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Figure 1. Continual personalization. We present Concept Neuron Selection, CNS, a simple yet effective approach to incrementally
customize visual concepts. By finetuning concept-related neurons, CNS preserves the zero-shot capabilities of pretrained diffusion models

and alleviates catastrophic forgetting problems.

Abstract

Updating diffusion models in an incremental setting would
be practical in real-world applications yet computation-
ally challenging. We present a novel learning strategy
of Concept Neuron Selection, a simple yet effective ap-
proach to perform personalization in a continual learn-
ing scheme. CNS uniquely identifies neurons in diffusion
models that are closely related to the target concepts. In
order to mitigate catastrophic forgetting problems while
preserving zero-shot text-to-image generation ability, CNS
finetunes concept neurons in an incremental manner and
jointly preserves knowledge learned of previous concepts.
Evaluation of real-world datasets demonstrates that CNS
achieves state-of-the-art performance with minimal param-
eter adjustments, outperforming previous methods in both
single and multi-concept personalization works. CNS also
achieves fusion-free operation, reducing memory storage
and processing time for continual personalization.

* denotes co-first author.

1. Introduction

Latent Diffusion Models (LDMs) [29] represent a milestone
for image generation task by leveraging vast collection of
text-image pairs and denoising process. LDMs enable users
to create high-quality images through simple text prompts.
Yet, LDMs often fall short in generating user-specific con-
cepts (e.g. their pets, a scene in a national park), which
poses a practical challenge in text-to-image generation since
these user-specific concepts are hard to describe directly by
text. To address this issue, personalization techniques al-
low users to adapt LDMs to generate their desired specific
content by finetuning it with their own examples. To real-
ize single concept personalization, pioneer works first in-
corporate techniques such as prompt tuning [1 1] or weights
finetuning [30]. However, when there are multiple concepts
to be learned, naively applying these methods to compose
multiple concepts in a single image usually results in over-
fitting and attributes binding [4, 10, 15, 20, 24, 39, 42],
which means the model fail to correctly separate charac-
teristics of each concept and generate mix-ups images. To
address this concern, Kumari et al. [18] first aggregates
multiple weights of personalized models by a constrained
least square formula, which still results in huge perfor-
mance degradation as the number of models’ weights in-
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crease for multi-concept personalization. Many previous
works [13, 17, 27, 32, 41] try to overcome this issue by re-
ducing the optimized weights with LoRA [14] finetuning. A
common approach nowadays is to learn each concept with
LoRA weights separately and fuse the weights while gener-
ating multiple concepts images.

Existing methods [7, 13, 18, 19, 27] tend to make the as-
sumption that personalized concepts are fixed, which means
that storing all of the personalized model weights and mul-
tiple times of fusion are required if users need different
numbers of personalized concepts across different images.
However, in the realistic application scenario, users’ per-
sonalized concepts never remain static and will incremen-
tally increase. A practical scenario is that users can contin-
uously assign new concepts to a single diffusion model and
additional computation effort while generating new com-
posite images is not required. Furthermore, learning the
concepts separately usually results in conflict while fusing
concepts together. Yang et al. [41] further prove that LoRA
fusion methods will encounter concept vanishing and con-
cept confusion even with additional information such as hu-
man poses or image layout.

In this paper, we propose CNS, Concept Neuron
Selection, which is able to identify the neurons relevant
to personalized target concepts in an incremental fashion.
Specifically, CNS allows one to automatically identify the
neurons related to (few-shot) images of a concept (i.e., base
neurons) and those related to the general image synthesis
(i.e., general neurons) using diffusion models. By exclud-
ing general neurons from the base ones, the concept neu-
rons describing the input concept of interest can be selected.
Moreover, in order to achieve continual learning, an incre-
mental finetuning scheme with such concept neurons is also
proposed. Different from existing continual learning meth-
ods [8, 32], we do not require to train and store any extra
LoRAs when handling multiple concepts. As a result, our
CNS framework is able to achieve effective continual con-
cept personalization, not only preventing the catastrophic
forgetting but also preserving the zero-shot capability of
pretrained text-to-image diffusion models.

Our contributions can be summarized as follows:

* We present CNS, which advances neuron selection with
an incremental finetuning strategy for continual personal-
ization.

* We introduce a unique process for concept neurons se-
lection, which identifies neurons related to target concept
images and distinguishes them from the irrelevant ones
during continual learning.

¢ A incremental finetuning scheme is proposed with the se-
lected concept neurons, which alleviates catastrophic for-
getting while maintaining the zero-shot generation ability
of the diffusion model.

* CNS is a fusion-free method for continual personaliza-

tion. No additional model weights are needed to be
stored, and no test-time optimization is needed either.

2. Related Work

2.1. Diffusion model personalization

Single and multiple-concept personalization. Concept
personalization [5, 12, 16, 21, 26, 43] seeks to adapt pre-
trained diffusion models for synthesizing personalized con-
cepts with only a few example images. Some common con-
cepts are subjects, background or style. Previous works
[11, 30, 37] achieved single concept personalization with
several different strategies. For instance, Gal et al. [11]
proposes to enables LDMs to learn personalized concepts
through optimization of new textual embeddings. In the
meantime, Ruiz et al. [30] assigns the user-specific con-
cept to an unique identifier and finetunes the whole model.
However, naively applying these methods to compose con-
cepts in a single image usually results in overfitting and at-
tributes binding. Kumari et al. [18] first proposes the joint-
optimizing strategy and makes it realize to compose multi-
concept in one image. Several following works [7, 13, 18,
19, 27] tried to make improvement in this field but still suf-
fer from some common issues such as over-fitting on the
target images and zero-shot ability of text-to-image degra-
dation as mentioned in Sec. 1.

Low-Rank Adaption (LoRA) [14] finetuning shows the
capability of achieving down-stream tasks while prevent-
ing overfitting. Thus, to mitigate the aforementioned over-
fitting issue to this topic, a common solution is learning
new concepts with LoRA [14] finetuning. Previous works
[13, 17,25, 27, 31, 40, 41] propose different strategies to
merge the learned LoRA weights to generate multi-concept
images. For example, Gu et al. [13] proposes gradient fu-
sion method, which extracts all input and output features
from each personalized LoRA. Gradient fusion method
aims to ensure that the output features of the fused model
closely match the output features of all individual person-
alized LoRAs. However, since this method requires storing
all input and output features during the fusion process, it de-
mands significant memory space and computational time.
Instead of fusing LoRAs after learning each concept, Po
et al. [27] try to solve the problem from the initialization
of LoRA weight. Under their assumption, they argue that
as long as the down sampling part of LoRA weight across
each concept are orthogonal to each other, then these LORA
weights keep independent and will not affect each other.
However, as the number of concepts grows, the deviation
of their assumption grows as well, which indicates the un-
certainty of their method when fusing multiple personalized
LoRA weights. Unfortunately, these aforementioned meth-
ods suffer from fusing multiple personalized LoRA, which
also waste a lot of memory space and processing time.
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Continual concept personalization. Continual concepts
personalization further aims to incrementally extend the
learned concepts in a single latent diffusion model. Smith
et al. [32] propose a self-regularization loss between LoRA
weights in different stage to preserve previous learned con-
cepts. Nevertheless, as the number of concepts grows, this
proposed regularization method lost its function since the
new concept LoRA weight will face the restriction from all
of the previous learned LoRA weights. Sun et al. [34] gen-
erate and store the data corresponding to the learned person-
alized concepts in a memory bank and wisely select images
in the bank by their proposed rainbow-memory back strat-
egy. Obviously, storing all of the relevant data of the learned
personalized concepts is not realistic as the number of the
concepts increases. Dong et al. [8] propose the task-shared
project matrix to extract shared semantic information across
different concepts and elastic weight aggregation during in-
ference to tackle catastrophic forgetting. However, shared
semantic information only exists between similar concepts,
and elastic weight aggregation requires test-time optimiza-
tion, which requires a lot of computational resources.

2.2. Neuron selection

As the number of parameters in large language models
(LLMs) rapidly increases, how to efficiently finetune these
LLMs has become a significant issue. Research [2, 6, 9,
33, 38] has provided evidence that certain neurons within
feed-forward layers of transformer-based LLMs are intri-
cately tied to task-specific outputs. Adjusting these neu-
rons can significantly influence task performance, reducing
the necessity for extensive finetuning. Building on this un-
derstanding, recent methods have been developed to detect
modular structures within pretrained transformers, capital-
izing on neuron sparsity [44]. Moreover, studies reveal that
these modules possess specialized functions, each serving
unique roles within the model [45].

After many works on LLMs prove the effectively of neu-
ron selection and its widely usage, Liu et al. [22] first ap-
plied this concept in the text-to-image diffusion model gen-
eration and customization. However, [22] has been proved
that suffering from high training costs and low success rates
along with the increased number of subjects in [23], who
needs an additional user-defined layout to improve it. Addi-
tionally, Chavhan et al. [3] builds upon this foundation, ex-
plores by identifying neurons responsible for generating un-
desired concepts within diffusion models. Unlike in LLMs,
isolating such neurons in LDMs presents unique challenges
due to the complex aggregation across multiple denoising
steps and the model’s sensitivity to intermediate outputs
from prior time steps. Inspired by [3], we propose CNS to
select sparse and highly related neurons in diffusion models
to excel at the continual personalization.

3. Preliminary of Diffusion Models

Text-to-image diffusion models generate images by pro-
gressively removing noise from an initial noisy input,
guided by a conditioning vector derived from a text prompt.
These models integrate the conditioning vector through
cross-attention layers, which adjust the network’s latent fea-
tures according to the text conditioning. This approach en-
ables the model to produce outputs that accurately align
with the prompt, allowing for precise control over the gener-
ated image’s content. In cross-attention layers, let c € R¥*?
represent the text conditioning features with s as the number
of tokens and d as the dimension of tokens. We also make
f € RUPxw)xl represent the latent image features. A single-
head cross-attention operation [36] computes Q = fW49,
K =cWFand V = cW?, followed by a weighted sum:

. QKT
Attention(Q, K, V') = softmax | — | V, (1
/dl

where, W4, W, and W project the inputs to the query,
key, and value spaces, with d’ as the dimension for key and
query outputs. The attention block output is then used to
update the latent features.

These models minimize a loss function that refines the
denoising process to approximate the target image, typically
formulated as follows:

Ex,c,e.t [we]|%o(qux + o€, ) — x[|3] , 2

where x is the ground-truth image, c is the conditioning
vector obtained from the text prompt, and o, oy, w; are pa-
rameters controlling the noise schedule at time ¢.

4. Method

4.1. Problem formulation and framework overview

In the continual learning scheme, we define the m repre-
senting the index of current concept to learn, and only N,,
images associated with concept m is presented during train-
ing. Additionally, the model finetuned on m-th concept is
expected to preserve the knowledge previously learned from
concepts 1 : m — 1. In the following section, we omit m
notation if we are discussing about only one concept.

We propose Concept Neuron Selection, CNS, to achieve
continual personalization while alleviating catastrophic for-
getting. We introduce a neuron selection method that iden-
tifies a compact set of concept-specific neurons, which re-
alizes the above continual learning scheme. As depicted
in Fig. 2 and described in Sec. 4.2, our proposed method
learns and distinguishes between neurons for concept per-
sonalization and image generation. As detailed in Sec. 4.3,
only the neurons associated with the input concept need
to be updated and regularized in the continual learning
scheme. As confirmed in our experiments, our method
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Figure 2. Overview of CNS. The proposed framework for neuron selection consists of (a) base neuron selection, (b) general neuron
selection, and (c) concept neuron separation. With sparse, concept-specific neurons automatically selected fro each concept, the proposed
incremental finetuning scheme in (d) update the text-to-image diffusion model for continual personalization.

clearly perform against existing approaches for single and
multi-concept image personalization.

4.2. Learning of concept neurons

Base neuron selection. Recent works on concept edit-
ing and model pruning [3, 35] note that neurons with large
responses to the objective imply higher contributions to
the learned model, and thus they are preferred to be up-
dated/edited during the training stage. Following the obser-
vation in [18] that the cross-attention layer parameters have
relatively higher correlations to the image personalization
objective, we thus focus on neurons of cross-attention lay-
ers in diffusion models for neuron selection.

To be more precise, we denote the weights of key and
value mapping by W* € R and W@ € R4*% while
the inputs of both mapping are text embedding denoted by
c. We obtain c text embedding from the concept image cap-
tion generated by a pretrained image captioning model [1].
To assess the significance of each element in both weights
Wkvfor a single image, we calculate the element-wise
product of its magnitude with the ¢5 norm of the text em-
bedding feature c across dimensions following [35].

Take W* as an example, we calculate the importance
scores as follows:

S(W¥,c)=|WFl o (1-|cl, ), 3)

where | - | represents the absolute value, ||c||2 denotes the
{5 norm applied to each column of c, producing a vector
of dimension d, and the symbol ® indicates element-wise
matrix multiplication. Note that in Eq. (3), 1 - ||c||, specif-
ically uses broadcasting to apply ||c||> across the rows of

W, allowing for element-wise multiplication in each row.
For a given row W; . with the associated importance scores
S(W,c);. € R™4: We would select a neuron as a base
one, if its score is above a pre-determined threshold (see
details in the supplementary material).

Since there are N images for concept, the above process
would select neurons for each image, which can be viewed
as a binary neuron mask M,,,n € {1,2,..., N}. We then
aggregate all neuron masks obtained across images of the
same concept and apply a logical and operation. We refer
to such aggregated neurons as , as depicted in Fig. 2(a). The
resulting mask M?%¢ can be expressed as:

M = N\ M, n € {1,2,..,N}. 4)

Note that the above process is applied to both key and value
mappings W in all cross-attention layers.

General neuron selection. Despite the idea of selecting
responsive neurons from concept images aligns with that
of model pruning [3, 35], we observe a large overlap be-
tween neurons selected from the image diffusion model
when different text prompts are served as the inputs. As
shown in Fig. 3, by increasing the number of input prompts
as detailed in supplementary, we empirically observe that
about 53% of neurons are always selected. This suggests
the aforementioned scheme not only selects neurons asso-
ciated with the input prompt/condition but also identifies
neurons contributing to the general image generation pro-
cess. In CNS, we define the latter type of neurons as gen-
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Figure 3. Overlapped percentage of across images. By increas-
ing the number of text prompts, we observe a high percentage
(around 53%) of shared across the resulting images. This sug-
gests that a large portion of share the goal of image generation,
not concept personalization.

eral neurons, and we aim to disregard such neurons when
performing continual concept personalization.

We now discuss how we detect general neurons which
are related to image generation but not describing the con-
cept of interest. As depicted in Fig. 2(b), we collect a list of
diverse calibration prompt set Py for k € {1,2,..., K} to
find out general neurons in latent diffusion models’ cross-
attention layers. We use K = 20 different prompts as
calibration prompts to obtain the general neurons mask
Moeneral which is obtained by:

Mgeneral — /\Mk’ k e {]_727 ,K} (5)
k

Identification of concept neurons. With the collection of
both and general neurons, it comes straightforward to ex-
clude the general neurons from the for identifying the con-
cept neurons of interest. This is simply achieved by per-
forming a logical not operation on M?®5¢ and M9emerel,
resulting in the concept neurons mask M ™°Pt for a spe-
cific concept. That is,

Mconcept _ Mbase A _“2\4-g677,eral7 (6)

where A and — denote the logical OR and NOT opera-
tors. Again, we apply the aforementioned operation on both
W¥:% in all cross-attention layers. For each concept of in-
terest, the derived concept neurons mask will be utilized for
later continual learning. It is worth noting that even though
we subtract general neurons from base one, those general
neurons are fixed (not pruned) during training. Therefore,
the associated pre-trained ability would not be affected.

4.3. Continual personalization with concept neu-
rons

With concept neurons for each concept properly identified,
the final challenge is to perform continual concept person-
alization while mitigating possible catastrophic forgetting
problems. Since there is no guarantee that concept neurons
of different concepts are distinct, we propose to perform
continual learning with neuron regularization:

LT'eg = AIHVVm © M7 — Wm—l © MT’69H2+
Xo||[Wp @ M9 — Wo @ M"9|5, (7)

where M9 = MEomeert A (\/7" 1 ME*P') denotes the
regularization neuron masks, which indicates the intersec-
tion of the neurons to be updated and the neurons have been
tuned for the previously learned concepts. W, indicates
the model weights of the neurons to be updated when learn-
ing the mh concept, W,,_1 indicates the model weights
after customized on the m — 1™ concept and W, indi-
cates the pretrained weights of the original diffusion model.
In Eq. (7), the first term regularizes the model weights pre-
viously learned to prevent catastrophic forgetting (i.e., prior
personalized concepts). On the other hand, the second term
in Eq. (7) regularizes the model weights with the pretrained
ones to prevent zero-shot capability degradation.

Combining with the loss function presented in [30] to
prevent from subject overfitting, our proposed framework is
capable of retaining both previously learned concepts from
Win—1 and the inherent zero-shot text-to-image capability
from the pretrained diffusion model W) during finetuning
on new concept. In summary, the overall objective function
of our proposed continual personalization loss via concept
neurons selection is formulated as below:

Ex,c,e,e’,t[wt”f(e(atx + OtE€, C) - X||§+
Awy || X (e Xpr + ope, Cpr) — xpr||§ + Lyegl. (8)

While training, we update the concept neurons and spe-
cial prompt token following [18] by minimizing Eq. (8),
without the need to store any additional model weights dur-
ing continual learning. For inference, CNS can be directly
applied to produce images with concepts observed anytime
during training, users do not spend any additional computa-
tional effort such as test-time optimization.

5. Experiment

5.1. Experimental setup

Dataset. We conduct experiments on a dataset containing
20 concepts, composed with 8 real-world animals, 6 real-
world objects, 3 styles and 3 real-world scenes. More de-
tails are provided in the supplementary.

The authors from NTU downloaded, evaluated, and completed the ex-
periments on the datasets.
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Figure 4. Qualitative visualization. Note that only Continual Diffusion [8] and CNS are capable of performing continual personalization,
while Mix-of-Show [13] and Orthogonal Adaptation [27] require to keep LoRAs for each concept for personalization. It can be seen that
our personalized outputs match concepts learned across different time, alleviating appearance leakage and catastrophic forgetting problems.

Implementation details. We leverage Stable Diffusion
(SD-1.5"") as our pretrained text-to-image generation model
to conduct comparison experiments. We fine-tune both the
text embeddings and concept neurons using the Adam op-
timizer, with a learning rate of 5e — 4 for text embeddings
and 3e — 5 for concept neurons. The training steps are 500
for a single concept, which takes about four minutes on a
single 3090 GPU. For all the other methods mentioned in

“Ihttps://huggingface.co/runwayml/stable-diffusion-v1-5

this paper, we use the same backbone and pretrained weight
as ours. For more implementation details, we provide them
in the supplementary.

Evaluation metrics. Following [18], we use CLIP [28]
to evaluate image- and text-alignment. For single-concept
image alignment, both the generated and concept images
are fed into the CLIP image encoder to obtain embeddings,
and their cosine similarity is calculated. For multi-concept
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Table 1. Quantitative comparisons of single and multi-concept personalization. In addition to the alignment-based metrics of CLIP-I
and CLIP-T, we provide the computation estimates for different personalization methods. Note that memory requirements for GPU/CPU
and computation time for multi-concept personalization indicate the additional costs for fusing concept weights previously learned.

Single Concept Multiple Concepts Computational Resources
Methods CLIP-11 CLIP-Tt CLIP-It CLIP-Tt  Memory(MB)| Time(s))
Textual Inversion [11] 72.76 72.69 65.30 65.00 0/0 0
Custom Diffusion [18] 67.88 74.92 65.87 68.70 3547170 10
Mix-of-Show [13] 75.86 75.75 65.26 70.62 62852/0 727
Orthogonal Adaption [27] 74.67 74.87 66.37 69.20 5663 /3167 42
Continual Diffusion [32] 71.82 66.12 66.15 60.30 2461 /4747 10
CNS 74.88 76.95 67.21 79.22 0/0 0
Table 2. Ablation study of our approach. We compare CNS 82
with two baselines, removing the continual regularization loss o '
X LS . Randomly pick
in Sec. 4.3 and randomly picking fine-tuned neurons (i.e., no con- 80 —— W/o Reg Loss
cept neurons selection of Sec. 4.2). —— Full tuning
78
Components Single Concept -
a
=76
random  concept ey CLIP-If CLIP-T} o
neurons  neurons T4
v v 73.15 73.30
v 73.06 74.65 72
v v 74.88 76.95
Multiple Concepts 7077 2 3 4 5 6 7
Number of Concepts
v v 65.05 72.92
v 66.89 77.02 Figure 5. Performance degradation on the first concept over
v v 67.21 79.22 time. Compared to the ablated version of our method, the full

personalization, image alignment is measured as the aver-
age visual similarity between the generated image and each
concept image. To assess text similarity, the CLIP image
encoder processes the generated images and the CLIP text
encoder processes the text prompt. The cosine similarity be-
tween these embeddings serves as the text alignment score.

5.2. Qualitative comparisons

We demonstrate the result of CNS and other competitive
methods in Fig. 4. For Mix-of-show [13] and Orthogonal
Adaptation [27], we learned LoRA for each concept and
merged them by their proposed fusion methods. For the
others, we incrementally learn from the first concept to the
seventh concept. As shown in Fig. 4, CNS outperforms all
the other methods in both single-concept and multi-concept
personalization. For single-concept setting, CNS is able to
match the prompt perfectly and consistently. As more con-
cepts are included in prompts, the other three methods suf-
fer from concept vanish or attribute binding (e.g. Continual
Diffusion generates a <new1> dog-like horse even though

version of CNS is sufficiently robust during continual learning,
resulting in negligible degradation on the first concept. This con-
firms our ability in alleviating catastrophe forgetting problems.

<new1> dog is not mentioned in the prompt.). Yet, images
generated by CNS still preserve the image-alignment for all
concepts and text-alignment for input prompt.

5.3. Quantitative comparisons

Quantitative comparisons of image quality. We evalu-
ate 3 continual personalization sets, each set contains 7 con-
cepts including animals, styles, objects and scenes. Each
set contains 35 single-concept prompts, 7 multi-concept
prompts. We generate 50 images per prompt and pick the
best as representative image.

As shown in the first column of Tab. 1, CNS is slightly
lower than Mix-of-Show [13] on single-concept image-
alignment yet attains the highest score on single-concept
text-alignment, which indicates that CNS does not suf-
fer from overfitting the concept image, and it effectively
captures semantic details from text descriptions. CNS
outperforms all the other method in multi-concept image-
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alignment and text-alignment. It is worth mentioning that
all the other methods suffer from performance degrada-
tion on multi-concept text-alignment compared to single-
concept. In the contrast, Table | shows that CNS pre-
serves text-to-image ability to multi-concept generation and
achieve the highest image quality.

Quantitative comparisons of computational efficiency.
Table | compares memory and time consumption across
various fusion methods when fusing seven concepts. No-
tably, while Mix-of-Show [13] achieves near-top scores in
both CLIP-I and CLIP-T, it also demands the highest mem-
ory and time resources, highlighting a trade-off between
fusion efficiency and performance in prior methods. In
contrast, CNS demonstrates balanced fusion efficiency and
high performance, eliminating the need for such compro-
mises. Additionally, to avoid concept fusion issues, meth-
ods like [13, 27] combine LoRA weights for each concept
within a single image, though this requires multiple fusion
operations for different concept combinations.

5.4. Ablation Study

Quantitative ablation study. In Tab. 2, we examine the
effects of regularization loss and targeted fine-tuning of
concept neurons. To assess the impact of fine-tuning con-
cept neurons, we randomly selected the same number of
neurons as concept neurons and fine-tuned them. As shown
in the first row of Tab. 2, both CLIP-I and CLIP-T scores
decrease in single- and multi-concept scenarios, indicat-
ing that our neuron selection method successfully identi-
fies the most representative neurons, enhancing personal-
ization performance. Additionally, we ablate the regular-
ization loss L,.g4, which prevents catastrophic forgetting by
preserving overlapping concept neurons with previous con-
cept and pretrained weights. Without L,..,, some overlap-
ping neurons are overwritten by new concepts, leading to
catastrophic forgetting and degraded performance.

Catastrophic forgetting ablation study. To prove that
our CNS framework is robust enough for preventing from
catastrophic forgetting, we conduct an experiment as de-
picted in Fig. 5. We illustrate the degradation of CLIP-I
score of the first learned concept after learning multiple con-
cepts incrementally. In this experiment, we report the degra-
dation curves of the four baselines: the green curve rep-
resents ours method without continual regularization loss
as detailed in Sec. 4.3; the yellow curve represents that
we fine-tune same amount of randomly picked neurons as
our selected concept neurons as detailed in Sec. 4.2. The
red curve represents fine-tune all the parameters of key and
value mapping from the text latent in the cross-attention
layers. The results show that with concept neurons selec-
tion and the continual regularization loss, CNS can real-

Table 3. Human study. Scores for image and text alignments de-
note the percentages of users who considered the image generated
by the corresponding method to be the most desirable.

Image Text
Methods Alignment(%) Alignment(%)
Textual Inversion [11] 3.1 4.7
Custom Diffusion [18] 1.2 0.8
Mix-of-Show [13] 20.2 22.3
Orthogonal Adaption [27] 14.3 16.2
Continual Diffusion [32] 1.4 0.9
CNS 59.8 551

ize continual personalization while preventing from catas-
trophe forgetting effectively comparing to all the baselines.

Human evaluation. We hire 10 users to conduct human
study to further evaluate CNS. In the experiment, we pro-
vide 5 single-concept and 15 multi-concept prompts, and
generate 5 samples for each prompt. For each question,
users are required to select the image aligned mostly with
the input prompt and the image most similar to the tar-
get concepts’ images across all samples generated by each
method. The results are shown in Tab. 3.

Further analysis. We present additional results in the
supplementary. For example, we conduct experiments to
confirm our scoring mechanism, and those verifying the se-
lected neurons during continual personalization. And, ex-
periments with region control show that CNS can be inte-
grated with different text-to-image generation models.

6. Conclusion and Future Work

We present Concept Neuron Selection, CNS, a simple yet
effective approach for continual learning-based personal-
ization. By identifying concept-specific neurons in LDMs,
CNS incrementally fine-tunes these neurons while preserv-
ing prior knowledge and zero-shot text-to-image genera-
tion. CNS achieves state-of-the-art performance with min-
imal parameter updates, outperforming existing methods in
single- and multi-concept scenarios. Additionally, CNS
operates fusion-free, reducing memory and processing de-
mands for continual personalization.

Compared to previous continual personalization ap-
proaches which require to store LoRAs for each concept, we
only need to store the concept neuron masks M;.,, to track
previously tuned neurons, with significantly less memory
requirement. As future research directions, our proposed
concept neuron selection scheme can be possibly extended
to tackle knowledge editing and unlearning tasks, not lim-
ited to particular data modality.
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