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Abstract

Regression is fundamental in computer vision and is widely
used in various tasks including age estimation, depth esti-
mation, target localization, etc. However, real-world data
often exhibits imbalanced distribution, making regression
models perform poorly especially for target values with rare
observations (known as the imbalanced regression prob-
lem). In this paper, we reframe imbalanced regression as
an imbalanced generalization problem. To tackle that, we
look into the loss sharpness property for measuring the gen-
eralization ability of regression models in the observation
space. Namely, given a certain perturbation on the model
parameters, we check how model performance changes ac-
cording to the loss values of different target observations.
We propose a simple yet effective approach called Balanced
Sharpness-Aware Minimization (BSAM) to enforce the uni-
form generalization ability of regression models for the en-
tire observation space. In particular, we start from the tra-
ditional sharpness-aware minimization and then introduce
a novel targeted reweighting strategy to homogenize the
generalization ability across the observation space, which
guarantees a theoretical generalization bound. Extensive
experiments on multiple vision regression tasks, includ-
ing age and depth estimation, demonstrate that our BSAM
method consistently outperforms existing approaches. The
code is available here.

1. Introduction

Regression tasks are fundamental in computer vision [16,
18, 30, 34], encompassing various applications from age
estimation to depth estimation. Unlike classification which
predicts discrete categories, regression tasks require mod-
els to learn more precise continuous mappings, inherently
more challenging to optimize and generalize. This chal-
lenge is further compounded in real-world scenarios where
data imbalance is prevalent. For instance, in age estimation
tasks [21, 26], data from elderly subjects is typically more
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Figure 1. Visualization of loss landscapes for different sample
subsets in AgeDB-DIR dataset. Left: Loss landscape computed
over the entire dataset, exhibiting relatively smooth geometry with
a lower MAE of 6.67, indicating better generalization. Right:
Loss landscape for samples from low-density regions shows sig-
nificantly increased sharpness and higher sensitivity to param-
eter perturbations, resulting in degraded generalization perfor-
mance (MAE: 10.68). This stark contrast in both landscape ge-
ometry and quantitative metrics demonstrates the inherent chal-
lenge of maintaining consistent generalization ability across dif-
ferent density regions in imbalanced regression.

scarce compared to middle-aged and young subjects. Simi-
lar patterns of imbalance persist across various vision tasks,
from depth estimation [29] where certain depth ranges dom-
inate the data distribution, to image quality assessment [19]
where extreme quality scores are rarely observed.

Prior research has established that regression tasks ne-
cessitate careful consideration of label continuity and inter-
label relationships [14, 33, 35]. Various strategies have
been proposed to address this challenge: [33] propose us-
ing Gaussian kernel smoothing during sample reweighting
to maintain continuity between label weights. Others em-
phasize the importance of feature continuity during model
optimization, employing contrastive learning [14, 35] and
rank-based [35] approaches to impose additional constraints
on model features.

While existing methods have shown promise, a funda-
mental challenge persists: the degraded model generaliza-
tion under imbalanced data distributions, where test perfor-
mance consistently deteriorates for low-density values that
are underrepresented during training. To analyze this phe-



nomenon, we visualize the loss landscape of imbalanced
regression models following the visualization methodology
proposed in [17], as illustrated in Figure 1. Namely, by
applying a controlled perturbation on the parameters of a
regression model trained from imbalanced data, we can
visualize the resulting loss variation of the test observa-
tions. When focusing specifically on samples from low-
density regions of the data distribution, we observe sig-
nificantly degraded performance in MAE, indicating poor
model generalization in these regions, along with markedly
increased sharpness in loss landscapes compared to the
overall dataset. This observation aligns with established
studies [7, 15] that demonstrate strong connections between
loss landscape geometry and model generalization, where
flatter minima often correlate with superior generalization
performance.

Motivated by these findings, we propose Balanced
Sharpness-Aware Minimization (BSAM) for imbalanced
regression, a novel optimization framework that addresses
the challenge of imbalanced regression through the lens
of loss landscape geometry. While traditional Sharpness-
Aware Minimization (SAM) [7] has demonstrated signifi-
cant improvements in model generalization by seeking flat
minima of the loss landscape, our analysis reveals that its
direct application to imbalanced regression tasks is suscep-
tible to distributional biases. Specifically, SAM’s uniform
treatment of all samples in the perturbation step leads to op-
timization trajectories biased toward high-density regions of
the target distribution.

To address this, BSAM extends the theoretical founda-
tions of SAM in two crucial aspects. First, rather than sim-
ply pursuing flat minima, BSAM aims to achieve consis-
tent flatness of loss landscape across the entire observation
space. Second, we introduce a targeted reweighting mecha-
nism that dynamically adjusts each sample’s influence dur-
ing the perturbation calculation process. This approach ef-
fectively balances the contribution of samples across the
entire target distribution spectrum, preventing the domi-
nance of frequently observed target values while simultane-
ously ensuring robust generalization across all regions. Our
framework maintains algorithmic simplicity while avoiding
the complexity often associated with specialized loss func-
tions or distribution smoothing techniques. Through ex-
tensive experimentation across multiple vision regression
tasks, including age estimation and depth prediction, we
demonstrate that BSAM consistently achieves state-of-the-
art performance. Our empirical results validate the effec-
tiveness of combining sharpness-aware optimization with
targeted reweighting strategies. The main contributions of
our work can be summarized as follows:

e We reframe the imbalanced regression problem from a
novel perspective of generalization ability, revealing the
connection between loss landscape geometry and model
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performance of the target distribution, especially in low-
density regions.

We propose Balanced Sharpness-Aware Minimiza-
tion (BSAM), a simple yet effective framework that
addresses the limitations of conventional SAM in im-
balanced regression by integrating targeted reweighting
mechanisms, derived from our generalization analysis.
We validate the effectiveness of BSAM through compre-
hensive experiments including age estimation and depth
prediction, achieving superior performance across multi-
ple vision regression tasks.

2. Related Work

2.1. Regression for Vision Tasks

Regression tasks are fundamental in computer vision, un-
derpinning a wide range of applications, including age es-
timation [21, 27, 34], depth estimation [6, 29], pose es-
timation [18, 20], and image quality assessment [16, 19].
Traditional regression methods typically employ [, I3, and
Huber loss [12] to learn a continuous mapping between
input images and target values. Recent research has fo-
cused on the regression-specific characteristics such as the
ordinal relationships inherent to the dataset have been uti-
lized to design more effective loss functions and decom-
pose the regression task into multiple binary classification
tasks [8, 22, 26, 28]. Additionally, in the field of pose es-
timation, [2, 30] reformulate the regression problem as a
segmentation task by generating heatmaps to represent con-
tinuous variables spatially. However, these approaches typ-
ically assume balanced data distributions, which rarely hold
in real-world scenarios.

2.2. Imbalanced Regression

Imbalanced regression has received comparatively less at-
tention than its classification counterpart. However, many
real-world vision tasks such as depth estimation [29], age
estimation [21, 27], and image quality assessment [19] of-
ten exhibit long-tail distributions, resulting in a severe im-
balance where certain target values are significantly under-
represented. Early methods largely relied on SMOTE-based
algorithms [5], which use linear interpolation for data aug-
mentation. Recently, significant progress has been made
in tackling this challenge. [33] proposed a comprehensive
benchmark for imbalanced regression and introduced label
and feature smoothing techniques based on local similari-
ties. The connection between regression and classification
losses has been investigated in several studies [23, 32, 36];
for instance, [36] demonstrated that enforcing constraints to
encourage high-entropy feature spaces can enhance regres-
sion performance. Statistical approaches have also emerged
in this area [25, 31]. For example, [25] modeled regression
predictions as a Gaussian distribution to design a balanced



mean squared error (MSE) loss, addressing the imbalance
in a probabilistic framework. Additionally, feature-label
consistency constraints for contrastive learning [14, 35]
and rank-based constraints [9] have shown promising re-
sults in this domain. Among these, the Rank-N-contrast
method [35] stands out, achieving state-of-the-art perfor-
mance through a two-stage training process: initially train-
ing a feature extractor using advanced contrastive learn-
ing techniques, followed by a separate regressor training
phase. Despite these advances, we reframe imbalanced re-
gression as a generalization problem, addressing the incon-
sistent model behavior between training and test distribu-
tions across different value ranges.

2.3. Loss Landscape

The geometry of the loss landscape plays a crucial role in
understanding the generalization capabilities of deep neural
networks. Extensive research has demonstrated that flatter
minima typically correlate with superior generalization per-
formance [4, 13, 15]. Leveraging this insight, Sharpness-
Aware Minimization (SAM) [7] has been introduced to ex-
plicitly encourage flatness by minimizing the worst-case
perturbation in the loss landscape. SAM has demonstrated
significant improvements in robustness and generalization
across various tasks [1, 3, 24]. Recent adaptations of SAM
have extended its application to imbalanced learning sce-
narios. Notably, InbSAM [37] and CC-SAM [38] have tai-
lored the approach for class-imbalanced datasets. However,
these methods primarily address classification challenges,
leaving the challenging domain of imbalanced regression
relatively unexplored (detailed analysis in Section 3.3).

3. Methodology
In imbalanced regression tasks, we are provided with a
training set S = {(x;,4;)}Y; drawn from a distribu-

tion Dy, where x; € RHXWXC represents an RGB im-

age of height H, width W, and channels C, and y; € R
denotes the corresponding continuous label. Unlike classi-
fication tasks, the label space ) in regression is continuous,
bounded by a lower bound L and an upper bound U, such
that:t Y = {y | L < y < U}, where y is the continu-
ous target value associated with each input data point. In
general, a regression network can be described as a func-
tion fy : REXWXC _ R which maps the input X to a
continuous output y. Here, 6 represents the model param-
eters, which are learned by minimizing the loss function
L (0) = & SN 0(fo(x,),y;) over the training set. The
common choices for ¢ are [; or l3. To quantify the imbal-
ance in regression tasks, we use a histogram over the label
space Y to represent the distribution of target values. The
histogram divides the continuous label range from L to U
into a series of intervals by, ..., bx, each accumulating the
frequency of samples falling within that interval.
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This systematic partitioning enables us to quantitatively
assess the distribution of samples across the continuous la-
bel space. Imbalance occurs when substantial variation in
sample density exists across different intervals, manifesting
as regions that are either sparsely populated (rare values)
or densely populated (common values) with samples. The
primary learning objective of imbalanced regression is to
develop a model that can accurately predict values across
the entire range of the target variable, ensuring low loss on
Lies¢(0) balanced data distribution Dye.

3.1. Generalization Analysis for Imbalanced Re-
gression

A regression model trained with imbalanced data can suf-
fer from deteriorated generalization ability. As shown in
Figure 1, the test performance consistently deteriorates for
low-density values that are underrepresented during train-
ing. To further quantify this generalization ability differ-
ence, we analyze the loss landscape for the overall dataset
and the low-density region. Given a controlled perturba-
tion on the model parameter, the loss change is much more
rapid for the low-density samples (right) than the dataset av-
erage (left). All of these demonstrate the inherent challenge
of maintaining consistent generalization ability across dif-
ferent density regions in imbalanced regression.

To address these generalization challenges, we adopt
the framework of Sharpness-Aware Minimization [7] which
improves model generalization by seeking parameter values
whose entire neighborhoods have uniformly low training
loss. The theoretical foundation for this approach is estab-
lished through a theorem that bounds generalization ability
based on neighborhood-wise training loss:

Lemma 3.1. For any p > 0, with high probability over
training set S generated from distribution D,

Lp(0) < max Ls(0+e)+h([0]3/0%),

T llell2<p

6]

where h : Ry — Ry is a strictly increasing function.

Examining the right side of the inequality reveals two
key components. The first term describes the worst-case
loss within a p-radius neighborhood of the current parame-
ters 6, effectively characterizing the local sharpness of the
loss landscape. The second term h(]|0]|3/p?) represents
a regularization component typically controlled through
weight decay in deep learning practice. This theorem es-
tablishes a fundamental relationship: when the training set
S is sampled from distribution D, the generalization error
on distribution D can be bounded by the maximum pertur-
bation error within a neighborhood on the training set S.

However, this formulation reveals a critical limitation in
imbalanced regression settings. According to Lemma 3.1,
when measuring model sharpness using the training set Sy,



SAM can only guarantee generalization to the training dis-
tribution Dy,.. This limitation becomes particularly acute
in imbalanced scenarios, where our target is the balanced
test distribution D;.. Under such distribution shifts (Dy, #
D;.), conventional SAM’s generalization guarantees deteri-
orate significantly, especially for underrepresented samples.
The inadequate exploration of the loss landscape in these
underrepresented regions leads to unreliable sharpness esti-
mates and compromised generalization performance. These
theoretical insights highlight the necessity for a more so-
phisticated approach that explicitly addresses the distribu-
tion shift between training and testing environments.

3.2. Balanced Sharpness-Aware Minimization

As analyzed in the previous section, the conventional SAM
approach, while effective for standard learning scenarios,
fails to provide adequate generalization guarantees for the
balanced test set when faced with the imbalance of the train-
ing set. To address this, we propose Balanced Sharpness-
Aware Minimization (BSAM), a novel approach that ex-
plicitly accounts for the target balanced distribution in its
optimization framework.

To establish our method, we provide an analytical so-
lution for computing the maximum perturbation €* in
Lemma 3.1. Specifically, given a parameter vector 6 and
a small perturbation radius p, the worst-case perturbation
within the p-ball can be approximated through first-order
Taylor expansion of Ls(6 + €):

€ = argmax L5(0 + €) 2
llello<p
~ argmax [Ls(0) + €7 VoLs(0)] )
llello<p
' VoLs (0)]7"
= p-sign (VoLs (0)) - [Vols ()] )

IVoLs (0)]2/7

where p > 01is a hyperparameter and 1 /p+1/q = 1. The
last equation gives the closed-form solution for the maxi-
mum perturbation €* that maximizes the local loss increase
by the Dual Norm Problem solution. Once this worst-case
perturbation €* is determined, we can update the model pa-
rameters 6; of step ¢ using the following optimization step:

Or41 =0 —ap - VLs(0p + €7), )

where o is the learning rate at step ¢. Here, we have omitted
the explicit weight decay term for simplicity.

Notably, the primary impact of distribution discrepancy
manifests in the computation of the maximum perturbation
€*. Therefore, to effectively address the imbalance issue and
ensure generalization to the balanced test distribution Dy,
we propose a simple yet effective reweighting strategy that
incorporates balance-aware weights directly into the pertur-
bation computation process.
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Specifically, to bridge the gap between training and test-
ing label distributions, we first examine the relationship
between Empirical Risk Minimization (ERM) L.,.,,' and
Balanced Error (BE) Lp.. Let P;.(k) denote the empiri-
cal distribution of interval k in the training set and P (k)
represents the desired uniform distribution for our test set.
Through importance reweighting, we can bridge these two
objectives:

Lye(0 Z Pre(k) - By yysin l (fo (X)) (6)
Py (k
= Z Pte PZT k; ' E(x,y)wsbkg (f9 (X) 7y)
@)
= E(xvy)’\‘smw(k(y)) -l (f9 (X) 7y) ) 3
where w(k(y)) %&% represents the importance

weight for samples from bin k. Building upon this insight,
we incorporate this reweighting mechanism into the com-
putation of maximum perturbation e:

€ = rgmaxBcy s, (W) £ (o (0)] O
Ellp>P
vee ()"
p blgn(VﬁS“( )) ’ Str )’ (1/]37 (10)
Ve, o)l
£y, (0 NZw () € (fo (i) ). (1D)

It is important to note that BSAM differs fundamentally
from traditional loss reweighting approaches. While loss
reweighting modifies the optimization objective used in pa-
rameter updates, BSAM introduces the targeted reweighting
specifically in the perturbation computation step, making it
independent of the specific form of the loss function £ used
in parameter updates, which we will verify in the experi-
mental section.

3.3. Overall algorithm and discussion

Our analysis reveals that there is an inherent disparity in
loss landscape geometry across different density regions,
leading to inconsistent generalization ability across the tar-
get distribution. This observation motivates us to develop
an optimization framework that maintains uniform general-
ization ability across the entire observation space by seek-
ing loss sharpness with consistent flatness regardless of
the training set distribution density. Based on the analy-
sis above, we present the complete algorithm of Balanced

l['e'r'm = ]E(x,y)NStrg (f9 (X) ’ y)



Algorithm 1 Balanced Sharpness-Aware Minimization
(BSAM)

Require: Training set Sy, initial parameters 6y, learning
rate {a; }1_,, neighborhood size p, number of bins K
1: Divide label space into K equal-width interval
bl, ceny b K
Calculate bin frequencies { Nj, }<_ | from training set
Compute importance weights w(k) for each bin &
fort =1toT do
Sample a mini-batch B; from Sy,
Compute weighted loss function by Eq. 11
Calculate the perturbation €* by Eq. 10
Update parameters:
9t+1 = 9,5 — Qi - Vﬁ(gt + 6*)
end for
: return Final model parameters 61

R A A A T

—_ =
- e

Sharpness-Aware Minimization (BSAM) for imbalanced
regression tasks. The overall procedure is summarized in
Algorithm 1.

Discussion. Our BSAM differs from existing SAM vari-
ants [37, 38] for imbalanced learning in several key as-
pects. First, while both [37] and [38] focus on classification
tasks, BSAM is specifically designed for regression prob-
lems. Second, [37] selectively computes perturbations us-
ing only minority classes based on a predefined threshold.
However, as indicated by Lemma 3.1, this approach poten-
tially compromises the generalization capability across the
entire data distribution, which we empirically verify in our
experiments. On the other hand, [38] calculates perturba-
tions separately for each class, which cannot guarantee that
the perturbation maximizes the loss concerning the entire
target distribution D,.. Moreover, its requirement to iter-
ate through all classes during each update becomes com-
putationally intractable for regression tasks where the label
space is continuous. In contrast, BSAM employs a sim-
ple yet effective targeted weighted perturbation strategy that
doesn’t introduce additional computational complexity to
the original SAM while effectively capturing the local ge-
ometry of the loss landscape for Dy.g:.

4. Experiments
4.1. Datasets

We conduct experiments on three public benchmarks for
deep imbalanced regression, including two age estimation
datasets and one depth estimation dataset. To ensure fair
comparisons, we follow the dataset splits as described in
[33]. For age estimation, we use bins with an interval of
1 year, while for depth estimation, bins are defined with
an interval of 0.1 meters, consistent with previous related
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works [9, 25, 33].

* AgeDB-DIR is an imbalanced facial age estimation
benchmark, derived from the AgeDB dataset [21]. It
comprises 16,488 manually curated noise-free labeled
images, with the training set containing 12,208 im-
ages, and both the validation and test sets containing
2,140 images each.

IMDB-WIKI-DIR is an imbalanced facial age es-
timation benchmark, derived from the IMDB-WIKI
dataset [27]. It comprises 213,554 images semi-
automatically collected and annotated from the IMDB
and Wikipedia websites. The training set consists of
191, 509 images, while both the validation and test sets
contain 11, 022 images each.

NYUD2-DIR is an imbalanced depth estimation
benchmark, derived from the NYU Depth Dataset
V2 [29]. It includes 50,688 images for training and
654 images for testing. Notably, following the de-
fault setting of [33], the test dataset of NYUD2-DIR
only considers a randomly selected 9, 357 pixels per
bin from the 654 test images to ensure the test set is
balanced, corresponding to the minimum number of
pixels in any bin of the test set.

4.2. Implementation Details

For all experiments, unless otherwise specified, we use
square-root-inverse weighting for calculating w(k) and set
p = 2 for calculating p. All experiments are conducted on
Tesla V100 GPUs with a PyTorch implementation.
AgeDB-DIR and IMDB-WIKI-DIR Benchmark. Fol-
lowing the experiment setup used in RnC [35], ResNet-
18 [10] is utilized as the backbone, with the same data aug-
mentations applied across all compared methods, including
random crop, resize (with random horizontal flip), and color
distortions. We use the [; loss (Vanilla) combined with the
square-root-inverse weighting variant (SQINV) as the pri-
mary optimization objective, maintaining a fixed batch size
of 256. For evaluation, Mean Squared Error (MAE) and Ge-
ometric Mean (GM) are selected as metrics, quantifying the
model’s accuracy and fairness in predictions, respectively.
Following the approach in [25], we also present the results
on the balanced Mean Absolute Error (bMAE) metric. Fol-
lowing [33], we divide the target space into three disjoint
subsets: many-shot region (intervals with over 100 train-
ing samples), medium-shot region (intervals with 20 ~ 100
training samples), and few-shot region (intervals with under
20 training samples).

NYUD2-DIR Benchmark. Following [9, 33], we adopt
ResNet-50 [10] as the backbone, integrating it within an
encoder-decoder architecture [11]. The Iy loss (Vanilla)
with the square-root-inverse weighting variant (SQINV) is
applied as the optimization objective, with a batch size of
32. Evaluation is conducted using root mean squared er-



Table 1. Main results on AgeDB-DIR benchmark. Results marked with % are directly quoted from their original paper while results
marked with t are obtained through our reproduction and RNC [35] following the RNC training protocol.

MAE | GM |

All Man. Med. Few All Man. Med. Few
LDS [33]* 742 683 821 10.79 485 439 580  7.03
FDS [33]* 755 699 840 1048 482 449 547 658
RankSim [9]* 691 634 779  9.89 428 392 488  6.89
ConR [14]+LDS [33]* 7.16 661 797  9.62 451 421 492 587
ConR [14]+FDS [33]* 7.08 646  7.89  9.80 431 401 525 692
RankSim [9]F 6.51 - - - - - - -
RNC [35]F 6.14 - - - - - - -
LDS 331 6350 5925 7.078 8355 3.963 3721 4441 5249
Ordinal Entropy [36]T 6360 5.778  7.059  9.921 3.987 3.656 4382 6.958
Vanilla' 6.690 5959 7.740  10.688 4254 3734 5281 8.021
SQINVT 6391 5955 7.155 8390 4039 3774 4577 5425
BSAM 6.067 5.801 6304 7.928 3.895 3748 3.925 5.473

Table 2. Main results on IMDB-WIKI-DIR benchmark. Results marked with x are directly quoted from their original paper while results
marked with f are obtained through our reproduction following the RNC training protocol.

MAE | GM |
All Man. Med. Few All Man. Med. Few
LDS [33]* 7.83 7.31 12.43 22.51 442 4.19 7.00 13.94
FDS [33]* 7.83 7.23 12.60 22.37 442 4.20 6.93 13.48
RankSim [9]* 7.42 6.84 12.12 22.13 4.10 3.87 6.74 12.78
ConR [14]+LDS [33]* 743 6.84 12.38 21.98 4.06 3.94 6.83 12.89
ConR [14]+FDS [33]*  7.29 6.90 12.01 21.72 4.02 3.83 6.71 12.59
Ordinal Entropy (36]t 7.322  6.629 13.154 23.235 4,000 3.708 7.977 14.961
RNC [35]F 7466 6.757 13511 23.168 4.043 3.729 8516 15.540
LDS [33]1 7214  6.686 11.491  20.659 4.030 3.835 6.127 12425
Vanillat 7.358 6.644 13.391 23.544 4110 3.784 8.789 16.101
SQINVT 7.040 6.508 11.263  21.301 3921 3710 6.233 14457
BSAM 6.811 6.294 10.823 21.339 3.765 3.580 5.663 13.609

ror (RMSE) and threshold accuracy 6 .

We show the label distributions for three datasets and
the detailed formulations of our evaluation metrics and
reweighting strategies for w in the supplementary material.

4.3. Analysis

4.3.1. Comparisons with state-of-the-art methods

We compare our proposed methods with previous state-of-
the-art imbalance regression approaches on three bench-
marks in Table 1, Table 2, and Table 3 respectively. Specif-
ically, we selected two baseline methods, Vanilla and
SQINV, and multiple state-of-the-art regression learning
schemes: 1) distribution rebalance methods include the dis-
tribution smoothing [33] methods (LDS and FDS) and the
Balanced MSE [25], 2) feature space constraints methods
include the contrastive learning [14, 35], rank-based con-
straints [9] and the entropy constraints [36] methods.
Given that the recent RnC method [35] established a
comprehensive experimental protocol for data augmenta-

tions and model training strategies in age prediction tasks,
which leads to stronger baselines, we conducted our age
prediction experiments based on RnC training protocol as
mentioned in Section 4.2. For a fair comparison, we re-
port the baseline results quoted from [35], which explains
the missing metrics for some methods. We also re-produce
other relevant methods following the identical RnC train-
ing strategies. We also present the original results of these
methods in Table | and 2 for comprehensive evaluation.

AgeDB-DIR Benchmark. We evaluate our method on the
AgeDB-DIR benchmark and compare it with state-of-the-
art approaches. As shown in Table 1, our method achieves
superior performance across different metrics. Specifically,
our BSAM with SQINV achieves the lowest MAE of 6.067
on All settings and GM of 3.895, surpassing previous meth-
ods by a clear margin. The improvement is particularly sig-
nificant in Few-shot scenarios, where our method reduces
the MAE from 10.688 to 7.928, demonstrating its effective-
ness in handling data sparsity.
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Table 3. Main results on NYUD2-DIR benchmark. Results marked with % are directly quoted from their original paper.

RMSE| 01t

All Man. Med. Few All Man. Med. Few
FDS [33]* 1442 0.615 0940 2.059 0.681 0.760 0.695 0.596
LDS [33]* 1.387 0.671 0913 1954 0.672 0.701  0.706  0.630
Balanced MSE (BNI) [25]* 1.283 0.787 0.870 1.736 0.694 0.622 0.806 0.723
Balanced MSE (BNI) [25] + LDS [33]*  1.319 0.810 0.920 1.820 0.681 0.601 0.695 0.648
ConR [14] + FDS [33]* 1.299 0.613 0.836 1.825 0.696 0.800 0.819 0.701
ConR [14] + LDS [33]* 1.323  0.786 0.823 1.852 0.700 0.632 0.827 0.702
Vanilla* 1477 0591 0952 2.123 0.677 0.777 0.693  0.570
SQINV 1.341 0.604 0.832 1912 0.717 0.769 0.752  0.653
BSAM 1272  0.728 1.046 1.705 0.727 0.742 0.695 0.724

IMDB-WIKI-DIR Benchmark. IMDB-WIKI-DIR is a
particularly challenging benchmark due to its dual chal-
lenges: label noise and data imbalance. Despite these in-
trinsic difficulties, our method demonstrates remarkable im-
provements over existing approaches as shown in Table 2.
Specifically, BSAM achieves the best overall performance
with 6.811 MAE on all samples, substantially outperform-
ing conventional methods like RNC. The effectiveness of
our approach is consistent across different data density re-
gions: it achieves 6.294 MAE for many-shot samples, and
10.823 for medium-shot samples while maintaining robust
performance for few-shot samples. The GM metric further
demonstrates the superiority of our method, achieving a GM
score of 3.765, which is notably better than other meth-
ods. The results validate the effectiveness of our approach
in handling complex age estimation tasks.

NYUD2-DIR Benchmark. We further evaluate our method
on the NYUD2-DIR benchmark, with results shown in Ta-
ble 3. Our approach achieves state-of-the-art performance
with the lowest RMSE of 1.272 on All settings, outper-
forming strong baselines including Balanced MSE. No-
tably, our method demonstrates substantial improvements
in the challenging Few-shot regime, indicating its effective-
ness in handling the imbalance problem. For the d; met-
ric, our method achieves competitive results of 0.727 on All
settings, demonstrating its capability to maintain high accu-
racy across different evaluation criteria.

4.3.2. The bMAE metric

As shown in Table 4, we present the results of the bPMAE
metric evaluation on both the AgeDB-DIR and IMDB-
WIKI-DIR benchmarks. It is evident that BSAM con-
sistently outperforms SQINV across different data den-
sity regions on both benchmarks in terms of bMAE mea-
surement. Notably, in the few-shot region, where bMAE
more effectively evaluates model performance, as stated
in [25], BSAM demonstrates significant improvements over
SQINV.

Table 4. The bMAE metric (lower is better) on AgeDB-DIR and
IMDB-WIKI-DIR benchmark.

Datasets  Methods All Many  Med. Few
SQINV _ 7.075 509055 7203 9278

AgeDB  poAM  6734 5801 6340  8.890
npp | SQINV 11838 6673 13718 29.826
BSAM 11282 6356 11.333  26.466

Table 5. The MAE of BSAM with vanilla regression loss on
AgeDB-DIR benchmark.

Methods All Man. Med. Few
Vanilla 6.690 5959 7.740 10.688
Vanilla + Ours  6.427 5.856 7.116 9.915

4.3.3. Combinations with different regression loss

One of the distinctive features of BSAM is its flexible de-
sign regarding the choice of regression loss functions for
parameter optimization. To verify this flexibility, we com-
bined BSAM with vanilla regression loss (1), denoted as
“Vanilla + Our”. Table 5 presents the comparative results on
the AgeDB-DIR benchmark. As shown, integrating BSAM
with the vanilla loss yields consistent improvements across
all data density regions. Specifically, our approach reduces
the overall MAE from 6.690 to 6.427. These results indicate
that BSAM’s reweighting mechanism during perturbation
calculation can enhance model performance independent of
the specific form of loss function used, making it a versa-
tile approach that can be combined with different regression
losses to improve performance across different data density
regions.

4.3.4. Comparisons with different SAM

To compare the effectiveness of our improvements to SAM,
we evaluate various SAM-based methods as shown in Ta-
ble 6. The standard SAM model improves the baseline
MAE from 6.391 to 6.230, while the ImbSAM variant
achieves an MAE of 6.184. Our proposed method further
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Table 6. The MAE of BSAM with different SAM on AgeDB-DIR
benchmark.

Methods All Man. Med. Few
SQINV 6.391 5955 7.155 8.390

+ SAM [7] 6.230 5.639 7313 8.822
+imbSAM [37] 6.184 5844 6.799 7.695
+ BSAM 6.067 5.801 6.304 7.928

Table 7. The MAE of BSAM with different reweighting on
AgeDB-DIR benchmark.

Methods All Man. Med. Few
SQINV 6.391 5955 7.155 8.390
INV-BSAM 6.146 5806 6.668 7.921
SQINV-BSAM  6.067 5.801 6.304 7.928

Table 8. Comparisons of Apqz and Tr(H) averaged over three
experiments on the few-shot scenarios of AgeDB-DIR benchmark.

Metric . SQINV _ BSAM
Amaz L 14121 86.51
Tr(H)|l 65353  90.88

reduces the MAE to 6.067, demonstrating superior perfor-
mance. While we observe performance variations across
different data distribution regions, it is important to note that
BSAM is designed to enhance generalization performance
across the entire distribution. In contrast, InbSAM pri-
marily focuses on optimization for few-shot regions, which
can potentially compromise overall performance across the
complete dataset.

4.3.5. Different Reweighting for the perturbation

As shown in Table 7, we validate the impact of two ap-
proaches for calculating w(k) on BSAM performance:
inverse-frequency weighting (/INV-BSAM) and square-
root-inverse weighting (SQINV-BSAM). INV-BSAM re-
duces the MAE to 6.146, while SQINV-BSAM further im-
proves performance, achieving an MAE of 6.067. Both
methods show notable improvement compared to the base-
line. This demonstrates that our approach is not dependent
on a specific reweighting method but rather focuses on bal-
ancing the influence of data from all density regions during
perturbation calculation.

4.3.6. The effectiveness for low-density regions

Table 8 provides a quantitative analysis of the loss land-
scape geometry through two key metrics: the maximum
eigenvalue A, and the trace of the Hessian matrix
Tr(H). Lower values for both metrics indicate smoother,
flatter loss landscapes associated with better generalization.
On the AgeDB-DIR benchmark in the few-shot scenarios,
BSAM significantly outperforms SQINV. These dramatic
improvements suggest that BSAM is particularly effective
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Figure 2. Ablation study for the value of p € {0.05,0.1,0.2} on
AgeDB-DIR benchmark.

at creating flatter loss landscapes in low-density regions,
which explains its superior generalization performance for
underrepresented samples.

4.4. Ablation study

To evaluate the influence of the hyperparameter p, we
conducted an ablation study on the AgeDB-DIR bench-
mark dataset. As shown in Figure 2, we compared the
mean absolute error (MAE) across different values of p €
{0.05,0.1,0.2} for various methods: baseline, SAM [7],
imbSAM [37], and our proposed BSAM approach. The re-
sults validate that our BSAM method effectively leverages
sharpness to address imbalanced regression tasks, outper-
forming existing methods under different values of p.

5. Conclusion

In this paper, we have presented Balanced Sharpness-Aware
Minimization (BSAM), a novel approach that effectively
addresses the challenge of imbalanced regression through
principled integration of loss landscape sharpness and tar-
geted reweighting mechanisms. Our analysis reveals the
critical limitations of conventional SAM in handling un-
derrepresented samples, leading to the development of a
targeted reweighting mechanism that effectively balances
model generalization across the entire data distribution.
This simple yet effective approach maintains the computa-
tional efficiency of standard SAM while achieving superior
performance across three challenging benchmarks includ-
ing AgeDB-DIR, IMDB-WIKI-DIR, and NYUD2-DIR.
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