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Abstract

Low-light enhancement has wide applications in au-
tonomous driving, 3D reconstruction, remote sensing,
surveillance, and so on, which can significantly improve
information utilization. However, most existing methods
lack generalization and are limited to specific tasks such
as image recovery. To address these issues, we pro-
pose Gated-Mechanism Mixture-of-Experts (GM-MoE),
the first framework to introduce a mixture-of-experts net-
work for low-light image enhancement. GM-MoE com-
prises a dynamic gated weight conditioning network and
three sub-expert networks, each specializing in a distinct
enhancement task. Combining a self-designed gated mech-
anism that dynamically adjusts the weights of the sub-
expert networks for different data domains. Additionally,
we integrate local and global feature fusion within sub-
expert networks to enhance image quality by capturing
multi-scale features. Experimental results demonstrate that
the GM-MoE achieves superior generalization compared
to over 20 existing approaches, reaching state-of-the-art
performance on PSNR on 5 benchmarks and SSIM on 4
benchmarks, respectively. Code is available at: https:
//github.com/Sameenok/gm-moe-lowlight-
enhancement.git

1. Introduction
Low-light image enhancement (LLIE) is a crucial

research area with diverse applications, including au-
tonomous driving [54], low-light scene reconstruction [35,
55], remote sensing [35, 42, 59], and image/video anal-
ysis [39–41], since it enhances visibility and preserves

*These three authors contributed equally to this work and are consid-
ered co-first authors.

†Corresponding authors.
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Figure 1. Given a low-light image, our GE-MoE achieves bet-
ter performance (for both object and whole scene) compared with
LightenDiffusion [18]

.

fine details, enabling more reliable scene understanding in
challenging lighting conditions. Although recent advance-
ments [22, 25] have improved LLIE performance, most
existing methods focus on addressing specific challenges,
such as noise suppression or detail restoration, rather than
providing a comprehensive solution for diverse low-light
scenarios. First, many existing algorithms have the problem
of unbalanced global information due to local enhancement.
Traditional algorithms such as histogram equalization en-
hance the image through a single strategy, which often over-
enhances local areas, resulting in loss of image details or
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overexposure [9]. Convolutional Neural Networks(CNN)-
based methods use a network with multiple layers of con-
volutions [3, 32], which makes it difficult to learn the global
distribution of illumination and restore it [14].

The transformer will ignore local color continuity due
to an excessive focus on global information [61], which
leads to the problem of color distortion. At the same time,
there is a problem of insufficient cross-domain generaliza-
tion ability. Existing methods, such as SurroundNet [67],
are usually trained on specific datasets, and the model de-
sign lacks consideration of photos from different data do-
mains. This results in a sharp decline in performance under
unknown lighting conditions, making it difficult to achieve
robust image enhancement and poor generalization ability.
Meanwhile, because the problems of noise, color distortion,
and blurred details in low-light images are coupled with
each other, it is difficult for a single model to be optimized
collaboratively. For example, suppressing noise may result
in a sacrifice of details, and increasing the brightness of low-
light areas may amplify color distortion. Therefore, it is a
difficult problem to solve and balance the effect of image re-
covery. These problems limit the application of LLIE tech-
nology in complex scenes, and there is an urgent need for a
unified framework that can not only enhance multiple tasks
but also dynamically adapt to different lighting scenes.

To address these issues, we propose an innova-
tive Gated-Mechannism Mixture-of-Experts (GM-MoE)
system for low-light image enhancement. The method is
based on an improved U-Net [38] architecture, incorporat-
ing a gated mechanism expert network with dynamic weight
adjustment to adapt to photo inputs from different data do-
mains. GM-MoE consists of three sub-expert networks,
each of which is used to solve different image enhancement
tasks, namely color correction, detail recovery, and prob-
lems. The gating mechanism assigns appropriate weights
to each sub-expert based on the different lighting and scene
conditions of the image, achieving a balance between the
image enhancement problems and thus achieving the best
image enhancement under different lighting conditions and
scenes. As shown in Fig. 2, our framework achieves a
higher PSNR and SSIM in multiple data sets compared to
other state-of-the-art methods discussed in the literature.

In summary, our contributions are as follows:
• We are the first to apply GM-MoE to low-light image

enhancement, proposing a method that combines a dy-
namic gating weight adjustment network with a multi-
expert module to achieve effective generalization across
different data domains.

• We propose a dynamic gating mechanism that adaptively
adjusts the MoE weights according to varying lighting
conditions, thereby optimizing image enhancement.

• Our model achieves superior performance across multiple
datasets and downstream tasks. Extensive experiments
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Figure 2. The comparison results among GM-MoE and the
SOTA low-light image enhancement methods on the LOL-v1
, LOLv2-Synthetic and LSRW-Huawei benchmarks. GM-MoE
outperforms all of compared approaches on both PSNR and SSIM
metrics.

demonstrate that GM-MoE surpasses SOTA methods on
different metrics across five datasets while maintaining
strong generalization ability.

2. Related Work

2.1. Low-light Image Enhancement

Intensity Transformation Techniques. Traditional low-
light enhancement methods improve low-light images by
directly processing pixel intensity values, including his-
togram equalization (HE) [9, 36] and Gamma Correction
(GC) [17, 31, 34]. HE enhances the contrast by redistribut-
ing the intensity histogram of the image, but it tends to
over-enhance and, therefore, often amplifies noise. On the
other hand, GC adjusts brightness using a nonlinear trans-
formation, but it does not adapt well to complex lighting
conditions, which leads to unnatural visual effects. In addi-
tion, adaptive contrast enhancement methods [15, 68] mod-
ify contrast based on local pixel statistics to enhance details,
but they may inadvertently introduce noise. These methods
often fail to take into account the full complexity of light-
ing, leading to perceptual differences compared to images
captured under typical lighting conditions.
Perception-Based Models. To compensate for these defi-
ciencies, some methods simulate the human visual mech-
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Figure 3. Overview of the proposed GM-MOE. (a) The GM-MoE module comprises a gated weight generation network and three
specialized sub-expert networks. (b) The overall network adopts a U-Net-like encoder-decoder architecture. Given an input image, it first
undergoes processing through the Shallow Feature Extraction Block (SFEB). Then, the GM-MoE module facilitates multi-scale feature
fusion via multiple downsampling and upsampling operations, ultimately generating the enhanced output image.

anism, such as the Retinex theory, which decomposes an
image into reflection and illumination components. Multi-
scale Retinex (MSR) [21, 30] enhances contrast at different
scales but may lead to color differences due to inaccurate
light estimation. The dark channel prior (DCP) [14, 51],
originally used for defogging, was later adapted for low-
light enhancement but is prone to color oversaturation in
complex scenes. Recently, the global brightness ranking
regularization method proposed by Li et al., [26] has im-
proved visual effects, though it can still introduce issues
during enhancement.

Deep Learning-Based Approaches. In recent years, deep
learning has promoted the application of convolutional neu-
ral networks in low-light image enhancement [10, 12, 27,
29, 56, 61, 63, 66, 67]. For example, Chen et al., [3] pro-
posed the SID model to directly convert low-light images
to normal-light images; Guo et al.,[36] used a lightweight
network to implement pixel-level curve estimation (Zero-
DCE); Jiang et al.,[19] employed GANs for unsupervised
learning in EnlightenGAN. In addition, Wei et al. pro-
posed Retinex-Net [50], Zhang et al., introduced KinD
[64], and Liu et al., improved the RUAS model [27], all
of which significantly enhanced image restoration perfor-
mance. In the field of Transformers, Liang et al., [27] pro-
posed SwinIR, and Zamir et al., [61] developed Restormer,
both of which achieve image restoration by capturing global
features. Meanwhile, Wang et al., [67] introduced LLFlow,
and Xu et al., [53] proposed the SNR-Aware method, uti-

lizing normalizing flow and signal-to-noise ratio optimiza-
tion, respectively, to enhance image details. Although these
methods have made significant progress in low-light im-
age enhancement, most of them adopt a single neural net-
work structure. When dealing with different lighting con-
ditions and complex scenes, their generalization ability re-
mains limited, making it difficult to simultaneously perform
multiple tasks such as noise suppression, detail restoration,
and color correction across different datasets.

2.2. Multi-Expert Systems

MoE was originally proposed by Jacobs et al., [16]
and aims to build a system consisting of multiple inde-
pendent networks (experts), each responsible for process-
ing a specific subset of data. The approach emphasizes
that combining the expertise of different models can sig-
nificantly improve the overall performance when dealing
with complex tasks. In recent years, MoE techniques have
demonstrated excellence in several domains, including im-
age recognition [25], machine translation [24], scene pars-
ing [28], speech recognition [5], and recommender sys-
tems [1].

In the field of low-light image enhancement, there is
a lack of MoE applications. The expert network module
possesses the capability to simultaneously address multi-
ple low-light image enhancement challenges, a characteris-
tic that grants it unique advantages in the field of low-light
image enhancement. Moreover, existing methods exhibit
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significant limitations: most low-light enhancement models
can only achieve satisfactory restoration results for a single
problem and lack the ability to adaptively adjust processing
strategies based on the illumination conditions of the input
image.

To address the limitations of existing methods and
leverage the unique strengths of expert networks, this pa-
per proposes a novel Multi-Expert Low-Light Enhancement
Network. As illustrated in Fig. 3, we design a dynamically
weighted multi-expert network based on the U-Net archi-
tecture, where three specialized sub-expert modules are op-
timized for color distortion, detail loss, and low-contrast is-
sues, respectively. To overcome the insufficient generaliza-
tion ability of existing models, we innovatively introduce
a Dynamic Weight Adjustment Network, which automati-
cally adjusts the weight allocation of the three sub-networks
based on input image features, thereby achieving adaptive
enhancement for images from different data domains.

3. Method
In the model we designed, the overall architecture is

as follows: The input dark image I ∈ RH×W×3 is first
processed by SFEB to obtain low-level features X0 ∈
RH×W×C , where H and W denote the spatial dimensions
of the image and C denotes the number of channels. These
features are then input into a module similar to the U-
Net [38] network architecture, which contains encoder lay-
ers to further extract deeper features Fd ∈ RH×W×2C .
The GM-MOE module is introduced in the encoder and
decoder of each layer. During encoding, the encoder of
each layer compresses the image features by gradually re-
ducing the spatial dimension and increasing the channel
capacity, while the decoder gradually restores the image
resolution by upsampling the low-resolution feature map
Fl ∈ RH

8 ×W
8 ×8C to progressively recover the image res-

olution. To optimize feature recovery, pixel-shuffle tech-
niques are introduced to improve the effects of upsampling.
To aid low-light image feature recovery, the initial features
are preserved and fused between the encoder and decoder
via skip connections. Each layer of the GM-MOE module
is responsible for fusing the lower-level features of the en-
coder with the higher-level features of the decoder, thereby
enriching the structure and texture details of the image. In
the final stage, the deep features Fd further enhances the
detailed features at the spatial resolution, and the residual
image generated by the convolution operation R is added
to the input image I to obtain the final enhanced image
Î = I +R.

3.1. Gated-Mechanism Mixture-of-Experts
GM-MOE block consists of a Gated Weight Genera-

tion Network and an expert network module, where the ex-
pert network includes a color restoration submodule, a de-

tail enhancement submodule, and an advanced feature en-
hancement network module. The following sections de-
scribe these modules in turn.

In order to achieve adaptive feature extraction in dif-
ferent data domains, we propose a GM-MoE network. First,
the input image is passed through adaptive average pooling
to convert the image features into a feature vector. Then,
this feature vector passes through a fully connected layer
with an activation function, and then through another fully
connected layer to project onto three expert networks to
generate the weights s1, s2, s3. These weights enable the
network to dynamically adjust its parameters based on pho-
tos from different data domains (i.e., different scenes and
different lighting characteristics), ensuring that the sum of
the weights is 1.

S = [s1, s2, s3] , s1 + s2 + s3 = 1. (1)

Each expert network Neti processes the input feature
Xi−1 and generates the corresponding output feature Xi

i−1,
where i ∈ {1, 2, 3}:

X i
i−1 = Neti (Xi−1) . (2)

The final output feature X̃i is obtained by summing the out-
puts of all expert networks weighted by their weights:

X̃i = s1X
1
i−1 + s2X

2
i−1 + s3X

3
i−1. (3)

This adaptive weighting mechanism combined with mul-
tiple expert networks enables the gated weight generation
network to effectively capture domain-specific features af-
ter feature extraction, thereby improving the robustness and
adaptability of the model to photos in different data do-
mains.

As shown in Figure 3, the color restoration expert net-
work (Expert1, also named Net1) is used to restore the color
information of images under low light conditions. The color
restoration subnetwork we designed employs pooling oper-
ations to focus on key color features during downsampling
while simultaneously learning image information. Addi-
tionally, deconvolution operations are utilized to precisely
restore image details, with nonlinear interpolation adopted
to ensure smooth and natural color transitions:

Y1 (i, j) =
∑
m,n

wmnX (i+m, j + n) (4)

where Y1(i, j) denotes the output at position (i, j), X(i +
m, j + n) is the input feature at the adjacent position, and
wmn is the interpolation weight, which satisfies: wmn = 1
to ensure luminance consistency. To preserve the original
image characteristics, the processed tensor is connected to
the input through a residual connection. Finally, a Sigmoid
activation function is used to limit the color output to the
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interval [0, 1], reducing color anomalies and oversaturation
problems and ensuring that the enhanced image colors are
natural and realistic.

As shown in Fig. 3, the detail enhancement subnet-
work (Expert2, also named Net2) uses convolutions and
attention mechanisms to enhance image details. The net-
work uses different attention mechanisms in combination
for feature extraction. Among them, important channel fea-
tures are extracted through the channel attention mecha-
nism. At the same time, the spatial attention mechanism is
used, which combines Max Pooling and Avg Pooling, and
then processed by convolution. To fuse the characteristics
of different attention mechanisms, we concatenate different
attentions, where max pooling and average pooling are used
to focus on key spatial positions in the image. Finally, the
outputs of channel attention and spatial attention are com-
bined with the original input image through a residual con-
nection to preserve the original features and enhance the
detail recovery ability. This structure improves the detail
recovery ability of the image.

As shown in Fig. 3, the advanced feature enhancement
subnetwork (Expert3, also named Net3) improves image
quality through convolution, multi-scale feature extraction,
a gating mechanism, and an attention mechanism. The input
image is passed through a multi-scale convolution to extract
and fuse features. These fused features are then processed
further by a gating network (SG) and a channel attention
mechanism (SCA). Finally, the enhanced features are added
back to the input image via a residual connection to preserve
the original details.

This method can effectively adapt to low-light scenes
and improve image quality by dynamically adjusting the
weights of the expert network.

3.2. Shallow Feature Extraction Module
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.
To improve the effectiveness of image feature ex-

traction and suppress invalid features, we design a multi-
scale feature enhancement module (SFEB, Shallow Fea-
ture Enhancement Block) to process the input feature map
X ∈ RC×H×W . The SFEB generates a feature map
F1 ∈ RC×H×W through a 3 × 3 depth separable convo-
lution, as shown in Fig. 4 . In addition, SFEB also obtains

a feature map F2 ∈ RC×H×W using different sizes of con-
volution kernels through hole convolution (dilation rates) to
capture multi-scale spatial information.

SFEB uses two convolutions to compress the channel
numbers of F1 and F2 to form the fused feature map Fe ∈
RC′×H×W , which fuses different feature information.

To introduce the attention mechanism, SFEB performs
global pooling on the fused feature map Fe to obtain the
channel-weighted features Aavg and Amax. Then, the at-
tention map Fw ∈ RC′×H×W is generated by channel con-
catenation and a 7 × 7 convolution to enhance the features
of key regions:

Fw = F
′

1 ⊙Aavg + F
′

2 ⊙Amax (5)

Finally, the output feature map Y is obtained by element-
wise multiplication of the input feature X and the attention
map Fw:

Y = X ⊙ Fw (6)

This design, which combines a multi-scale convolu-
tion with an attention mechanism, gives SFEB stronger fea-
ture extraction capabilities, thereby improving the bright-
ness and detail recovery of the image.

3.3. Loss Function
To ensure that the network-generated image Î is as

close as possible to the reference image Igt, we introduce
the peak signal-to-noise ratio loss (PSNRLoss) as a loss
function in the training to measure and maximize the qual-
ity of the output image. We first define the mean squared
error (MSE) as:

MSE =
1

N

N∑
i=1

(
Î (i)− Igt (i)

)2

(7)

and then define the PSNR loss based on the MSE:

PSNR loss = − 10

log (10)
· log (MSE + ϵ) (8)

where N is the total number of pixels in the image,
Î (i) and Igt (i) are the predicted and true values at pixel po-
sition i, respectively, and ϵ is a small positive number used
to prevent the denominator from becoming zero. During
training, the network weights are updated by minimizing
the PSNR Loss to improve the network’s image restoration
ability.

4. Experiment
4.1. Datasets and Implementation Details

To evaluate the effectiveness of GM-MoE system,
five prominent LLIE datasets were employed: LOL-
v1 [50], LOLv2-Real [58], LOLv2-Synthetic [58], LSRW-
Huawei [13], and LSRW-Nikon [13]. Specifically, LOL-
v1 contains 485 training pairs and 15 test pairs captured
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Methods LOL-v1 [50] LOLv2-Real [58] LOLv2-Synthetic [58] #Param (M)
PSNR SSIM PSNR SSIM PSNR SSIM

SID [4] 14.35 0.436 13.24 0.442 15.04 0.610 7.76
RF [23] 15.23 0.452 14.05 0.458 15.97 0.632 21.54
UFormer [49] 16.36 0.771 18.82 0.771 19.66 0.871 5.29
EnGAN [20] 17.48 0.620 18.23 0.617 16.57 0.734 114.35
Restormer [61] 22.43 0.823 19.94 0.827 21.41 0.830 26.13
Retinexformer [2] 25.16 0.845 22.80 0.840 25.67 0.930 1.61
DeepUPE [43] 14.38 0.446 13.27 0.452 15.08 0.623 1.02
LIME [12] 16.76 0.560 15.24 0.419 16.88 0.757 -
MF [6] 18.79 0.640 18.72 0.508 17.50 0.773 -
NPE [44] 16.97 0.589 17.33 0.452 16.60 0.778 -
SRIE [7] 11.86 0.500 14.45 0.524 14.50 0.664 0.86
RetinexNet [50] 16.77 0.560 15.47 0.567 17.13 0.798 0.84
Kind [64] 20.86 0.790 14.74 0.641 13.29 0.578 8.02
Kind++ [65] 21.80 0.831 20.59 0.829 21.17 0.881 8.27
MIRNet [60] 24.14 0.830 20.02 0.820 21.94 0.876 31.76
SNR-Net [52] 24.61 0.842 21.48 0.849 24.14 0.928 39.12
Bread [11] 22.92 0.812 20.83 0.821 17.63 0.837 2.12
DPEC [45] 24.80 0.855 22.89 0.863 26.19 0.939 2.58
PairLIE [8] 23.53 0.755 19.89 0.778 19.07 0.794 0.33
LLFormer [46] 25.76 0.823 20.06 0.792 24.04 0.909 24.55
QuadPrior [47] 22.85 0.800 20.59 0.811 16.11 0.758 1252.75
3DLUT[62] 14.35 0.445 17.59 0.721 18.04 0.800 0.59
Sparse[58] 17.20 0.640 20.06 0.816 22.05 0.905 1.08
RUAS[37] 18.23 0.720 18.37 0.723 16.55 0.652 1.03
DRBN [57] 20.13 0.830 20.29 0.831 23.22 0.927 1.83

Ours 26.66 0.857 23.65 0.806 26.30 0.937 19.99

Table 1. Quantitative Comparison on LOL-v1, LOLv2-Real, and LOLv2-Synthetic Datasets. The best results are highlighted in bold
red, and the second-best results are highlighted in bold blue.

Input RetinexNet DeepUPE  Restormer  SNR-Net Retinexformer
Lighten

Diffusion
 Ours Ground Truth

Input RetinexNet DeepUPE  Restormer  SNR-Net Retinexformer
Lighten

Diffusion
 Ours Ground Truth

Figure 5. Qualitative comparison on LOLv1 (first row) and LOLv2-Synthetic(second row) . It can be seen that the proposed method
significantly improves image clarity, and the colours are closer to reality.

from real scenes under different exposure times. LOLv2-
Real, which includes 689 training pairs and 100 test pairs
collected by adjusting exposure time and ISO, and LOLv2-
Synthetic, which is generated by analyzing the lighting dis-
tribution of low-light images and contains 900 training pairs
and 100 test pairs. The LSRW-Huawei and LSRW-Nikon

datasets each contain several real low-light images captured
by devices in real-world scenes.

Implementation Details: The GM-MoE was developed us-
ing the PyTorch framework and trained on an NVIDIA 4090
GPU. The training process began with an initial learning
rate of 1.0 × 10−3, which was managed using a multi-step
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Methods LSRW-Huawei [13] LSRW-Nikon [13]

PSNR SSIM PSNR SSIM

SID [4] 17.47 0.652 16.33 0.613
RF [23] 19.05 0.637 18.77 0.630
UFormer [49] 19.77 0.643 19.77 0.643
EnGAN [20] 20.22 0.701 20.71 0.659
Restormer [61] 22.61 0.725 21.20 0.677
Retinexformer [2] 19.57 0.578 - -
LIME [12] 17.00 0.382 13.53 0.332
MF [6] 18.26 0.428 15.44 0.400
NPE [44] 17.08 0.391 14.86 0.374
SRIE [7] 13.42 0.428 13.26 0.140
RetinexNet [50] 19.98 0.688 19.86 0.650
Kind [64] 16.58 0.569 11.52 0.383
Kind++ [65] 15.43 0.570 14.79 0.475
MIRNet [60] 19.98 0.609 17.10 0.502
SNR-Net [52] 20.67 0.591 17.54 0.482
Bread [11] 19.20 0.618 14.70 0.487
LightenDiffusion [18] 18.56 0.539 - -
3DLUT[62] 18.12 0.659 17.81 0.629
Sparse[58] 20.33 0.699 20.19 0.657
RUAS[37] 20.46 0.704 20.88 0.664
DRBN [57] 20.61 0.710 21.07 0.670

Ours 23.55 0.741 22.62 0.700

Table 2. Quantitative comparison of the LSRW-Huawei and
LSRW-Nikon datasets. The best results are highlighted in bold
red, and the second-best results are highlighted in bold blue.

PSNR 19.98 dB 22.61 dB
Input Image RetinexNet [50] Restormer [61]

20.67 dB 19.57 dB 23.55 dB
SNR-Net [52] Retinexformer [2] Ours

Figure 6. Image enhancement example. Qualitative comparison
on LSRW-Huawei. Our network clearly restores the fine details of
the mineral water text in the image.
scheduler. The Adam [33] optimizer, configured with a mo-
mentum parameter of 0.9, was used for optimization. Dur-
ing training, input images were resized to 256× 256 pixels
and subjected to data augmentation techniques, including
random rotations and flips, to enhance model generaliza-
tion. A batch size of 4 was maintained, and the training
regimen consisted of a total of 2.0 × 106 iterations. Per-
formance was evaluated using Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index (SSIM) [48] as the
primary metrics.

4.2. Low-light Image Enhancement
Quantitative Results. Among the deep learning methods
for low-light image enhancement are SID [4], RF [23],

UFormer [49], EnGAN [20], Restormer [61], Retinex-
former [2], DeepUPE [43], RetinexNet [50], Kind [64],
Kind++ [65], MIRNet [60], SNR-Net [52], Bread [11],
DPEC [45], as well as traditional methods such as,
LIME [12], MF [6], NPE [44], and SRIE [7], GM-
MoE achieved an overall performance improvement on all
datasets. Tab. 1 shows the quantitative comparison re-
sults of GM-MoE with a variety of SOTA image enhance-
ment algorithms. GM-MoE achieved PSNR improvements
of 1.5, 1.24, and 0.11 dB on the LOL-v1 [50], LOLv2-
Real [58], and LOLv2-Synthetic [58] datasets, respectively,
compared to the second-ranked model in each dataset, sig-
nificantly improving image quality. This showed that GM-
MoE performed well on these classic datasets, consistently
outperforming other methods in terms of detail recovery
and color enhancement, both in synthetic and real low-
light conditions. In addition, as shown in Tab. 2, GM-MoE
also achieved significant improvements over other SOTA
methods on the LSRW-Huawei [13] and LSRW-Nikon [13]
datasets, achieving PSNR improvements of 0.94 dB and
1.42 dB over the next best method, Restormer [61], re-
spectively. These two datasets contained a large amount
of noise and artifacts, and GM-MoE was able to effectively
reduce artifacts and recover image details and features in
high-noise environments. For more results please refer to
supplementary material.

Figure 7. A visual comparison of the object detection task in low-
light scenes (left) and scenes enhanced by GM-MoE (right).

.Qualitative Results. A visual comparison of the GM-MoE
and the other algorithms is shown in Fig. 5, and 6 (Zoom
in for better visualization.). Previous methods exhibited
poor edge detail processing, with some blurring effects and
noise, as shown in Fig. 6 for RetinexNet [50], Retinex-
former [2], and SNR-Net [52]. Moreover, multiple net-
works had issues with color distortion, as shown in Fig. 5
for RetinexNet [50] and Fig. 6 for SNR-Net [52]. In addi-
tion, there were cases of underexposure or overexposure, as
seen in DeepUPE [43] in Fig. 5. In contrast, our work effec-
tively restored colors, efficiently restored details, extracted
shallow features, significantly reduced noise, and reliably
preserved colors. As can be seen, our method outperformed
other supervised and unsupervised algorithms across var-
ious scenarios and excelled in multiple metrics. The left
and right parts of Fig. 7 show the performance of object
detection in low-light scenes (left) and photos enhanced by
GM-MoE, respectively.
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Figure 8. Qualitative comparison of different ablation settings. It can be observed that the final configuration (Base-
line+SFEB+Net1+Net2+Net3+GM) produces the best results.

4.3. Ablation Study.
We incrementally added modules to the baseline model

to assess their contributions and to conduct ablation studies
on the LOL-v2-real [58] and LOL-v2-syn [58] datasets. The
results are reported in Tab. 3.
The Effectiveness of the Shallow Feature Extraction
Network. To verify the effectiveness of the shallow feature
extraction network, we first introduced SFEB into the base-
line model. Comparing the results of Experiment 1 (base-
line model) with those of Experiment 2 (baseline + SFEB),
we found that, on the LOL-v2-syn dataset, PSNR improved
by 3.09 dB and SSIM improved by 0.0215. This shows that
SFEB can effectively extract the shallow features of an im-
age, providing better feature input for the subsequent GM-
MoE module.
Is the Effectiveness Among Multiple Experts and the
Performance Complementary? To explore the role of
each expert module (Expert1,Expert2, Expert3) and its
complementary role in image enhancement, we gradually
added each subnetwork to the model and performed abla-
tion experiments. After adding Expert1, compared with
Experiment 2, PSNR increased by 1.08 dB (LOL-v2-real) .
After adding Expert2, compared with Experiment 3, PSNR
increased by 0.76 dB (LOL-v2-real) and 0.79 dB (LOL-v2-
syn), and SSIM increased by 0.0575 and 0.0891, respec-
tively. Subsequently, we removed Expert1, Expert2, and
Expert3 respectively through ablation experiments (Exper-
iments 5–7), and a decrease in performance was observed
in all cases. This shows that the expert modules can work
together in synergy after being integrated into a module to
solve the image enhancement problems they are designed
for, improving the overall image restoration effect.
Does the Gated Weight Generation Network Improve
Generalization Ability? In the complete model, we further
introduce a gated weight generation network. Compared to
models without this mechanism, it dynamically adjusts the
weights of individual experts based on images from differ-
ent data domains, thereby enhancing cross-domain general-
ization capability.
Qualitative results. As shown in the ablation study results

ID Baseline SFEB Net1 Net2 Net3 GM LOL-v2-real [58] LOL-v2-syn [58]

PSNR SSIM PSNR SSIM

1 ✓ 19.45 0.7079 20.35 0.7431
2 ✓ ✓ 20.27 0.7236 23.44 0.7646
3 ✓ ✓ ✓ 21.35 0.7446 24.35 0.8436
4 ✓ ✓ ✓ ✓ 22.11 0.8021 25.14 0.9327
5 ✓ ✓ ✓ ✓ ✓ 23.23 0.8045 26.08 0.9351
6 ✓ ✓ ✓ ✓ ✓ 23.31 0.8054 26.12 0.9362
7 ✓ ✓ ✓ ✓ ✓ 23.35 0.8055 26.15 0.9366
8 ✓ ✓ ✓ ✓ ✓ ✓ 23.65 0.8060 26.29 0.9371

Table 3. Ablation study results on LOL-v2-real and LOL-v2-
syn datasets. The best results are highlighted in bold red.

in Fig. 8, images generated using only the baseline model
exhibit noticeable blurring and loss of detail. The sequen-
tial integration of SFEB, Net1, Net2, Net3, and the gated
weight generation module (GM) progressively enhances the
model’s ability to recover low-light images. Each compo-
nent contributes uniquely to the overall performance, and
the complete model achieves the best results.

5. Conclusion
This paper proposes the GM-MoE framework, which

dynamically balances three expert subnetworks based on in-
put image features, simultaneously addressing color bias,
detail loss, and insufficient illumination in low-light images
while ensuring strong generalization across diverse data do-
mains. Extensive quantitative and qualitative evaluations on
five benchmark datasets demonstrate that GM-MoE outper-
forms existing methods in both PSNR and SSIM metrics.
Future work will focus on real-time enhancement and adap-
tive optimization.
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