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Figure 1. Motivation of Perspective invariant 3D object DETection (Pi3DET). We focus the practical yet challenging task of 3D object
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detection from heterogeneous robot platforms: & Vehicle, 7 Drone, and %% Quadruped. To achieve strong generalization, we contribute:
1) The first dataset for multi-platform 3D detection, comprising more than 51K LiDAR frames with over 250k meticulously annotated 3D
bounding boxes; 2) An adaptation framework, effectively transfers capabilities from vehicles to other platforms by integrating geometric
and feature-level representations; 3) A comprehensive benchmark study of state-of-the-art 3D detectors on cross-platform scenarios.

Abstract

With the rise of robotics, LiDAR-based 3D object detection
has garnered significant attention in both academia and
industry. However, existing datasets and methods predom-
inantly focus on vehicle-mounted platforms, leaving other
autonomous platforms underexplored. To bridge this gap,
we introduce Pi3DET, the first benchmark featuring LiDAR
data and 3D bounding box annotations collected from mul-
tiple platforms: vehicle, quadruped, and drone, thereby
facilitating research in 3D object detection for non-vehicle
platforms as well as cross-platform 3D detection. Based
on Pi3DET, we propose a novel cross-platform adaptation
[framework that transfers knowledge from the well-studied ve-
hicle platform to other platforms. This framework achieves
perspective-invariant 3D detection through robust alignment
at both geometric and feature levels. Additionally, we estab-

(*) Ao, Lingdong, and Dongyue contributed equally to this work.

lish a benchmark to evaluate the resilience and robustness of
current 3D detectors in cross-platform scenarios, providing
valuable insights for developing adaptive 3D perception sys-
tems. Extensive experiments validate the effectiveness of our
approach on challenging cross-platform tasks, demonstrat-
ing substantial gains over existing adaptation methods. We
hope this work paves the way for generalizable and unified
3D perception systems across diverse and complex environ-
ments. Our Pi3DET dataset, cross-platform benchmark suite,
and annotation toolkit have been made publicly available.

1. Introduction

LiDAR-based 3D object detection provides detailed spa-
tial and geometric information about objects of interest, at-
tracting significant research attention [1, 39, 48, 115]. De-
spite this trend, existing datasets [8, 22, 54, 76] and meth-
ods [31, 33, 43, 69, 72, 102, 113] predominantly target au-
tonomous vehicles, leaving other platforms underexplored.
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Table 1. Summary of LiDAR-based 3D object detection datasets. We compare key aspects from *robot platforms, ?scale, ®sensor setups,
4temporal (Temp.), Smulti-conditions, efc. To our knowledge, Pi3DET stands out as the first work to feature multi-platform 3D detection
from &= Vehicle, & Drone, and 22 Quadruped, with fine-grained 3D bounding box annotations, conditions, and practical use cases.

Dataset Venue QPla;g rm\e: Fli?lfes legﬁ;{ Temp. Iglezq) (féndltgn Other Sensors Supported

KITTI [22] CVPR'12 | V X X 14,999 1 x 64 No - v X RGB, @ IMU, &» Stereo

ApolloScape [28] | TPAMI'I8 | v X X | 143,906 1 x 64 Yes 2 v v 8 RGB, @ IMU, @ Radar

Waymo Open [76] CVPR'19 | vV X X | 198,000 | 1x64,4x16 Yes 10 v v RGB, @ IMU, (2 Radar

nuScenes [8] CVPR20 | vV X X | 35,149 1x 32 Yes 2 v v RGB, @ IMU, & Radar
ONCE [54] arXiv2l | VX X ~ 1M 1 x40 No 2 4 v RGB, @ IMU
Argoverse 2 [85] | NeurlPS21 | v X X ~ 6M 2 x 32 Yes 10 VAR § GB, @ IMU
aiMotive [57] | ICLRW23 | v X X | 26,583 1 x 64 Yes 10 v v GB, & IMU
Zenseact Open [2] iccve23 | X X | ~100K | 1x128,4 x 16 Yes 1 v v RGB, & IMU

MAN TruckScenes [21] | NeurlPS’24 | / X X ~ 30K 6 x 64 Yes 2 v v RGB, @ IMU, ) Radar
AeroCollab3D [78] TGRS24 | X /X 3,200 N/A No - v X RGB, @ IMU

Pi3DET (M3ED) | Ours | v/ / / |51,545 | 1x64 Yes 10 | v/ | @RGB, @ IMU, e Stereo, ¥ Event

With rapid advancements in robotics, autonomous sys-
tems such as quadrupeds and drones are becoming increas-
ingly vital for diverse real-world applications [3, 5, 9, 26,
37, 50, 61, 78, 91]. Equipping these emerging platforms
with accurate 3D perception capabilities comparable to
those of autonomous vehicles is therefore highly significant
[6, 23, 34, 38, 48, 89]. Currently, research into non-vehicle
platforms remains sparse [14, 41, 53, 64, 78], revealing a
critical gap in cross-platform 3D object detection studies.

A major barrier impeding progress in multi-platform
detection is the lack of annotated multi-platform LiDAR
datasets. Current benchmarks almost exclusively focus on ve-
hicles [8, 22, 74, 76, 108]. Although some drone datasets ex-
ist [9, 78], they often lack comprehensive 3D annotations and
sufficient platform diversity. Chaney et al. introduce M3ED
[9], a dataset compiled from multiple platforms. However,
the lack of annotated 3D bounding boxes currently limits its
direct applicability for 3D detection tasks. Training platform-
specific models independently is both resource-intensive
and impractical for real-world deployment, especially in
resource-constrained scenarios. Cross-platform adaptation,
transferring knowledge from well-studied vehicle datasets
to other platforms like drones and quadrupeds, emerges as
a promising alternative. Existing domain adaptation tech-
niques [116], however, primarily tackle cross-dataset shifts
and neglect intrinsic geometric discrepancies caused by dif-
ferences in platform dynamics and sensor viewpoints.

To address these limitations, we introduce Pi3DET, the
first publicly available multi-platform 3D detection dataset.
Our dataset consists of 51,545 LiDAR frames with over
250,000 meticulously annotated 3D bounding boxes span-
ning &= Vehicle, & Drone, and 2% Quadruped. Our dataset
is constructed using an automated labeling pipeline, supple-
mented by extensive manual refinement totaling approxi-
mately 500 hours. As detailed in Tab. 1, Pi3DET contains
25 sequences covering diverse environments under vary-
ing day and night conditions (examples in Appendix A.3).
Analyses of Pi3DET highlight three crucial discrepancies

across platforms: differences in ego-motion characteristics,
variations in point-cloud distributions, and distinct bounding
box properties, underscoring the necessity for specialized
adaptation methods and techniques.

Motivated by these insights, we propose Pi3DET-Net, a
novel cross-platform adaptation framework. Our approach
consists of two stages. In the Pre-Adaptation (PA) stage,
we learn global transformations and extract geometric cues
from the source platform. In the Knowledge Adaptation
(KA) stage, we propagate the acquired knowledge and align
features between the source and target platforms to improve
cross-platform generalization. In particular, our method
effectively bridges the platform gap among heterogeneous
robotic systems at both the geometric and feature levels:

B Geometry-Level. We develop Random Platform Jitter
(RPJ) to augment source data with simulated ego-motion dis-
turbances, enhancing robustness to platform-specific motion
variations. Moreover, Virtual Platform Pose (VPP) projects
target platform point clouds into a source-like coordinate
frame, mitigating viewpoint discrepancies.

B Feature-Level. Our Geometry-Aware Transformation
Descriptor (GTD) encodes platform-specific geometric prop-
erties (e.g., sensor elevation distributions), guiding effective
feature alignment. The proposed KL Probabilistic Feature
Alignment (PFA) leverages variational inference to minimize
domain-specific distribution gaps, thereby facilitating accu-
rate platform-specific pose adaptation.

Extensive experiments on KITTI [22], nuScenes [8], and
our Pi3DET validate our effectiveness. Specifically, Pi3DET-
Net achieves mAP gains of +11.84% and +12.03% in Ve-
hicle — Drone and Vehicle — Quadruped adaptations, re-
spectively. Additionally, cross-dataset experiments show an
average improvement of +25.27% mAP over source-only
methods in the nuScenes — KITTI scenario. We further
establish a comprehensive benchmark on Pi3DET with
18 state-of-the-art detectors, identifying insights to enhance
resilience against platform variations. When combined with
these detectors, our method consistently boosts performance,
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underscoring its architecture-agnostic nature and wide appli-

cability. In summary, the contributions of this work are:

* We introduce Pi3DET, a diverse and large-scale multi-
platform 3D object detection dataset, serving as a solid
foundation for cross-platform 3D detection research.

* We propose a novel cross-platform 3D object detection
framework, Pi3DET-Net, to effectively transfer 3D de-
tection capabilities from vehicles to other platforms by
integrating geometric and feature-level representations.

* We establish an extensive benchmark, providing crucial
insights for future development of generalizable 3D detec-
tion systems across heterogeneous robot platforms. To our
knowledge, this is the first work in this line of research.

2. Related Work

Datasets & Benchmarks for 3D Detection. LiDAR-based
3D detection aims to estimate an object’s 3D position and ge-
ometric dimensions [56, 63, 81]. Typical detectors are classi-
fied by their approach to process point cloud data: grid-based
(using voxels [15, 42, 46, 55], range grids [18, 79, 112] and
BEV grids [49, 75, 84], pillars [43, 67, 83], or cylindri-
cal partitions [11, 65, 120]), point-based (directly learning
features from raw points [62, 99, 100, 113]), or hybrid point-
grid [47, 70, 72, 73], which often delivers state-of-the-art
results but at higher computational cost. Datasets such as
KITTI [22], nuScenes [8], Waymo Open [76], and others
[6, 28, 54, 85, 88] have driven progress in accuracy [49, 70],
robustness [17, 25, 32, 36, 74], and efficiency [95, 101].
Yet, most research targets vehicle-mounted sensors, leaving
quadrupeds and drones underexplored despite similar Li-
DAR payloads. To address this gap, we present Pi3DET, the
first publicly available dataset incorporating heterogeneous
data from multi-platform setups for 3D object detection.

Cross-Dataset 3D Detection. Prior work transfers knowl-
edge often in cross-dataset settings. ST3D [96] and ST3D++
[98] introduced a three-stage approach (pretraining, pseudo-
labeling, and self-training) to improve generalization on
target data. Further work refines pseudo-label accuracy
[10, 80, 110, 111, 114] and self-training guidance [104, 119],
or leverages unified training sets [16, 105] and knowledge
distillation [27, 29, 97]. However, most ignore the more
challenging cross-platform scenario. While Wozniak et al.
[86] highlight its importance, they lack a suitable dataset
for vehicle-to-other-platform experiments. In contrast, we
analyze platform-level shifts and propose the first method
tailored for cross-platform transfers. Building on Pi3DET,
we validate its effectiveness on genuine multi-platform data.
Auto-Labeling 3D Object Detection. Accurate point cloud
annotations are crucial for 3D detection, yet labeling a single
point cloud can take over 100 seconds [117]. To reduce
this burden, researchers have explored semi-automated [51,
87] and fully-automated [109] approaches, including active
learning [20, 24, 66, 103], weak supervision [45, 58, 59,

107], and pseudo-label refinement [7, 11, 12, 19, 44, 80,
94]. Recent works integrate vision—language models [52,
90, 92, 107, 117, 118] for greater efficiency. However, these
methods primarily target vehicle-mounted platforms. In
contrast, we design Pi3DET-Net to address multi-platform
auto-labeling, including quadruped and drones, to advance
3D object detection in broader operational scenarios.

3. Pi3DET: Dataset & Benchmark

3.1. Motivation

While existing LIDAR-based 3D detection datasets predomi-
nantly focus on vehicle data, their utility diminishes for other
platforms (e.g., drones and quadrupeds) due to diverging
operational perspectives. To address this limitation, we intro-
duce Pi3DET (Perspective invariant 3D object DETection),
the first multi-platform dataset for LIDAR-based 3D object
detection. Built upon M3ED [9], Pi3DET provides anno-
tated LiDAR sequences across &= Vehicle, /& Drone, and
72 Quadruped, specifically designed to advance research
in multi-platform 3D object detection.

3.2. Dataset Statistics

Our Pi3DET benchmark spans 25 sequences collected from
vehicle, quadruped, and drone platforms, annotated at 10
Hz. Compared to other datasets in Tab. 1, Pi3DET provides
51,545 frames and more than 250,000 box annotations
across two object categories (Vehicle and Pedestrian), cover-
ing day/night conditions in urban, suburban, and rural areas.
We combine an automated labeling pipeline with extensive
manual refinement, requiring about 500 hours of human ef-
fort. For additional details on the annotation process, dataset
statistics, and examples, please refer to Appendix A.

3.3. Perspective Discrepancies Analysis

To quantify cross-platform gaps, we first formalize the prob-
lem setup and analyze geometric discrepancies across three
platforms. We define a point cloud as P# = {p;}Y’,, and
a single point' from the set as p = (p%,pY,p*) € R3,
[ denotes the platform, including vehicles, drones, and
quadrupeds, and N is the number of point clouds for plat-
form 3. The 3D bounding boxes are denoted by B =
{b; ;”fl We denote one bounding box from this set as
b = (¢*,¢¥,c* l,w,h,p) € R”. Here, c = (c*,c¥,c?)
represents the bounding box center, (I, w, h) the dimensions,
¢ the heading angle, and M?# is the number of bounding
box. Additionally, the ego pose is given by a transformation
T € SE(3), decomposed into a rotation matrix R € SO(3)
(parameterized by Euler angle ¢, 6, and 1 for roll, pitch,
yaw) and a translation vector t = [¢*,tY,t*]. We further

!For simplicity, we use p to represent a point from a point cloud, rather
than explicitly referencing each individual sample from the point set. The
same applies to the 3D bounding boxes.
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Figure 2. Analysis of perspective differences across three robot platforms. We present the statistics of point elevation distribution (upper-left),
ego motion distribution (bottom-left), and target bounding box distribution (right), along with means and variances for each platform’s data.

We use different colors to denote different platforms for simplicity, i.e., ®& Vehicle, 7 Drone, and

define the distance between the target bounding box and the
ego platform in bird’s-eye view (BEV) as p, and denote the
relative pitch from the bounding box to the ego platform in
the ego coordinate system as #”. As shown in Fig. 2, we
identify three critical cross-platform discrepancies.
Ego Motion Distributions. Vehicle-mounted LiDAR sen-
sors exhibit stable motion with minimal roll/pitch variance
(¢, 0 < 5°). In contrast, drones and quadrupeds suffer sig-
nificant ego jitter due to dynamic locomotion and aerody-
namics, inducing roll/pitch fluctuations up to 20°, shown in
the bottom-left part in Fig. 2. This instability introduces
high-frequency perturbations in point cloud geometry.
Point Elevation Distributions. Beyond the roll and pitch
jitter caused by ego motion, the overall distribution of the
elevation p* of the input point cloud varies significantly
among the platforms due to their different intrinsic heights.
As shown in the upper-left in Fig. 2, for vehicles, most points
lie slightly below their own height (p* < t*). In contrast,
on quadrupeds, the points cluster above the height of plat-
form (p* > t#), while for drones, the points are distributed
substantially lower than the drone’s altitude (p* << 7).
Target Bounding Box Distributions. Variations in plat-
form height influence the relative orientation of the detected
object. The right part of Fig. 2 shows the relationship be-
tween targets’ relative pitch angles " and BEV distances
p. Comparatively, drones observe objects with larger down-
ward pitch angles and large variances, indicating that targets
are positioned lower relative to the ego platform with a more
uneven distribution. In contrast, quadrupeds exhibit larger
upward pitch angles, suggesting that objects are relatively
higher in their view. Vehicles, benefiting from stable motion,
display the smallest variance in pitch angle distribution.
These discrepancies make single-platform models inef-
fective for cross-platform deployment. Training separate

'3 Quadruped. Best viewed in colors.

models for each platform is resource-intensive and imprac-
tical for real-world scalability. Instead, we aim to propose
a unified cross-platform adaptation framework that trains
on large-scale readily available source platform data (S,
e.g., vehicle) and generalizes to target platform data (7°)
without target labels, addressing geometric shifts through
perspective-invariant learning.

4. Methodology

As illustrated in Fig. 3, we propose a two-stage Pi3DET-Net
consisting of Pre-Adaption (PA) and Knowledge-Adaption
(KA) for cross-platform adaptation. For geometric align-
ment (Sec. 4.1), Random Platform Jitter facilitates robust-
ness against ego-motion variations, while Virtual Platform
Pose aligns viewpoints. For feature alignment (Sec. 4.2), KL
Probabilistic Feature Alignment aligns target features with
the source space, and a Geometry-Aware Transformation
Descriptor corrects global transformations across platforms.
The training pipeline is illustrated in Sec. 4.3.

4.1. Cross-Platform Geometry Alignment

As outlined in Sec. 3.3, platform-induced point cloud dis-
crepancies arise from varying ego motions, point elevations,
and target bounding box distributions. To mitigate these,
we propose two complementary strategies. First, we apply
Random Platform Jitter during PA on the source platform,
enhancing robustness to pose jitter. Second, we use a Virtual
Platform Pose in KA on the target platform to achieve ef-
fective scene alignment. Together, these approaches enable
smoother geometric adaptation from source to target.

Random Platform Jitter (RPJ). To emulate the roll and
pitch jitters observed on quadruped and drone platforms,
we introduce Random Platform Jitter during PA on the
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Figure 3. Framework Overview. The proposed Pi3DET-Net consists of two main stages: Pre-Adaption (PA) and Knowledge-Adaption
(KA), aiming at bridging the gap across heterogeneous robot platforms through alignment at both geometric (Sec. 4.1) and feature levels
(Sec. 4.2). On the geometric side, PA employs Random Platform Jitter to enhance robustness against ego-motion variations, while KA uses
Virtual Platform Pose to simulate source-like viewpoints to achieve bidirectional geometric alignment across platforms. On the feature
side, Pi3DET-Net further incorporates KL Probabilistic Feature Alignment to align target features with the source space, along with a
Geometry-Aware Transformation Descriptor to correct global transformations across platforms.

source platform. Specifically, we sample two angles A¢
and A# from a uniform distribution for roll and pitch, and
define a composite rotation R(A¢, A#). For point p € P~
bounding-box b € B and its center c, we have:

p=R(A4,A0)p, €=R(Aj,Ab)c. (1)

Here, the box dimensions are unchanged, and the heading
angle is preserved. The transformed point cloud P is then
input into the backbone for feature extraction. Exposing the
model to these rotated point cloud inputs tends to enhance
the robustness to roll-pitch variations on target platforms.
Virtual Platform Pose (VPP). We establish a virtual pose on
the target platform during KA to mimic the source viewpoint
and reduce the platform geometry gap. Since input point
cloud and bounding box distributions diverge, we define a
virtual pose T from the actual ego pose T. We set roll and
pitch to zero (¢ = 0,0 = 0), keep the actual yaw (¢) = 1)),
and preserve planar coordinates (t* = t%,{¥ = t¥), fixing
the height at * = 7, . .. Given a point cloud p € P from
target platform, along with the bounding box b € B” and
its center c, we express them in homogeneous coordinates
P, C, and then transform them to the following:
P=TT'P, C=TT'C. )
Here, dimensions remain unchanged, while the heading ¢
is offset by A(¢, ). The resulting point cloud P” is used
for feature extraction. Transforming both point clouds and

bounding boxes to this virtual coordinate frame mitigates
platform gaps and improves cross-platform adaptations.

4.2. Cross-Platform Feature Alignment

To address domain shifts across platforms, we leverage both
probabilistic modeling and global geometric cues to align
cross-platform features. As illustrated in Fig. 3, our feature
alignment consists of two key components: 1) a transforma-
tion descriptor that learns global geometric invariance; and 2)
a probabilistic feature alignment guided by KL divergence.
Geometry-Aware Transformation Descriptor (GTD). As
discussed in Sec. 3.3, differing ego-motion distributions
cause global shifts in source and target point clouds. We
address these by learning a geometry-aware descriptor on
the source platform, then applying it to correct transforma-
tions on the target. During PA, we apply global max-pooling
to the backbone’s feature F‘b9 to obtain a compact vector,
which is encoded by a hierarchical convolutional module
into a large-scale geometric descriptor f&s . A small regres-
sion MLP then predicts the artificially introduced random
jitter angles (A, A¢) from this descriptor, optimizing the
following rotation loss:

Lrot = A6 — Ad|* + A0 — A9 3)

Notably, minimizing L, equips the network with platform-
agnostic transformation cues. This descriptor, learned on the
source platform, corrects global offsets on the target platform
during KA, ensuring robust cross-platform performance.
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Table 2. Comparisons of 3D detection methods for vehicle—drone/quadruped tasks. We report the average precision (AP) in “BEV /
3D” at the ToU thresholds of 0.7 and 0.5, respectively. Symbol } denotes algorithms w.o. ROS [96]. All scores are given in percentage (%).
“-” denotes the code is not available. The Best and Second Best scores under each metric are highlighted in Red and Blue, respectively.

=i Vehicle — 7% Quadruped

= Vehicle — 78 Drone |

Average
# | Method PV-RCNN [70] Voxel RCNN [15] PV-RCNN [70] Voxel RCNN [15]
AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5 AP@0.7 AP@0.5
‘ Source Platform 13.40 / 33.55 14.86 / 42.84 ‘ 13.25/ 33.74 15.62/43.32 50.91/35.26 57.73/50.24 ‘ 50.15/29.41 57.10/49.10 ‘ 16.93/32.99 51.33/46.34
ST3D [96] 55.40/42.02 59.59/54.75 | 44.54/35.96 45.81/44.38 | 65.05/40.01 68.93/64.09 | 54.62/33.79 58.45/52.89 | 54.90/37.95 58.20/54.03
% | ST3D? [96] 55.68/44.50 59.32/55.32 | 45.01/37.13 46.73/45.45 | 65.40/43.63 69.24/64.88 | 55.23/36.51 59.30/54.23 | 55.33/40.44 58.65/54.97
g | ST3D++ [98] 55.76/43.51  59.93/55.28 | 45.56/36.97 47.28/45.84 | 60.91/40.09 68.96/59.96 | 57.02/37.52 61.30/55.43 | 54.81/39.52 59.37/54.13
S | ST3D++! [98] | 54.96/40.81 60.47/54.65 | 45.69/36.76 48.30/46.05 | 65.50/43.46 68.99/64.62 | 55.92/39.46 59.93/55.19 | 55.52/40.12 59.42/55.13
:‘é REDB [13] 52.43/41.34 57.12/54.18 /- /- 65.31/39.19 68.74/64.13 /- /- /- /-
g | MS3D++([80] | 56.24/43.20 60.88/56.13 | 51.50/40.14 56.03/53.86 | 66.99/43.76 69.87/65.85 | 62.68/38.26 68.34/61.09 | 59.35/41.34 63.78/59.23
Pi3DET-Net 56.80/46.36 61.54/57.20 | 54.85/42.38 57.41/55.54 | 65.43/45.94 69.24/65.87 | 65.63/44.62 72.05/63.83 | 60.68/44.83 65.06 / 60.61
| Target Platform | 54.15/40.24 58.63/54.96 | 54.90/39.74 56.46/55.19 | 67.67/46.11 70.04/66.14 | 68.52/46.53 70.67/61.42 | 61.31/43.16 63.95/59.43
‘ Source Platform  38.61 /26.84 10.64 / 39.22 ‘ 13.95 / 31.24 18.22 /44.17 57.29/36.62 58.92/56.19 ‘ 52.85/37.96 61.10/52.47 ‘ 48.17/33.16  52.22/48.01
< | ST3D [96] 49.29/38.69 51.02/49.71 | 47.70/37.91 48.07/47.59 | 60.17/33.01 62.84/54.51 | 53.79/40.18 65.29/53.40 | 52.74/37.45 56.81/51.30
S | ST3D? [96] 47.89/38.07 49.50/48.23 | 47.01/41.85 54.01/53.46 | 60.67/33.27 62.98/54.61 | 53.85/40.02 62.70/53.08 | 52.35/38.30 57.30/52.34
§ ST3D++ [98] 46.05/37.22 49.33/47.84 | 48.52/37.84 55.82/48.53 | 60.04/33.98 62.71/54.13 | 53.71/39.94 62.43/53.20 | 52.08/37.24 57.57/50.92
= ST3D++! [98] | 45.14/35.70 46.94/45.37 | 47.52/37.13 54.37/47.63 | 64.15/34.20 63.81/55.44 | 53.64/40.27 62.43/53.10 | 52.61/36.83 56.89/50.38
= | REDB [13] 46.74/38.47  50.29/49.54 /- /- 61.57/34.05 63.22/54.07 -/- /- /- /-
g MS3D++[80] | 53.66/40.66 55.21/53.78 | 53.65/41.93 54.69/54.00 | 66.05/41.17 67.80/63.26 | 53.85/40.91 62.87/53.44 | 56.80/41.17 60.14/56.12
& | Pi3DET-Net 56.19/44.28 60.35/56.20 | 55.54/45.18 59.48/58.90 | 66.26 /44.47 68.25/63.36 | 67.87/46.83 69.95/66.26 | 61.47/45.19 64.51/61.18
| Target Platform | 54.15/40.24 58.63/54.96 | 54.90/39.74 56.46/55.19 | 67.67/46.11 70.04/66.14 | 68.52/46.53 70.67/61.42 | 61.31/43.16 63.95/59.43

- | Combined All | 58.21/46.27 62.18/59.67 | 60.96/48.15

63.04/61.04 | 68.44/48.19

71.11/68.24 ‘ 68.90/48.88 72.55/69.18 ‘ 64.13/47.87 67.22/64.53

KL Probabilistic Feature Alignment (PFA). We aim to
reduce cross-platform discrepancies by matching the Region-
of-Interest (Rol) feature distributions of source and target
platforms during KA.

Specifically, we approximate each platform’s Rol features
before the detection head with a probabilistic method, en-
suring robust distribution alignment. For source-platform
Rol feature FS, a probabilistic encoder p(¢°|FS) =
N (n(Fy), o?(FY)) maps this feature into a Gaussian dis-
tribution, which predicts p(F¢) and o?(F2) with MLPs.
Using the reparameterization trick [30], latent samples
¢S = uw(FS) + o(FS) © € are generated (€ ~ N(0,1)).
Analogous encoding applies to the target-platform Rol fea-
ture F/, producing latent samples ¢ accordingly.

Since the true distribution of latent features is unknown,
we can only estimate it from latent samples on both platforms.
By comparing these samples via the KL term, we have:

L = Dia[p(e | FD) |[p(€” [F])] . @

The model pushes the target platform’s features toward
the source manifold. Crucially, this nonadversarial approach
provides a stable alignment in the absence of direct target
supervision. As investigated by [60], the KL objective not
only prevents out-of-distribution samples but also offers a
mode-seeking alignment, ultimately improving target perfor-
mance. For the source platform, we also train a classification
head ¢(g|¢) to discriminate foreground from background:

(&)

where g is the classification task ground truth. This loss en-
sures the latent representation £ captures semantic features
in the source platform for effective alignment through Lk,

Lror = Eespesrs)—loga(g® [ €)]

4.3. Objective & Optimization

The overall framework aims to learn global transformations
and semantic cues during Pre-Adaptation, then propagate
and align target data during Knowledge-Adaptation.
Pre-Adaptation (PA). In the source platform, our goal is
to extract and internalize the necessary knowledge while
enhancing geometric robustness through Random Platform
Jitter, addressing platform-specific discrepancies through the
rotation loss L,.t. and learning Rol-based semantic features
via Lror. We also apply a standard detection loss composed
of a classification loss and a bounding-box regression loss:

Edet = ACcls(857 BS) + Creg([;,sa BS) 3 (6)

where B° denotes the predicted bounding box. The over-

all pre-adaptation objective is: Lpay = Lget + ArotLrot +

ARoILRol, Where Aoy and AR,y are weights used to balance

the losses. This step trains a robust 3D detector while im-

parting global geometric awareness for adaptation.

Knowledge-Adaptation (KA). After PA, we first use the

source-platform knowledge to generate pseudo-annotations

B7 on target data, then train jointly on both platforms:

* Source Platform: To preserve source performance, we
disable L, and optimize only detection and Rol classifi-
cation, i.e., L, = L3, + Aot LRor -

* Target Platform: We encode the learned global descriptor
f] with channel attention (i.e., CA in Fig. 3) and add it
to the backbone features as a residual offset, enforce a
detection loss, and align Rol features via KL. This process
can be formulated as: E;;A = L‘Z;t + AkLLkr, , Where
Ak is used to balance the KL loss.

The combined objective is Lxa = L5 + L3 5. By decou-

pling geometry learning (during PA) from feature correction
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Table 3. Study on cross-platform 3D detection between drone
and quadruped platforms. We report the average precision (AP)
in “BEV /3D at the IoU thresholds of 0.7 and 0.5, respectively.

Table 4. Cross-dataset 3D detection benchmark. Experiments are
conducted on the nuScenes [8] — KITTI [22] task. We report the
average precision (AP) in “BEV /3D at the IoU thresholds of 0.7,

# | Method PV-RCNN [70] Voxel RCNN [15] 0.5, and 0.5 for Car, Pedestrian, and Cyclist classes, respectively.
AP@0.7 AP@0.5 AP@0.7 AP@0.5 The reported AP is for moderate cases. All scores are given in
| Source Platform | 27.43/11.08 36.97/27.92 | 33.22/20.20 41.17/33.29 percentage (%). Symbol T denotes method w.o. RPJ, since no pitch
£ | sT3D! [96] 33.85/18.45 44.35/35.83 | 35.21/22.87 36.05/35.52 or roll jitter occurs when both the source and target platforms are
& | ST3D++! [98] | 32.92/17.76  40.91/32.97 | 43.30/28.86 44.69/43.24 vehicles. w.temp indicates the use of temporal information, and
+ | REDB [27] 37.24/20.89 44.43/37.29 | 44.27/30.55 46.69/44.29 . . . L ’
2 | MS3D++[80] | 39.74/22.31 A47.50/41.61 | 45.84/32.21 48.27/45.87 w.SN denotes the incorporation of statistic normalization [82].
& | Pi3DET-Net 43.11/25.16 52.87/47.55 | 49.27/36.24 54.58/49.63 ethed Car Pedestrian Cyelist verane
| Target Platform | 67.67/46.11 70.04/66.14 | 68.52/46.53 70.67/61.42 AP@0.7 AP@0.5 AP@0.5 .
| Source Platform | 27.23/20.36 30.27/28.92 | 32.18/23.35 33.94/32.70 Source Dataset | 51.80/17.90 | 39.95/34.57 | 17.70/11.08 | 36.48/21.18
ST3D! [96] 46.06/35.14  51.17/49.53 | 49.04/36.94 55.73/49.73 SN [82] 40.30/21.23 | 38.91/34.36 | 11.11/5.67 | 30.17/20.42

ST3D++ [98] 49.09/37.57 55.30/50.90 | 48.74/38.22 55.19/48.94

Drone — Quad

REDB [27] 47.29/35.67 53.21/49.76 | 49.36/38.11 55.96 / 50.21
MS3D++ [80] 48.24/34.12  52.43/48.66 | 49.76 /37.55 56.17/49.97
Pi3DET-Net 51.24/38.94 57.31/52.90 | 52.64/38.88 57.57/51.83

| Target Platform | 54.15/40.24 58.63/54.96 | 54.90/39.74 56.46 /55.19

(during KA), the geometry-aware transformation descriptor
remains focused on platform-induced differences. Mean-
while, Rol feature alignment pulls target features toward the
source distribution, narrowing the cross-platform gap and
enabling accurate 3D detection on target platforms.

5. Experiments

5.1. Experimental Settings

Datasets. We evaluate cross-platform and cross-dataset 3D
detection using three benchmarks: nuScenes [8], KITTI [22],
and our Pi3DET. nuScenes [8] provides 35,149 frames from
day and night urban scenes, KITTI [22] provides 14,999
daytime frames, and Pi3DET comprises 51,545 frames span-
ning urban, suburban, and rural environments. For additional
dataset details, please refer to Appendix A.

Benchmark Setup. We design six cross-platform adaptation
benchmarks and two cross-dataset adaptation benchmarks
to cover a wide range of scenarios and to demonstrate the
generalizability of our method. Due to space limits, please
refer to Appendix B.6 for the complete benchmark settings.

Baselines. We use PV-RCNN [69] and Voxel-RCNN [15] as
our detection backbones. Our comparisons include several
related cross-domain detection methods ST3D [96], ST3D++
[96], and MS3D++ [80], as well as three baseline training
strategies: training on “source data only”, training on “tar-
get data only”, and training on “both source and target
data”. For more details, please refer to Appendix B.6.

Implementation Details. Our experiments follow the set-
ting of ST3D++ [98], and are implemented using Open-
PCDet [77], with experiments run on two NVIDIA Titan
RTX GPUs. We follow the KITTI evaluation protocol by
reporting average precision (AP) in both bird’s-eye view
(BEV) and 3D over 40 recall positions. The hyperparam-
eters are set as A\yor = 0.1, ARor = 0.2, and Aky, = 1074
For more details, please refer to Appendix B.3.

ST3D [96]
ST3D [96] w.SN
ST3D [96] w.temp

75.90/54.10 | 44.00/42.60 | 29.58/21.21 | 49.83/39.30
79.02/62.55 | 43.12/40.54 | 16.60/11.33 | 46.25/38.14
81.06/66.98 | 34.65/31.76 | 27.32/20.52 | 47.68/39.75
ST3D++ [98] 80.50/62.40 | 47.20/43.96 | 30.87/23.93 | 52.86/43.43
ST3D++ [98] w.SN 78.87/65.56 | 47.94/45.57 | 13.57/12.64 | 46.79/41.26
ST3D++ [98] w.temp | 80.91/68.23 | 30.48/27.86 | 29.88/25.57 | 47.09/40.55

REDB [13] 74.23/51.31 | 25.95/18.38 | 13.82/8.64 | 38.00/26.11
DTS [27] 81.40/66.60 -/- -/- -/-
CMDA [10] 82.13/68.95 -/- -/- -/-
PLR [114] 73.65/66.84 | 42.69/35.47 | 17.38/15.95 | 44.57/39.42
Pi3DET-Net! 82.86/70.20 | 46.23/43.44 | 31.14/25.72 | 57.51/46.45

Target Dataset

83.20/73.45 | 46.64/41.33 | 62.92/60.32 | 62.92/60.32

5.2. Comparative Study

We analyze the performance of Pi3DET-Net across various
cross-platform and cross-dataset adaptation tasks.
Adaptation with Vehicle as Source. Tab. 2 presents
the cross-platform adaptation results for vehicle —
quadruped/drone tasks. In these experiments, source data
are taken from nuScenes [8] and Pi3DET, while all target
data come from Pi3DET. Overall, Pi3DET-Net consistently
outperforms the baselines. For instance, on the vehicle —
quadruped task using nuScenes as source, our method with
PV-RCNN achieves a 12.81% gain in AP;p@0.7 compared
to the source-only baseline, validating the effectiveness of
our approach. Notably, our method even outperforms target-
only training, likely due to the smaller target dataset size.
Adaptation with Drone and Quadruped as Source.
Tab. 3 presents cross-platform detection results between
the quadruped and drone platforms. Under our approach,
both PV-RCNN and Voxel-RCNN achieve the best perfor-
mance across all evaluated metrics. For instance, in the drone
— quadruped task, our method with PV-RCNN improves
AP;p@0.7 by 18.58% relative to the source-only baseline,
nearly matching the target-only performance.
Cross-Dataset Adaptation. To demonstrate the broad ap-
plicability of Pi3DET-Net, we evaluate on the cross-dataset
task from nuScenes to KITTI. Following [98], we adopt
SECOND-IoU [93] as the backbone. Tab. 4 presents the re-
sults, which show that Pi3DET-Net achieves state-of-the-art
performance on both Car and Cyclist. For Car targets, our
AP;p@0.7 is only 3.25% lower than that of the target-only
baseline. Additionally, we design a separate cross-dataset
adaptation task from nuScenes to Pi3DET on the vehicle
platform, detailed analysis is provided in Appendix C.3.
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Table 5. Ablation study of components in Pi3DET-Net. Ex-
periments are conducted on the vehicle — drone/quadruped tasks.
We report the average precision (AP) in “BEV / 3D” at the IoU
thresholds of 0.7 and 0.5, respectively. All scores are given in %.

Vehicle — Quadruped

Vehicle — Drone
RPJ VPP PFA GTD‘ ‘ AP@LT  AP@0.S

AP@0.7 AP@0.5

| 52.85/37.96 61.10/52.47 | 43.95/31.24 48.22/44.17
60.20/39.93  64.76/59.52 | 45.36/33.01  49.26/47.03
59.83/39.26  63.55/59.47 | 44.43/32.23 51.59/49.47
64.52/41.50 66.84/60.68 | 48.45/36.10 53.83/51.52
67.87/46.83 69.95/66.26 | 55.72/44.77 59.48/58.90
68.48/47.75 69.87/67.82 | 55.54/45.18  62.02/60.29

ol ax | x
ANENIENENENY B
AN R R
N X[ X X X | X

Table 6. Cross-platform 3D detection benchmark. We report
the average precision (AP) in “BEV / 3D” at the IoU thresholds of
0.7. All scores are given in percentage (%). “-C” and “-A” denote
detectors with the Anchor-based or Center-based detection head.

Vehicle uadruped Drone
# | Method ‘ AP@0.7 ‘ QAP@Ol.)7 ‘ AP@0.7 ‘ Average
PointPillar [40] 51.85/44.34 | 36.24/14.51 | 49.53/27.02 | 45.87/28.62
CenterPoint [102] 51.90/42.12 | 37.74/14.68 | 53.14/29.20 | 47.59/28.70
o | PartA* [71] 54.88/48.23 | 45.47/20.10 | 56.72/34.44 | 52.36/34.26
& | Transfusion-L [4] 49.27/38.21 | 36.29/14.43 | 51.27/24.63 | 45.61/25.76
HEDNet [106] 46.73/37.60 | 34.30/14.51 | 49.31/20.80 | 43.45/24.33
SAFNet [35] 42.60/34.88 | 33.47/13.65 | 49.93/24.70 | 42.00/24.41

Part A*+ Ours
PointRCNN [68]

53.81/47.56 | 44.31/23.73 | 59.53/38.31 | 52.55/36.53
49.38/43.03 | 41.35/23.69 | 52.59/38.67 | 47.77/35.13

= 3DSSD [100] 46.58 /39.88 | 42.47/23.89 | 51.54/37.78 | 46.86/33.85
3 | IA-SSD [113] 44.00/34.91 | 48.11/24.89 | 59.69/35.79 | 50.60/ 31.86
~ DBQ-SSD [99] 41.28/33.19 | 44.27/21.85 | 54.65/32.08 | 46.73/29.04

PointRCNN + Ours
PV-RCNN [69]

51.19/48.09 | 42.18/26.07 | 57.54/41.70 | 50.30/ 38.62
63.32/56.58 | 45.22/22.94 | 60.11/39.68 | 56.22/39.73

E PV-RCNN++ [72] 64.05/57.01 | 47.54/22.35 | 60.54/40.10 | 57.38/39.82
n? PV-RCNN++-C [72] 57.94/50.56 | 40.75/20.78 | 53.46/40.00 | 50.72/37.11
.E VoxelRCNN-A [15] 63.00/56.98 | 46.78/23.30 | 64.46 /42.76 | 58.08 /41.01
QO | VoxelRCNN [15] 58.39/51.11 18.30/21.61 | 60.29/39.15 | 55.66/37.29
PV-RCNN++ + Ours | 63.47/56.60 | 57.08/31.09 | 68.52/47.92 | 63.02/45.20
5.3. Ablation Study

In this section, we use Voxel-RCNN [15] as the backbone de-
tector to validate the effectiveness of individual components
in Pi3DET-Net for cross-platform tasks.

Random Platform Jitter. As shown in Tab. 5, adding
RPJ leads to performance improvements across all metrics.
For instance, in the vehicle — drone task, the addition of
RPJ boosts APgey@0.7 by 7.35% relative to the source-
only baseline. These results confirm that simulating ego-
motion noise through RPJ effectively augments the source
data, thereby enhancing the model’s robustness to the jitters
observed on non-vehicle platforms.

Virtual Platform Pose. We also evaluate the impact of Vir-
tual Platform Pose (VPP) in Tab. 5. The results clearly show
that VPP enhances Pi3DET-Net’s performance, achieving
a 7% improvement in AP;p@0.5 relative to the source-only
baseline in the Vehicle — Drone task. Notably, when RPJ
and VP are combined, they yield greater improvements, see
an enhancement of 9.67% in APggy@0.7. These findings un-
derscore the importance of both geometric alignment strate-
gies in improving cross-platform detection performance.
KL Probabilistic Feature Alignment. PFA is designed
to narrow the cross-platform gap during the Knowledge-
Adaption stage. As shown in Tab. 5, incorporating PFA leads

to significant performance gains on cross-platform tasks. By
approximating the Rol features with probabilistic encoders
and aligning their distributions using a KL divergence loss,
PFA ensures that the target features are gradually pulled
toward the source feature manifold. This alignment is crucial
for reducing domain discrepancies and improving the overall
detection accuracy on the target platform.
Geometry-Aware Transformation Descriptor. GTD is de-
signed to capture global transformation cues on the source
platform during the PA stage and correct global offsets on
the target platform during the KA stage. As demonstrated in
Tab. 5, incorporating GTD leads to significant performance
gains. By learning geometric intrinsic that reflect sensor-
specific characteristics such as sensor height and pitch distri-
bution, GTD helps the network to predict and correct spatial
misalignments between platforms.

In Appendix C.3, we provide a detailed analysis of the
impact of varying the jitter angles introduced by RPJ across
different platforms, where we investigate how different levels
of simulated ego-motion affect detection performance.

5.4. Multi-Platform 3D Detection Benchmark

We establish a benchmark on Pi3DET to evaluate the cross-
platform performance of 18 commonly-used 3D detectors
by training all models on the vehicle set and testing them
on vehicle, quadruped, and drone data (see Tab. 6 and Ap-
pendix C.2). Detectors are categorized into grid-based, point-
based, and grid-point-based. Although grid-point-based
methods excel on vehicles, their performance declines on
quadruped and drone platforms, where point-based detec-
tors achieve more balanced results, demonstrating enhanced
viewpoint robustness. Furthermore, we apply our RPJ to the
top-performing detectors on the vehicle platform. While this
augmentation slightly degrades performance on vehicles due
to the introduction of unseen noises, it significantly boosts
results on the other two platforms. Overall, our findings
underscore that effective geometry alignment and robust
point-based architectures are crucial for developing unified
3D detectors across diverse platforms.

6. Conclusion

In this work, we introduced Pi3DET, a large-scale dataset
for cross-platform 3D detection that includes diverse sam-
ples from vehicle, drone, and quadruped platforms. We pro-
posed a novel adaptation approach that transfers the knowl-
edge of vehicle detectors to other platforms by aligning geo-
metric and feature representations. Extensive experiments
show that our method is superior in both cross-platform
and cross-dataset 3D object detection. We also establish
a cross-platform benchmark on current 3D detectors and
provide insights to improve resilience to platform variations,
which benefits the research on unified 3D detection systems
operating reliably across diverse autonomous platforms.
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