This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

CHARTCAP: Mitigating Hallucination of Dense Chart Captioning

Junyoung Lim

Jaewoo Ahn

Gunhee Kim

Seoul National University

{junyoung.lim, jaewoo.ahn}@vision.snu.ac.kr, gunhee@snu.ac.kr

https://junyoung-00.github.io/ChartCap/

Abstract

Generating accurate, informative, and hallucination-free
captions for charts remains challenging for vision language
models, primarily due to the lack of large-scale, high-
quality datasets of real-world charts. However, existing
real-world chart datasets suffer from the inclusion of ex-
traneous information that cannot be inferred from the chart
and failure to sufficiently capture structural elements and
key insights. Therefore, we introduce ChartCap, a large-
scale dataset of 565K real-world chart images paired with
type-specific, dense captions that exclude extraneous infor-
mation and highlight both structural elements and key in-
sights in detail. To build ChartCap, we design a four-stage
pipeline that generates captions using only the discernible
data from the chart and employ a cycle consistency-based
human verification, which accelerates quality control with-
out sacrificing accuracy. Additionally, we propose a novel
metric, the Visual Consistency Score, which evaluates cap-
tion quality by measuring the similarity between the chart
regenerated from a caption and the original chart, indepen-
dent of reference captions. Extensive experiments confirms
that models fine-tuned on ChartCap consistently generate
more accurate and informative captions with reduced hal-
lucinations, surpassing both open-source and proprietary
models and even human-annotated captions.

1. Introduction

Charts are powerful tools for visualizing data distributions,
trends, and patterns across various domains such as science,
economics, and sociology. By presenting complex informa-
tion in a concise and intuitive manner [23, 43], charts help
readers gain meaningful insights for decision-making pro-
cess. However, charts involve complex spatial relationships
among various elements such as axes, labels, and legends,
which can be interpreted differently depending on the chart
type. Consequently, it is challenging not only for humans
but also for vision language models (VLMs) to interpret
complex charts [7, 21, 52].

Chart captioning is one of the core tasks to assess VLMs’
ability to understand charts. Its goal is to generate natu-
ral descriptions of a chart image [20]. An ideal caption
should (1) avoid inaccuracies about the chart [2, 17, 32],
and (2) include a structural description of the chart com-
ponents (e.g., title or legends) as well as key insights such
as major statistics (e.g., maximum or minimum values) and
perceptual patterns (e.g., data trends) [33, 54]. However,
existing real-world chart datasets [14, 20, 25, 30, 50] suffer
from two major issues: (1) they contain extraneous informa-
tion in captions that cannot be inferred from the image, and
(2) they fail to sufficiently capture the essential information
specific to each chart type.

First, the datasets contain extraneous information within
their captions, mainly because charts are usually embedded
in source documents and their original captions are simply
paired with chart images without verification. Captions are
often written based not only on the chart itself but also on
the surrounding context. As a result, these captions include
the information that cannot be inferred from the chart image
alone (but from text in the document together), as shown in
Figure 1. This poses an ill-posed problem for expecting
the model to predict information absent from the chart, ul-
timately leading to hallucination.

Second, real-world chart datasets lack sufficient struc-
tural description and key insights in text; they often omit
critical information that the chart image conveys (see Fig-
ure 1). It is partly because authors do not specify some
details in the captions, assuming that human readers can
easily infer them from the figure [7, 35]. Such informa-
tion varies depending on the chart type; for example, scatter
plots highlight clusters and distributions, while line charts
emphasize temporal trends and changes [9]. Hence, a type-
specific caption schema, which specifies how to interpret
critical information for each chart type, is required to en-
able models to generate informative captions.

To address these issues, we propose CHARTCAP to im-
prove VLMs’ captioning performance while mitigating hal-
lucinations. CHARTCAP is a large-scale dataset of real-
world chart images, containing 565K chart-caption pairs
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This multi-series line chart compares two series: "[J--[] L=40" (square markers. dashed line)
and "O--O L=30" (circle markers. dashed line) with the x-axis representing p ranging from 0
to 1 and the y-axis representing U ranging from 0 to 1. For corresponding values of p, the
series with "L=40" generally has higher values of U than the series with "L=30". Both series
exhibit a similar pattern where U initially increases with p, reaches a peak, and then declines as
p increases further. The data points for the L=40 series are as follows: at (p = 0.1), (U = 0.8); at
(p = 0.4), (U= 1.0) (maximum); and at (p = 0.9), (U = 0.25) (minimum). For the L=30 series,
the data points are: at (p = 0.1), (U = 0.67); at (p = 0.4), (U = 0.95) (maximum); and at (p =
0.9). (U = 0.15) (minimum). The range for the L=40 series is 0.75, from 0.25 to 1.0, while the
range for the L=30 series is 0.80, from 0.15 to 0.95. Labels are not specified, and the title of the

chart is 1

not specified.

Figure 1. Comparison of the original caption and our CHARTCAP caption. The original caption includes extraneous information (in red),

such as additional contextual details (e.g., missing error bars) and

references to parameters (£, Fs, hmin), Which cannot be inferred from

the chart image. In contrast, CHARTCAP caption follows the line chart schema, relying on the information visible in the image. It includes
a structural description (in green) and key insights (in blue). The chart is sourced from [6], collected by [25], and included in CHARTCAP.

that (1) exclude extraneous information not verifiable from
the chart image and (2) provide structural description and
key insights in a dense manner by following a type-specific
caption schema. Drawing on research in the data visual-
ization domain [24, 40], we define a caption schema that
structures the core information to be included for each chart
type. We then devise an automatic pipeline that generates
captions using only the data inherent in each chart image,
thereby minimizing the inclusion of extraneous informa-
tion. Finally, we employ a cycle consistency-based [45, 64]
human verification to ensure high-quality data pairs. Fig-
ure | illustrates a comparative example between CHART-
CAP and the original captions.

Moreover, we propose a reference-free metric, the Vi-
sual Consistency Score (VCS), for evaluating chart cap-
tions. VCS exploits a recently powerful large language
model (LLM) that translates a caption into Python code to
generate a chart. Then, it compares the reconstructed chart
to the ground-truth chart, overcoming the limitations of ex-
isting automated metrics, which struggle to capture the deep
semantic quality of captions and are highly dependent on
the quality of reference captions. In a head-to-head study,
VCS demonstrated high agreement rate with human judg-
ments, outperforming existing automatic metrics such as
BERTScore [62].

Extensive experiments show that VLMs fine-tuned on
CHARTCAP consistently generate more informative cap-
tions with fewer hallucinations, in terms of reference-
based metrics, human evaluation, and the Visual Con-
sistency Score, surpassing both open-source and propri-
etary models, including InternVL2.5 [8], Phi3.5-vision [1],

ChartGemma [37], ChartInstruct-Llama2 [36] and Claude
3.5 Sonnet [4]. Moreover, the captions generated by
CHARTCAP fine-tuned VLMs are more preferred to
human-annotated captions from VisText [54] and Chart-to-
Text [20] by human evaluators.
In summary, our main contributions are as follows:

1. We propose CHARTCAP, a large-scale 565K real-world
chart caption dataset that is free from extraneous infor-
mation and correctly conveys structural description and
key insights via type-specific caption schema.

2. We propose the Visual Consistency Score (VCS), which
evaluates the quality of chart captions by assessing deep
semantic meaning without relying on reference captions.

3. Through extensive experiments, we show that VLMs
trained on CHARTCAP generate high-quality, informa-
tive captions with fewer hallucinations.

2. Related Work
2.1. Datasets

For VLMs to generate accurate and informative chart cap-
tions, the training data should consist of real chart im-
ages, contain correct information, and capture the key in-
sights conveyed by the chart. While synthetic datasets
are scalable, models trained on synthetic data tend to ex-
hibit limited robustness when applied to real-world charts
[59, 61]. AutoChart [65], VisText [54], ChartLlama [12],
and ChartSFT [39] are generated programmatically from
raw data using visualization tools. = However, Chart-
Bench [59] shows that LLaVA [31] trained on synthetic
ChartLlama [12] underperforms its pre-training baseline.
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Real-world Free from Type-specific Human Data

Dataset

charts extraneous info schema annotation  pairs
ChartLlama [12] X v X X 11K
VisText [54] X v v 12K 12K
AutoChart [65] X v v/ x 24K
ChartGemma [37] A v X X 62K
ChartSFT [39] A X X X 1.0M
MMC [30] A X X X 400K
ArxivCap [25] v X X X 3.9M*
ChartSumm [50] v X X X 84K
Chart-to-Text [20] v X x 8K 44K
SciCap [14] v X X X 134K
CHARTCAP v v v 56K 565K

Table 1. Comparison of CHARTCAP with public chart captioning
datasets. Datasets marked with A include both real-world and syn-
thetic charts. The asterisk (*) for ArxivCap indicates that it com-
prises both data-driven charts and non-data-driven ones such as
conceptual diagrams or scientific illustrations. The Human anno-
tation column means the number of chart-caption pairs annotated
or verified by human. CHARTCAP encompasses 565K real-world
chart-captions with human verification applied on the test set.

In contrast, ChartInstruct [36] collects real charts from
157 websites. However, it remains inaccessible to the pub-
lic due to legal constraints. ChartSumm [50] and Chart-
to-Text [20] collect chart-caption pairs from Statista, Pew,
and Knoema, but are relatively small and lack informa-
tiveness [35]. ChartGemma [37] leverages Gemini 1.5
Flash to regenerate captions from chart images via zero-shot
prompting. MMC-Instruct [30], SciCap [14], and Arxiv-
Cap [25] use scientific papers on arXiv, resulting in larger
datasets, but model-generated captions are reported to be
highly hallucinated [25].

On the other hand, our CHARTCAP leverages the visual
diversity of real-world charts while excluding extraneous
information and utilizing caption schema, thereby enabling
VLMs to acquire more robust chart comprehension skills.
More systematic comparison is presented in Table 1.

2.2. Automatic Evaluation Metrics

Various automatic evaluation approaches have been pop-
ularly used to measure the quality of generated captions,
including BLEU [44], ROUGE [27], METEOR [5], and
BERTScore [62], to name a few.

Despite their widespread use, these automatic evaluation
metrics share common limitations. First, they fail to capture
deeper linguistic or semantic nuances, captions are mea-
sured by aligning words or short phrases — even if the gen-
erated text contains factual errors or incoherent logic. Sec-
ond, they are highly dependent on the quality of reference
captions. Even if a generated caption accurately describes
an image, it may be unfairly penalized if the reference cap-
tion is inaccurate or overly concise. Fundamentally, the true
ground-truth (GT) in image captioning is the image itself,
yet existing automatic metrics do not directly compare cap-
tions to the visual content of the image.

CLIPScore [13] utilizes CLIP [49] to directly compute
the semantic similarity between an image and its caption.
However, it primarily measures high-level semantic align-
ment [26] and cannot handle long captions, limiting its re-
liability as a comprehensive evaluation metric for tasks that
require precise and detailed descriptions.

To address these challenges, we introduce a metric, Vi-
sual Consistency Score, which evaluates a generated cap-
tion by reconstructing the chart and computing the similar-
ity between the reconstructed chart and the GT chart.

2.3. Hallucinations in VLMs

Hallucination in VLMs refers to the instances where the
model generates text that does not align with the visual con-
tent [51]. One of the primary causes of hallucination is the
misalignment between vision and language modalities [57].
To address this, Ciem [16] and Jiang et al. [18] employ
contrastive learning with carefully crafted question-answer
pairs that push misaligned representations away from cor-
rect ones. Liu et al. [29] propose containing both positive
and negative instructions to strengthen model robustness.
Sun et al. [53] and RLHF-V [60] refine the training pro-
cess using human feedback to reward factual outputs, while
HA-DPO [63], FDPO [11], and CLIP-DPO [41] leverage
preference optimization by ranking and filtering generated
responses.

However, they address object-centric tasks, leaving chart
domain relatively unexplored. CHARTCAP tightly cou-
ples textual and visual cues in chart interpretation, enabling
models trained on it to exhibit fewer hallucinations in more
data-driven, abstract scenarios.

3. The CHARTCAP Dataset

Building a large-scale chart dataset with informative cap-
tions presents several challenges. First, it requires a clear
definition of what information should be included in each
caption. Second, an automated procedure with an appro-
priate schema is needed to generate high-quality captions at
minimum cost. Therefore, we define a type-specific cap-
tion schema and a caption generation pipeline with four
phases. Additionally, we facilitate efficient human verifica-
tion using cycle consistency [45, 64], comparing the origi-
nal chart image against a reconstructed image, enabling ef-
fective quality control of the test set.

The Chart Corpora. To assemble real-world charts,
we collect 3.1 million chart images from ArxivCap [25],
ChartSumm-Knoema [50], ChartCheck [2], and ChartQA-
train [34] as a pool of data.

3.1. Defining the Caption Schema

We define a type-specific caption schema that outlines the
structural description and key insights for each of nine chart
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Figure 2. An example of the four-stage pipeline for our CHARTCAP: (a) filtering non-chart images, (b) classifying the chart type and
extracting titles, (c) retrieving structural components and key insights, and (d) transforming the accumulated information into a coherent,

sentence-level caption.

types, including line, bar, pie, histogram, scatter, area, bub-
ble, choropleth map, and treemap, guided by the prior work
in the field of data visualization. As a reference, Visualiza-
tion Analysis and Design [40] provides a rigorous frame-
work for designing visual representations.

To define the key insights for each chart type, we lever-
age the test blueprint from the Visualization Literacy As-
sessment Test (VLAT) [24], which identifies cognitive tasks
for non-expert readers. Based on this framework, we mini-
mize the ambiguity inherent in the criteria for crafting in-
formative, high-quality captions [33, 46]. The complete
schema is detailed in Appendix A.

3.2. Automated Dataset Generation Pipeline

We develop a four-stage pipeline, as depicted in Figure 2, to
automate caption generation while balancing accuracy and
computational cost via a combination of open-source and
proprietary models. We report the accuracy of each stage
by manual inspection on 100 randomly sampled instances.

Filtering Non-Chart Images. We first employ
InternVL2.5-8B [8] to filter out non data-driven chart im-
ages (e.g., diagrams, schematics, illustrations). During this
phase, multi-chart images are also removed, leaving us with
1.2 M images out of the initial set of 3.1 M. Manual inspec-
tion confirms 100% precision, implying that no false posi-
tives are retained.

Type Classification and Title Extraction. We use GPT-
4o to obtain each chart’s type and title. We filter out the
charts that do not belong to the nine predefined types, leav-
ing 577k chart images. If an explicit title is not detected, we
assign the placeholder “not specified” to serve as a negative
instruction, aiming to reduce hallucinations [29]. Manual
evaluation shows an accuracy of 99%, with minor error due
to ambiguous title placement within the chart.

Extracting Type-Specific Information. In accordance
with our caption schema, we obtain structural components
and key insights. We use GPT-40 for coarse-grained tasks
such as identifying overall trends, while using Claude 3.5
Sonnet for more fine-grained tasks (e.g., locating exact max

or min values). Preliminary experiments find that GPT-40
struggles to extract precise numerical values. Experiment
details for this model selection are provided in Appendix
C. If no information is extracted, it is labeled “not spec-
ified”. Extracted information from the previous and cur-
rent stages is accumulated in a semi-structured format as
shown in Figure 2. Manual evaluation yields 94% accuracy,
with some misinterpretation occurring in logarithmic-scale
charts, scatter plots with no distinct correlations, and charts
containing inset plots.

Finalizing the Caption. The semi-structured data is
transformed into sentence-level captions. Given the relative
simplicity of this stage, we use GPT-40-mini to perform the
transformation. Manual evaluation confirms that all trans-
formations are accurate and preserve information.

3.3. Human Verification via Cycle Consistency

Despite the high performance of proprietary models, hu-
man verification remains indispensable for guaranteeing
the quality of CHARTCAP. However, manually inspecting
vast numbers of image-caption pairs is prohibitively time-
consuming and expensive. To address this challenge, we
introduce a cycle consistency-based human verification pro-
cess, taking advantage of the millisecond-scale speed of hu-

man visual perception [3], as illustrated in Figure 3.

We generate Python code using Claude 3.5 Sonnet to
recreate chart images from captions and then compare the
reconstructed chart images with the originals. Applying hu-
man verification to 68K samples, we finalize a 56K test set.
To validate the logical soundness of this verification pro-
cess, we conduct qualitative and quantitative evaluation, de-
tailed in Appendix D. Our findings are as follows.

1. Compared to direct image-caption comparison, our ver-
ification process is approximately 24 times faster while
maintaining an F1 score of 95%.

2. Our verification process ensures both caption correctness
and informativeness, making it well-suited for CHART-
CAP’s dense-captioning objectives.

13174



Cycle Consistency-based Human Verification

Chart Image Reconstructed Chart Image

True Positive Rate

i)

CHARTCAP

The line chart displays the relationship between Percent Salient and True
Positive Rate, with the X-axis ranging from 0 to 30 and the Y-axis ranging from
0 to 0.8. The legends include IT represented by a red dashed line, Guided IT
represented by a red solid line, AIM represented by a green dashed line, Guided
AIM represented by a green solid line, SIG represented by a light blue dashed...

Figure 3. An illustration of the cycle consistency-based human
verification for CHARTCAP. The original chart image (left) is
compared with a reconstructed one (right) using a Python code
from the caption (bottom). This process enables efficient human
verification by assessing the accuracy and informativeness of the
generated captions through visual consistency.

3.4. The Visual Consistency Score

How can we evaluate that a generated caption is faithful to
its corresponding chart image? We believe that the best cap-
tion would correctly reproduce the chart, analogous to that
a best generative model P(x) is the one that can generate
data = themselves.

This intuition leads us to propose a new captioning eval-
uation metric named the Visual Consistency Score (VCS),
thanks to recent prominence of LLMs. Unlike natural
images, charts have a unique characteristic: they can be
deterministically generated from an intermediate modal-
ity—namely, code. Leveraging this property, we convert
a given caption C; into code G;, subsequently producing a
corresponding chart image I. By measuring the similarity
between this generated chart image I; and the original chart
image I;, the VCS quantitatively evaluates the accuracy and
informativeness of the caption Cj.

The VCS is computed by a two-stage procedure, code
generation and image comparison. Given a caption Cj, an
LLM is used to generate Matplotlib code G; for recreating
the chart. If G; fails to execute, the code and runtime error
message are supplied back to the LLM for debugging. This
process is repeated until code execution succeeds, yielding a
valid G;, which is then executed to generate the chart image
I;. The similarity between I; and I; is computed using a
cosine similarity with a vision encoder. Finally, the VCS is
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the average similarity across all N samples:

N
. . 1 . A
Visual Consistency Score N ;:1 Sim(I;, I;).

OCRScore. To evaluate how well textual elements are
preserved, Optical Character Recognition (OCR) can be
applied to both I; and fl Let 7; and ’7; be the sets of
text strings extracted from I; and I, respectively. The
OCRScore is as an F1 score based on precision () and

recall (R):
_ LT N T _ LT N Tl
YT Yl |Ti]
P x R
OCRScore = 2 - PR

Both VCS and OCRScore exhibit the highest agreement
rates with human judgments among automated evaluation
metrics such as BERTScore, demonstrating their practical-
ity as reliable, scalable, and effective metrics for evaluat-
ing chart-caption quality. Detail of validation experiment is
provided in Appendix E.

We use Claude 3.5 Sonnet for code generation, due to
its superior performance in generating code [19]. For the
vision encoder, we employ three variants of Sigl.IP2 [56],
each at a resolution of 512, which achieves state-of-the-
art performance across a variety of computer vision bench-
marks [10, 28, 47, 55]. For OCR, we use PaddleOCR [42].

3.5. Dataset Analysis

Visual Consistency Score. We evaluate the Visual Con-
sistency Score and OCRScore on 1K samples from each
dataset. The results are presented in Table 2. CHARTCAP
achieves the highest scores among all datasets, indicating
that its captions are the most accurate to reconstruct the
original chart information. The results indirectly reflect two
key aspects: informativeness and the exclusion of extrane-
ous information. Caption informativeness can be partially
assessed by the average word count as CHARTCAP contains
the longest captions with 231.1 words on average.

Human Evaluation. We conduct a head-to-head hu-
man evaluation by recruiting three annotators via Ama-
zon Mechanical Turk (AMT), comparing 100 samples from
CHARTCAP and ChartSumm [50] (the best dataset except
ours). Each sample is evaluated based on informative-
ness, accuracy, fewer hallucinations, and overall preference.
Details of human evaluation can be found in Appendix J.
As illustrated in Figure 4, CHARTCAP consistently outper-
forms ChartSumm across all evaluated aspects, demonstrat-
ing higher overall quality recognized by human.



Visual Consistency Score

Dataset OCRScore Word Count
Large So400M  Base

ArxivCap 0.7561 0.7421 0.7999 0.1781 43.7

ChartSumm  0.8940  0.9008 0.8898 0.2635 454

Chart-to-Text  0.6925  0.7089  0.7127 0.0951 62.2

SciCap 0.7861  0.8015  0.8457 0.1843 34.5

CHARTCAP 0.8983 0.9089 0.9133 0.5424 231.1

Table 2. Comparison of real-world chart datasets. The terms
Large, So400M, and Base indicate three versions of the SigL.IP2
encoder [56]: SigLIP2-{large, s0400m, base}-512.

0% 25% 50% 75% 100%
NS 91.67%  KRPA
Accuracy | TV 7 33%
ot 333%
Hallucinations
et TV P 57
B CHARTCAP ChartSumm

Figure 4. Results of the head-to-head human evaluation comparing
CHARTCAP with ChartSumm [50].

4. Experiments

We demonstrate the effectiveness of our CHARTCAP
dataset: first, we show that VLMs fined-tuned on CHART-
CAP attain strong dense captioning performance in terms of
reference-based metrics, human evaluation, and the Visual
Consistency Score. Second, we present that CHARTCAP-
trained captioning models show compelling zero-shot cap-
tioning on two human-annotated benchmarks, VisText [54]
and Chart-to-Text [20].

Base Models. We experiment with open-source, chart
expert, and proprietary captioning models. For open-source
models, we use InternVL2.5-78B [8], InternVL2.5-38B,
InternVL2.5-26B, InternVL2.5-8B, and Phi3.5-vision-
4B [1]. For chart expert models, we employ ChartGemma-
2B [37] and ChartInstruct-Llama2-7B [36]. For proprietary
models, we use the Claude 3.5 Sonnet [4], which not only
achieves the best performance in our dataset but also re-
ports the state-of-the-art performance on ChartQA [34] and
CharXiv [58]. Additional baselines are provided in Ap-
pendix H.

Experiment Setup and Metrics. All models are
prompted with the same instruction: ”Please provide a de-
tailed caption for the chart.” along with the chart image as
input. For metrics, we use SacreBLEU [48], ROUGE [27],
METEOR [5], and BERTScore [62], with our Visual Con-
sistency Score and OCRScore.

Training Settings. We perform supervised fine-tuning
using LoRA fine-tuning [15] on InternVL2.5-8B and

0% 25% 50% 75% 100%

Informativeness 75.67% 24.33%

Accuracy 60.00% 40.00%
Fewer 55.67% 44.33%
Hallucinations 2EEI =0

B Phi3.5-Vision-4B s prCap Claude 3.5 Sonnet

0% 25% 50% 75% 100%
Informativeness 66.67% 33.33%
Accuracy 54.67% 45.33%

42.67%

Fewer o
Hallucinations SIS

B Phi3.5-Vision-4B Cyy s rrCap Phi3.5-Vision-4B

Figure 5. Results of human evaluation results comparing Phi3.5-
Vision-4Bcuarrcar against Claude 3.5 Sonnet (top) and Phi3.5-
Vision-4B (bottom) on the CHARTCAP test set.

Phi3.5-vision-4B on the CHARTCAP training set (509K).
We also fine-tune Phi3.5-vision-4B using 250K origi-
nal captions from ArxivCap, ChartSumm-Knoema, and
ChartCheck. Additionally, We fine-tune Phi-3.5-Vision-4B
on the entire training set of ChartSumm. Fine-tuned mod-
els are denoted with the name of the training dataset (e.g.,
Phi3.5-Vision-4Bcyarrcap)-

4.1. Results on the CHARTCAP

Reference-based Metrics. Table 3 presents the results
of the reference-based metrics on the CHARTCAP test
set. Both InternVL2.5-8Bcparrcap and Phi3.5-Vision-
4Bcuarrcap achieve higher scores than all baseline mod-
els across all evaluation metrics. In contrast, Phi3.5-
Vision-4Boriginat and Phi3.5-Vision-4Bchartsumm records sig-
nificantly lower scores, even shows degradation of its base
model. These results indicate that our fine-tuned models
generate captions that align closely with the human-verified
reference captions of CHARTCAP, which accurately capture
the structural components and key insights of the charts suf-
ficiently.

Human Evaluation. We conduct a human evaluation
to assess caption accuracy, informativeness, and the extent
of hallucination, as reference-based metrics do not measure
absolute caption quality and struggle to effectively assess
the degree of hallucination [22, 38]. For human evalu-
ation, we select Phi3.5-Vision-4Bcyarrcap that shows the
highest score on the reference-based metrics on CHART-
CAP and compare head-to-head with one proprietary model
(Claude 3.5 Sonnet) and one open-source model (Phi3.5-
Vision-4B). We randomly sample 100 captions generated
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Reference-based Metrics

Visual Consistency Score

Model OCRScore
sacreBLEU ROUGE-L METEOR BERTScore Large So400M Base
Proprietary Model
Claude 3.5 Sonnet 5.35 0.2265 0.2131 0.6606 0.8834  0.8771  0.8976 0.4868
Chart Expert Models
ChartGemma-2B 0.73 0.1607 0.1082 0.5946 0.8314 0.8184  0.8565 0.2351
ChartIns-Llama2-7B 0.62 0.1144 0.0814 0.5157 0.6947  0.6759  0.7541 0.1830
Open-source Models
InternVL2.5-78B 8.15 0.2510 0.2336 0.6642 0.8841  0.8766  0.8985 0.4677
InternVL2.5-38B 5.88 0.2331 0.2020 0.6551 0.8790  0.8700  0.8965 0.4300
InternVL2.5-26B 5.32 0.2350 0.1972 0.6546 0.8751 0.8674  0.8873 0.4144
InternVL2.5-8B 3.60 0.1770 0.1577 0.6139 0.8485 0.8372  0.8720 0.3456
InternVL2.5-8Bcyarrcar 19.47 0.3393 0.3729 0.7238 0.8913  0.8828  0.9068 0.5089
Phi3.5-Vision-4B 8.41 0.2466 0.2501 0.6626 0.8433  0.8323  0.8696 0.4875
Phi3.5-Vision-4Boriginal 0.09 0.0782 0.0384 0.5066 0.7782  0.7655  0.8137 0.1438
Phi3.5-Vision-4B chartsumm 1.31 0.1509 0.1322 0.6008 0.8002  0.7873  0.8207 0.2042
Phi3.5-Vision-4Bcparrcar 23.82 0.3900 0.4084 0.7427 0.8933  0.8829  0.9092 0.5179

Table 3. Results of reference-based metrics, Visual Consistency Scores, and OCRScore on the CHARTCAP test set.

by each model and recruit three crowd workers via AMT
to select the better caption based on three aspects: (1) in-
formativeness, (2) accuracy, and (3) fewer hallucinations.
Further details on the human evaluation are provided in the
Appendix J.

As shown in Figure 5, Phi3.5-Vision-4Bcyarrcap ranks
consistently higher in all three human evaluation criteria.
This consistency suggests that human judges feel Phi3.5-
Vision-4Bcyarrcap generates more informative and accu-
rate captions with fewer hallucinations compared to base-
line models. Notably, despite having a smaller model size,
Phi3.5-Vision-4Bcyarrcap SUrpasses the strong proprietary
model, Claude 3.5 Sonnet, according to human judgments.
This highlights fine-tuning on high-quality data could over-
shadow the model scale.

The Visual Consistency Score. Table 3 also presents the
Visual Consistency Score and OCRScore for the CHART-
CAP test set. Both InternVL2.5-8Bcyarrcap and Phi3.5-
Vision-4Bcyarrcap €xhibit higher Visual Consistency Score
and OCRScore relative to all baselines, signifying that the
captions they produce align more closely with the ground-
truth chart structure and text elements. This stronger
grounding in chart content further explains why they offer
more accurate, informative, and low-hallucination captions
than non-fine-tuned variants or other baselines.

4.2. Results on Other Human-Verified Benchmarks

We evaluate the zero-shot performance of previous caption-
ing models on other human-verified benchmarks. We first
test on the entire VisText test set, consisting of synthetic
charts with human-authored captions following the caption
schema from [33]. We also evaluate the models on the 1K
PEW subset of Chart-to-Text, a real-world dataset whose
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subset has undergone human verification. The experiment
setup is the same as the previous experiment.

Human Evaluation. We conduct a human evaluation
on 100 samples from the VisText test set, comparing cap-
tions generated by Phi3.5-Vision-4Bcyarrcar With Claude
3.5 Sonnet and the human-authored ground-truth captions,
under the same evaluation protocol.

As shown in Figure 6, Phi3.5-Vision-4B cyarrcap OUtper-
forms both the ground-truth captions and Claude 3.5 Son-
net across all three evaluation aspects. Interestingly, human
annotators judge that the model fine-tuned on CHARTCAP
can generate better chart descriptions than human-authored
ground-truth captions across all axes by a large margin.

The Visual Consistency Score. Table 4 — 5 present the
Visual Consistency Score for the VisText test set, and the
PEW subset of the Chart-to-Text dataset, respectively. As
shown in both tables, InternVL2.5-8Bcyarrcapr and Phi3.5-
Vision-4Bcyarrcap achieve the highest Visual Consistency
Scores and competitive OCRScores among all baseline
models. Again, these two models surpass even the human-
annotated ground-truth captions in accurately reconstruct-
ing the original chart images. In particular, for the Vis-
Text dataset, only the CHARTCAP-trained models outper-
form the human-authored ground-truth captions. The re-
sults also highlight the generalizability and effectiveness of
captioning models trained with CHARTCAP.

Qualitative Examples. Figure 7 compares the cap-
tions and their reconstructed charts generated by Phi3.5-
Vision-4Bcyarrcap, human-authored ground-truth caption,
and Claude 3.5 Sonnet for a chart from VisText. The cap-
tion generated by Phi3.5-Vision-4Bcyarrcap provide pre-
cise and detailed descriptions of both the chart’s struc-
tural components and data. As a result, its reconstructed



Visual Consistency Score

Model OCRScore
Large S0400M
Ground-truth Caption 0.9172 0.9151 0.3407
Claude 3.5 Sonnet 0.8970 0.9008 0.3286
InternVL2.5-8B 0.9093 0.9082 0.3172
InternVL2.5-8Bcuarrcar  0.9401 0.9355 0.3360
Phi3.5-Vision-4B 0.8809 0.8814 0.3826
Phi3.5-Vision-4Bcuarrcap  0.9443 0.9382 0.3414

Table 4. Visual Consistency Scores and OCRScore on the VisText
test set.

0% 25% 50% 75% 100%
Informativeness 60.33% 39.67%
Accuracy 58.33% 41.67%
Fewer 58.00% 42.00%
Hallucinations e —

® Phi3.5-Vision-4B CysrTCap Ground-Truth Caption

0% 25% 50% 75% 100%
Informativeness 60.00% 40.00%
Accuracy 58.33% 41.67%
Fewer 63.67% 36.33%
Hallucinations . A0

¥ Phi3.5-Vision-4B CysrTCap Claude 3.5 Sonnet

Figure 6. Human evaluation results comparing Phi3.5-Vision-
4Bcuarrcar against ground-truth captions (top) and Claude 3.5
Sonnet (bottom) on the VisText test set.

chart closely resembles the original ground-truth, and con-
sequently achieve the highest VCS and OCRScore. In con-
trast, the human-authored caption describes data trends in a
simplified manner (e.g., merely stating that values increase),
resulting in reconstructed charts that exhibit overly simpli-
fied data trends. Similarly, the caption generated by Claude
3.5 Sonnet describes the data trend without sufficient de-
tail and incorrectly classifies the chart type, leading to a re-
constructed chart that not only simplifies the trend but also
displays an incorrect chart type.

5. Conclusion

We introduced CHARTCAP, a large-scale dataset of 565K
real-world chart images paired with type-specific captions
that include both structural components and key insights in
a dense manner while minimizing extraneous information.
We constructed CHARTCAP via a four-phase caption gener-
ation pipeline with systematically devised caption-schema
and cycle consistency-based human verification. We also
proposed the Visual Consistency Score to assess caption

(a) Ground-Truth Chart Image

(b) Ground-Truth Caption

Average retail price paid for fresh / frozen
ultry meat in the United Kingdom (UK) from
2015 (in GBP per kilogram)

po

Averge rceper kioaram n o87) 33

Image Similarity: 0.9395 OCRScore: 0.4516

(c) Phi 3.5-Vision-4B cyarrcar

Image Similarity: 0.9424 OCRScore: 0.5333

The area chart titled "Average retail price paid for
fresh / frozen poultry meat in the United Kingdom
(UK) from 2005 to 2015 (in GBP per kilogram)"
illustrates the average price paid for poultry meat
over this period, with the X-axis representing the
years from 2005 to 2015 and the Y-axis indicating
the average price per kilogram in GBP, ranging
from 0 to 5. The chart shows a general increase in
the average price paid for poultry meat from
approximately 3.2 GBP per kilogram in 2005 to
around 4.7 GBP per kilogram in 2013, followed by
a slight decline to about 4.3 GBP per kilogram by
2015. The minimum price recorded was
approximately 3.2 GBP per kilogram in 2005, while
the maximum price reached about 4.7 GBP per
kilogram in 2013, resulting in a total price range of
approximately 1.5 GBP per kilogram. Legends and
labels are not specified in the chart information.

Here a area graph is named Average retail price paid for
fresh / frozen poultry meat in the United Kingdom (UK)
from 2005 to 2015 (in GBP per kilogram).

The average retail price paid for fresh / frozen
poultry meat in the United Kingdom (UK) from 2005
t0 2015 (in GBP per kilogram) has increased.

(d) Claude 3.5 Sonnet

Image Similarity: 0.9199 OCRScore: 0.2069

This line graph shows the average retail price of
fresh and frozen poultry meat in the United
Kingdom (UK) from 2005 to 2015, measured in
British Pounds (GBP) per kilogram. The graph
displays an overall upward trend in prices over the
decade.

The y-axis ranges from 0 to 5 GBP per kilogram,
with grid lines marking each pound increment,
while the x-axis shows years in two-year intervals.

Figure 7. Qualitative examples from VisText, comparing (a) the
ground-truth chart image with captions and their reconstructed
charts from the captions of (b) human-authored ground-truth, (c)
Phi3.5-Vision-4Bcuarrcar, and (d) Claude 3.5 Sonnet.

Visual Consistency Score

Model OCRScore
Large S0400M
Ground-truth Caption 0.6925 0.7089 0.0951
Claude 3.5 Sonnet 0.7495 0.7616 0.1603
InternVL2.5-8B 0.7362 0.7478 0.1272
InternVL2.5-8Bcusrrcar  0.7946 0.8013 0.1833
Phi3.5-Vision-4B 0.7370 0.7490 0.1786
Phi3.5-Vision-4Bcuarrcar  0.7999 0.8075 0.1789

Table 5. Visual Consistency Scores and OCRScore on the PEW
subset of the Chart-to-Text.

quality by measuring the consistency between the origi-
nal charts and the ones generated from captions. Models
fine-tuned on CHARTCAP substantially enhance the quality
of chart captions, even generates better caption than strong
proprietary baseline and human annotated captions.

As a limitation, CHARTCAP utilizes a caption-schema
built upon the blueprint of nine chart types defined by
VLAT [24], which restricts the diversity of chart types cov-
ered. It is an interesting future work to expand the cap-
tioning schema and integrate it into the proposed pipeline,
which could enable the creation of a more diverse large-
scale dataset.
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