively coarse partitioning negatively impact per-
formance. We hypothesize that fine-grained partitioning
introduces fragmented depth regions, increasing training
complexity and slowing convergence, whereas overly large
depth intervals fail to provide sufficient constraints for opti-
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Source GT NeWCRFs ZoeDepth DepthAny V2 Ours

Figure 8. Qualitative comparison of depth estimation results on GID test set. Our method demonstrates superior depth preservation in
occluded regions and improved geometric coherence in multi-object scenes.

Table 4. Ablation study on the proposed two-stage framework.
The baseline model uses a Depth Anything V2 pretrained encoder
with a DPT decoder. “H” and “I” denote the Holistic Depth Ini-
tialization and Instance-Aware Depth Rectification stages, respec-
tively.

Method REL ↓ RMS ↓ σ1 ↑ σ2 ↑ σ3 ↑
Baseline 0.0524 0.4357 0.9757 0.9933 0.9972

Baseline+H 0.0506 0.4188 0.9784 0.9947 0.9975
Baseline+H+I 0.045 0.397 0.983 0.995 0.998

mizing depth range relative errors.

5.3.2. Ablation on Instance-Aware Depth Rectification
The loss functions in the instance-aware depth rectification
stage play distinct roles in optimizing depth accuracy. To
assess their individual contributions, we conducted ablation
experiments, with results shown in Table 6. The findings in-
dicate that the instance depth refinement loss (Lobj) has the
most significant impact on performance, whereas the rela-
tive distance loss has a more limited effect. We hypothesize
that this is because Lobj broadly optimizes depth values in
occluded regions, whereas the relative distance loss primar-
ily influences cases with large depth discrepancies between
the main and guest objects—a scenario that occurs less fre-
quently in typical scenes.

6. Conclusion
We introduced GID, a novel dataset for depth estimation in
dynamic, real-world group scenes. GID captures diverse
human activities with detailed depth annotations, instance

Table 5. Ablation study on the depth range partitioning strategy.
The strategy of partitioning ground truth depth into intervals of
K meters is denoted as “K meter”. This ablation is conducted
without the Instance-Aware Depth Rectification stage.

Partitioning By REL ↓ RMS ↓ σ1 ↑ σ2 ↑ σ3 ↑
1 meter 0.053 0.426 0.977 0.993 0.997
2 meter 0.051 0.419 0.978 0.995 0.998
3 meter 0.055 0.431 0.972 0.989 0.991

Table 6. Ablation study on the loss functions used in the instance-
aware depth rectification stage. All evaluated methods are based
on the holistic depth initialization stage.

Method REL ↓ RMS ↓ σ1 ↑ σ2 ↑ σ3 ↑
Lobj 0.0524 0.407 0.974 0.989 0.991
Ldist 0.0506 0.412 0.971 0.988 0.991

Lobj + Ldist 0.045 0.397 0.983 0.995 0.998

masks, and tracking identities, addressing the challenges
of multi-object interactions and occlusions. Additionally,
we proposed InstanceDepth, an occlusion-aware depth es-
timation framework that integrates holistic depth initializa-
tion and instance-aware depth rectification, significantly im-
proving depth accuracy in complex environments.
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fying short and long-term tracking with graph hierarchies.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 22877–22887, 2023.
3

[8] Haoxin Chen, Hanjie Wu, Nanxuan Zhao, Sucheng Ren, and
Shengfeng He. Delving deep into many-to-many attention
for few-shot video object segmentation. In CVPR, pages
14040–14049, 2021. 3

[9] Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zi-
long Huang, Jiashi Feng, and Bingyi Kang. Video depth
anything: Consistent depth estimation for super-long videos.
arXiv:2501.12375, 2025. 3

[10] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. NeurIPS, 29, 2016. 2

[11] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-
pixel classification is not all you need for semantic segmen-
tation. NeurIPS, pages 17864–17875, 2021. 6

[12] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In CVPR,
pages 1290–1299, 2022. 6

[13] Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander
Schwing, and Joon-Young Lee. Tracking anything with de-
coupled video segmentation. In ICCV, pages 1316–1326,
2023. 3, 4

[14] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias Nießner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
CVPR, pages 5828–5839, 2017. 1, 3

[15] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale con-
volutional architecture. In Proceedings of the IEEE inter-
national conference on computer vision, pages 2650–2658,
2015. 2

[16] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. NeurIPS, 27, 2014. 1, 6

[17] Ziyue Feng, Liang Yang, Longlong Jing, Haiyan Wang,
YingLi Tian, and Bing Li. Disentangling object motion and
occlusion for unsupervised multi-frame monocular depth. In
ECCV, pages 228–244. Springer, 2022. 3

[18] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In CVPR, pages 2002–
2011, 2018. 2

[19] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 1, 3, 4

[20] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, pages 270–279, 2017. 2

[21] Clément Godard, Oisin Mac Aodha, Michael Firman, and
Gabriel J Brostow. Digging into self-supervised monocular
depth estimation. In CVPR, pages 3828–3838, 2019. 2

[22] Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raven-
tos, and Adrien Gaidon. 3d packing for self-supervised
monocular depth estimation. In CVPR, pages 2485–2494,
2020. 2

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In ICCV, pages 2961–2969, 2017. 6

[24] Mu He, Le Hui, Yikai Bian, Jian Ren, Jin Xie, and Jian Yang.
Ra-depth: Resolution adaptive self-supervised monocular
depth estimation. In European Conference on Computer Vi-
sion, pages 565–581. Springer, 2022. 2

[25] Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xiaodong
Cun, Yong Zhang, Long Quan, and Ying Shan. Depthcrafter:
Generating consistent long depth sequences for open-world
videos. In CVPR, 2025. 3

[26] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Dy-
namicstereo: Consistent dynamic depth from stereo videos.
In CVPR, pages 13229–13239, 2023. 3

[27] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross Girshick. Segment anything. arXiv:2304.02643, 2023.
3

[28] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. Robust
consistent video depth estimation. In CVPR, pages 1611–
1621, 2021. 3

[29] Hanhan Li, Ariel Gordon, Hang Zhao, Vincent Casser, and
Anelia Angelova. Unsupervised monocular depth learning in
dynamic scenes. In CoRL, pages 1908–1917. PMLR, 2021.
2

7589



[30] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, pages
2041–2050, 2018. 2

[31] Zhengqi Li, Tali Dekel, Forrester Cole, Richard Tucker,
Noah Snavely, Ce Liu, and William T Freeman. Learning
the depths of moving people by watching frozen people. In
CVPR, pages 4521–4530, 2019. 2

[32] Yuan Liang, Bailin Deng, Wenxi Liu, Jing Qin, and
Shengfeng He. Monocular depth estimation for glass walls
with context: a new dataset and method. IEEE TPAMI, 45
(12):15081–15097, 2023. 2

[33] Yuan Liang, Zitian Zhang, Chuhua Xian, and Shengfeng He.
Delving into multi-illumination monocular depth estimation:
A new dataset and method. IEEE TMM, 2024. 2

[34] Haotong Lin, Sida Peng, Jingxiao Chen, Songyou Peng, Ji-
aming Sun, Minghuan Liu, Hujun Bao, Jiashi Feng, Xiaowei
Zhou, and Bingyi Kang. Prompting depth anything for 4k
resolution accurate metric depth estimation. arXiv preprint
arXiv:2412.14015, 2024. 7

[35] Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen,
and Johannes Kopf. Consistent video depth estimation. ACM
TOG, 39(4):71–1, 2020. 3

[36] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, pages
4040–4048, 2016. 2

[37] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy
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