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Abstract

Open-set counting is garnering increasing attention due
to its capability to enumerate objects of arbitrary cate-
gory. It can be generally categorized into two methodolo-
gies: text-guided zero-shot counting methods and exemplar-
guided few-shot counting methods. Previous text-guided
zero-shot methods only provide limited object informa-
tion through text, resulting in poor performance. Besides,
though exemplar-guided few-shot approaches gain better
results, they rely heavily on manually annotated visual ex-
emplars, resulting in low efficiency and high labor inten-
sity. Therefore, we propose CountSE, which simultaneously
achieves high efficiency and high performance. CountSE is
a new text-guided zero-shot object counting algorithm that
generates multiple precise soft exemplars at different scales
to enhance counting models driven solely by semantics.
Specifically, to obtain richer object information and address
the diversity in object scales, we introduce Semantic-guided
Exemplar Selection, a module that generates candidate soft
exemplars at various scales and selects those with high sim-
ilarity scores. Then, to ensure accuracy and representa-
tiveness, Clustering-based Exemplar Filtering is introduced
to refine the candidate exemplars by effectively eliminat-
ing inaccurate exemplars through clustering analysis. In
the text-guided zero-shot setting, CountSE outperforms all
state-of-the-art methods on the FSC-147 benchmark by at
least 15%. Additionally, experiments on two other widely
used datasets demonstrate that CountSE significantly out-
performs all previous text-guided zero-shot counting meth-
ods and is competitive with the most advanced exemplar-
guided few-shot methods. Codes will be available. Code
is available at https://github.com/pppppz22/
CountSE.

1. Introduction

The object counting task has experienced substantial ad-
vancements with the development of deep learning [7, 14,
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Figure 1. Our method achieves few-shot level performance with
zero-shot annotation cost. We measure annotation time as either
class name input (e.g., "tomato") or three exemplar box annota-
tions per image, averaged over 100 images. While text-only zero-
shot methods have minimal annotation cost but poor performance,
and exemplar-based few-shot methods perform better but require
costly annotations, our method bridges this gap effectively.

34]. Its application is extended from traditional counting of
a specific category to methods that support open-set count-
ing. Closed-set [9, 17, 21, 23, 31, 36, 39, 40, 46, 47] ob-
ject counting methods are limited to predefined categories
present in the train set. In contrast, open-set [1, 2, 5, 16,
19, 28, 32, 35, 37, 42, 44, 48, 54] counting methods over-
come this restriction by enabling the counting of objects
from any category during inference without the need for ad-
ditional training. Specifically, open-set counting allows the
model to identify the target category via visual exemplars
(e.g., bounding boxes of target objects in an image) or text
prompts, thereby facilitating the counting of objects from
any category in an image.

Some open-set counting methods (e.g., [CounTX [1],

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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CLIP-Count [19], VLCounter [20], GroundREC [5]]) rely
entirely on text prompts to specify the counting targets,
known as text-guided zero-shot object counting (ZSC)
methods. However, in current ZSC methods, text prompts
often provide limited descriptive information for novel cate-
gories and cannot provide object detail characteristics. This
means that relying solely on text may not provide enough
visual information to accurately identify and count objects,
resulting in poor counting performance. Exemplar-guided
few-shot counting (FSC) methods (e.g., [CounTR [28],
LOCA [42], DAVE [32]]) can offer more comprehensive
object information by manually specifying visual exemplars
of the target objects. The performance of FSC methods is
positively correlated with the accuracy of manually anno-
tated exemplars. Denser images typically require more an-
notated representative exemplars to ensure satisfactory re-
sults, which significantly increases the workload and de-
creases efficiency in real-world scenarios. Furthermore,
manually annotated exemplars face the challenge of high
intra-class variance [19], meaning that differences (e.g.,
scale variations) between objects within the same category
can easily cause the selected exemplars to be insufficiently
representative. Although methods that combine text and vi-
sual exemplars (e.g., [CountGD [2]]) have been proposed
for counting, the problems of high annotation costs and vi-
sual exemplar selection still exist.

To overcome the limitations mentioned above while
combining the advantages of previous methods, we pro-
pose CountSE, a novel text-guided object counting method
in which soft exemplars are selected only guided by text
prompts. We call manually annotated exemplar bounding
box is termed as the hard exemplar. Dynamically select-
ing exemplars in image features without annotation is called
soft exemplar. Under the zero-shot setting, CountSE avoids
manual annotation of exemplars and improves efficiency
in real-world applications. The advantages of our model
are shown in Figure 1, where lower Mean Absolute Error
(MAE) represents better results.

Specifically, the method consists of two steps: Semantic-
guided Exemplar Selection (SES) and Clustering-based Ex-
emplar Filtering (CEF). The SES module addresses the
challenge of object scale diversity. In dense scenes, ob-
ject instances often vary significantly in size (e.g., far and
near objects). Consequently, larger receptive fields may blur
small object features, while smaller receptive fields fail to
capture the complete semantics of large objects. SES ex-
tracts candidate soft exemplars from multi-resolution image
features at different scales based on semantic information,
effectively solving the multi-scale problem. Moreover, it
adaptively adjusts the number of soft exemplars for each
scale based on their similarity, ensuring that the selected ex-
emplar features are more representative. The CEF module
refines candidate soft exemplars output by the SES module

using clustering techniques. The goal is to improve the rep-
resentativeness and accuracy of the selected soft exemplar.
Directly using the raw candidate exemplars may introduce
noise, such as outliers that are similar in semantic features
but have large visual representation differences. CEF per-
forms clustering analysis on the candidate exemplars based
on spectral clustering [50], effectively filtering out low-
quality soft exemplars. The difference between our method
and traditional methods is that, under the condition of using
only text descriptions with low annotation cost, we supple-
ment the text with high-quality selected visual exemplars
to obtain richer object details. Furthermore, when dealing
with dense images containing objects of various scales, we
do not need to manually annotate a large number of multi-
scale exemplars to avoid expensive annotation costs.

We conducted experiments on three datasets, demon-
strating that our method outperforms all existing ZSC meth-
ods. On the FSC-147 [35], our method achieves 15.4%
and 22.5% lower MAE than the previous state-of-the-art ap-
proach on the val and test sets, respectively. Considering the
generalization issue, we experimented on CARPK [17] and
ShanghaiTech-A [53], and including methods that use vi-
sual exemplars, our method achieved the best performance.

In summary, we make the following three contributions:
1. We propose CountSE, the counting method based on

soft exemplars, which simultaneously achieves low annota-
tion cost and high counting performance.

2. We propose a simple yet effective soft exemplar selec-
tion method. Through semantic-guided selection and clus-
tering filtering, it accurately chooses representative exem-
plar features, and addresses the multi-scale challenges of
objects, while significantly reducing the cost of manually
annotated exemplar boxes.

3. We evaluate the model on three standard counting
benchmarks: FSC-147 [35], CARPK [17], and Shang-
hai Tech-A [53]. The results show that CountSE signif-
icantly improves the state-of-the-art performance of zero-
shot methods that rely solely on text prompts, and it is com-
petitive with few-shot methods that use exemplars.

2. Related Work

2.1. Category-specific Counting
Object counting is one of the core tasks in computer

vision, with the primary goal of accurately estimating the
number of target instances in images or videos. Early
research primarily focused on category-specific counting
methods, where the counting categories are predefined as
a closed set. The core assumption behind these methods
is that the target category space remains completely con-
sistent during both training and testing, and that the train-
ing data and test scenarios align strictly in terms of tar-
get types, density distribution, and environmental condi-
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tions. Typical category of study include human [12, 13, 23–
25, 27, 33, 38, 41, 43, 46, 51, 52], animals [4, 36, 40, 47],
car [17, 21, 31], and cells [9, 10, 45]. While high accuracy
has been achieved in these closed-set scenarios, they fail to
meet the evolving needs of practical applications. Category-
specific counting methods require the construction of a new
dataset and the training of a specialized model for each new
category. Although existing methods have been proposed
to mitigate the severe performance degradation caused by
cross-domain [3, 11, 18, 33] distribution shifts, they still fail
to recognize novel categories absent during training. Open-
set counting addresses the above issues by leveraging text
and exemplar guidance to extend the counting categories,
thereby meeting the technical demands of any categories.

2.2. Open-set Counting

Text-guided Zero-shot Counting. The visual language
model provides a new solution paradigm for open-set count-
ing. The text-guided category-agnostic counting extends
the information of the novel category through the text de-
scription, that is, the zero shot setting. ZSC [48] first
introduced the zero-shot counting task, which uses pure
text descriptions without image exemplars, achieving tar-
get matching under zero-shot conditions through construct-
ing class prototypes. CLIP-Count [19] utilizes the cross-
modal alignment capabilities of the CLIP model, aligning
text embeddings and visual features with contrastive loss
to enable CLIP to perform pixel-level density predictions.
CounTX [1] leverages pre-trained visual language models
and constructs a Transformer decoder to achieve end-to-end
text-conditioned counting. GroundingREC [5] uses the pre-
trained GroundingDINO [29] model and performs global-
local feature fusion to focus the counting model on the text
description part. VA-Count [54] finds potential examples
by detector to improve the adaptability of new categories.
Exemplar-guided Few-shot Counting. Exemplar-guided
open-set counting enables the model to generalize to new
categories by offering exemplars of counting categories.
Early methods, such as FamNet [35], extend counting to
novel categories by matching query images with exemplar
templates of the new category. BMNET+ [37] proposes a
dual optimization strategy involving joint learning of rep-
resentations and similarity metrics, effectively improving
adaptation to intra-class variations. CACViT [44] sim-
plifies the category-agnostic counting (CAC) pipeline to
a single pre-trained ViT [8], where exemplar feature ex-
traction and similarity matching are simultaneously per-
formed in self-attention, effectively shortening training time
and improving counting accuracy. SAFECount [49] en-
hances model attention to areas related to exemplars in
the image through similarity comparison and feature en-
hancement. CounTR [28] introduces a Transformer and
uses cross-attention mechanisms to establish fine-grained

associations between support samples and query images.
LOCA [42] proposes an object prototype extraction module
and integrates exemplar information with the query image.
DAVE [32] generates a broad range of detection results and
removes outliers, effectively addressing the overestimation
of counts. CountGD [2] achieves richer object information
by utilizing both object exemplars and text descriptions.

3. Method
Unlike visual exemplar-based counting methods, our ap-

proach uses semantic to identify object soft exemplars in
encoded image features for counting and performance en-
hancement. The key challenge lies in accurate exemplar
feature extraction. We address this with an adaptive method
that extracts variable numbers and sizes of exemplars based
on object size distribution. Since leveraging pretrained im-
age and text encoders for feature matching, our subsequent
modules require no learnable parameters.

3.1. Overview
Counting models based on density map regression [22]

often suffer from reduced accuracy when counting occluded
or small objects. Recent advancements in object counting
have been driven by object detection models, particularly
those based on GroundingDINO[29]. GroundingDINO, as
a vision-language model, adopts a Transformer architecture
and undergoes large-scale pre-training. It fuses text and
image inputs at multiple levels, providing strong support
for open-set object counting. Given these advantages, our
model is developed on the GroundingDINO framework.

The framework of our method is shown in Figure 2.
Specifically, given an input image X ∈ RH×W×3, a
text description t, we obtain a set of image features
I = {IStage1, IStage2, IStage3, IStage4} and text features T
from encoder outputs. We use the Semantic-guided Exem-
plar Selection module to process I and T , selecting relevant
features as candidate soft exemplar for each stage. Then,
we obtain final soft exemplars through Clustering-based Ex-
emplar Filtering module and concatenate the final soft ex-
emplars with T to obtain the updated text feature T ′. The
image features I and text features T ′ are input into the en-
hancer and decoder to calculate the object count. We will
discuss the details of the modules below.

3.2. Semantic-guided Exemplar Selection
To enable the model to adaptively recognize object in-

stances of different sizes in an image, we divide the image
features output by the SwinTransformer encoder into four
size categories based on resolution. Specifically, the fea-
tures from Stage 1, with a resolution of H/8 × W/8, cor-
respond to very small objects; the features from Stage 2,
with a resolution of H/16 × W/16, correspond to small
objects; the features from Stage 3, with a resolution of
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Figure 2. Overview of the CountSE architecture. The model takes both an image and a textual description as inputs. Encoders process
these inputs to obtain multi-scale feature maps and text features. The overall flow of our method is illustrated in an enlarged schematic.
Firstly, candidate soft exemplars are extracted through a Semantic-guided Exemplar Selection module. Then, the candidate soft exemplars
are filtered through Clustering-based Exemplar Filtering. Finally, the generated soft exemplars are concatenated with the text features. The
details of the module that has not been enlarged can be found in GroundingDINO[29].

H/32×W/32, correspond to medium-sized objects; and the
features from Stage 4, with a resolution of H/64 ×W/64,
correspond to large objects. To obtain relevant object infor-
mation across different scales and enable the model to adapt
to varying object sizes, we extract a different number of soft
exemplars at each stage.

Assume that the total number of soft exemplars selected
from features of all stages is N , with Ni exemplars selected
from the Stage i. We use matrix multiplication to calculate
the similarity map Si between the text features T and the
image features IStagei of Stage i:

Si = IStagei · T (1)

Assuming the number of candidate soft exemplars at
each stage is M , we extract the top M most relevant object
features from the image features at different stages as candi-
date soft exemplars, denoted as Ei = {e0, e1, . . . , eM−1}.
Meanwhile, we compute the maximum similarity score
Scorei between the text features T and the image fea-
tures IStagei to determine the number Ni of soft exem-
plars selected from Stage i. In the detailed image of Fig-
ure 2, the maximum similarity scores are represented as
Max Scores = {Scorei | i ∈ {1, 2, 3, 4}.

Ei = SelectTopK(IStagei, Si,M) (2)
Scorei = Max(Si) (3)

3.3. Clustering-based Exemplar Filtering
For the candidate soft exemplars selected in 3.2, their

semantic accuracy cannot be guaranteed. To minimize the
impact of inaccurate candidate soft exemplars, we introduce
a filtering stage to remove erroneously selected image fea-
tures that share superficial feature similarities. Specifically,
following DAVE [32], we apply spectral clustering [50] as
the clustering technique. First, we compute the similarity
among the M candidate soft exemplars selected at each
stage to construct an affinity matrix. Based on this simi-
larity, we cluster the candidate soft exemplars Ei.

As shown in Figure 2, we select the top Ni most simi-
lar features as the soft exemplar features from the cluster ci
that has the largest number of features in Stage i. Specifi-
cally, for the image features at different resolutions, we ex-
tract a different number of exemplars based on their simi-
larity scores with the semantics. The Max Scores obtained
in 3.2 represent the similarity between different resolution
features and the semantics. We first compute the normalized
probability corresponding to the scores:

Pi =
Scorei∑4
j=1 Scorej

, i ∈ {1, 2, 3, 4} (4)

Using these normalized probabilities, we calculate the
number of soft exemplars Ni to be extracted for Stage i:

Ni = N × Pi (5)
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Method Prompt Format Publication Venue Year Val set Test set

MAE RMSE MAE RMSE

ZSC [48] Text CVPR 2023 26.93 88.63 22.09 115.17
CLIP-Count [19] Text ACM MM 2023 18.79 61.18 17.78 106.62
VLCounter [20] Text AAAI 2024 18.06 65.13 17.05 106.16
CountTX [1] Text BMVC 2023 17.10 65.61 15.88 106.29
GroundingDINO [29] Text ECCV 2024 12.07 57.02 11.52 97.37
COUNTGD [2] Text NeurIPS 2024 12.14 47.51 12.98 98.35
GroundingREC [5] Text CVPR 2024 10.06 58.62 10.12 107.19

FamNet [35] Visual Exemplars CVPR 2021 23.75 69.07 22.08 99.54
BMNet+ [37] Visual Exemplars CVPR 2022 15.74 58.53 14.62 91.83
CountTR [28] Visual Exemplars BMVC 2022 13.13 49.83 11.95 91.23
LOCA [42] Visual Exemplars ICCV 2023 10.24 32.56 10.79 56.97
CACViT [44] Visual Exemplars AAAI 2024 10.63 37.95 9.13 48.96
DAVE [32] Visual Exemplars CVPR 2024 8.91 28.08 8.66 32.36

COUNTGD [2] Visual Exemplars & Text NeurIPS 2024 7.10 26.08 5.74 24.09

CountSE (ours) Text – – 8.51 54.93 7.84 82.99

Table 1. Comparison with state-of-the-art methods on FSC-147. Bold results are the best performance and the results with an underline
are the second best.

After determining the number of soft exemplars Ni to
be extracted in each stage, we select the top Ni features
from the cluster ci as the final soft exemplars E′

i. To ensure
robustness and limit the length of the text features, we av-
erage the feature dimensions of the selected soft exemplars
E′

i at each stage to obtain EStagei. Following CountGD[2],
we then concatenate these averaged soft exemplars EStagei

with the text features to update the text features to T ′:

T ′ = {T,EStage1, EStage2, EStage3, EStage4} (6)

3.4. Loss
Following CountGD[2], the final loss L consists of both

the localization loss Lloc and the classification loss Lcls.
Localization Loss measures the discrepancy between

the predicted object coordinates and the ground truth co-
ordinates. This is calculated using the L1-norm:

Lloc =

K∑
i=1

|ĉi − ci| (7)

where ĉi is the predicted object coordinate for the i-th
object, and ci is the ground truth object coordinate. K is
the number of predicted points that match the ground truth.

Classification Loss calculates the discrepancy between
the predicted object classes and the corresponding ground
truth labels.

Lcls = FocalLoss(L̂, Y ) (8)

where L̂ represents the classification probability predic-
tions output by the model, and Y denotes the classification
labels obtained through Hungarian matching between the
predicted points and ground truth.

The final loss function is a weighted sum of the local-
ization and classification losses. The weight λ balance the
contributions of each term:

L = Lloc + λLcls (9)

4. Experiments
4.1. Implementation details
Training. We use the GroundingDINO-B[29] model as the
backbone of our method. During training, we freeze the
Swin Transformer [30] image encoder and the BERT [6]
text encoder. All other trainable network parameters are
optimized using the Adam optimizer with an initial learn-
ing rate of 1 × 10−4 for 30 epochs. CountSE is trained on
an RTX 3090 with a batch size of 4, and the training process
takes approximately 16 hours. Additionally, the number of
soft exemplars N is set to 18 and we set λ1 to 1 and λ2 to
5. For the FSC-147 [35] dataset, we apply the same correc-
tions and text description modifications as COUNTGD [2].
Inference. During inference, the shortest side of each
image is resized to 800 pixels while maintaining the as-
pect ratio. Additionally, we apply the adaptive cropping
from CountGD[2] to address the issue of outputting a max-
imum of 900 counting at a time. For the CARPK [17] and
ShanghaiTech-A [53], we use "car" and "people" as the text
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Method Prompt Format MAE ↓ RMSE ↓

CLIP-Count [19] Text 11.96 16.61
CounTX [1] Text 8.13 10.87
VLCounter [20] Text 6.46 8.68
COUNTGD [2] Text 3.83 5.41
LOCA [42] Visual Exemplars 9.97 12.51
CounTR [28] Visual Exemplars 5.75 7.45
SAFECount [49] Visual Exemplars 5.33 7.04
COUNTGD [2] Visual Exemplars & Text 3.68 5.17

CountSE(ours) Text 2.79 4.20

Table 2. Comparison with state-of-the-art methods on CARPK.

Method Category MAE ↓ RMSE ↓

MCNN [53] Specific 221.4 357.8
CrwodClip [26] Specific 217.0 322.7
RCC [15] Open-set 240.1 366.9
CounTX[1] Open-set 219.8 351.0
Clip-Count[17] Open-set 192.6 308.4
COUNTGD[2] Open-set 141.9 258.0

CountSE(ours) Open-set 129.7 258.3

Table 3. Comparison with state-of-the-art methods including spe-
cific category counting on ShanghaiTech-A test set.

SES CEF Val Set Test Set

MAE RMSE MAE RMSE

- - 12.07 57.02 11.52 97.37
✓ - 8.56 49.31 8.53 85.10
✓ ✓ 8.51 54.93 7.84 82.99

Table 4. Ablation experiments for each module.

descriptions respectively.
Metrics. Consistent with previous research, we use the
Mean Absolute Error (MAE) and the Root Mean Squared
Error (RMSE) to evaluate the performance of the model.
These metrics are defined as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (10)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (11)

where n represents the number of test images, yi denotes
the actual number of objects, and ŷi refers to the predicted
number of objects for image i.

4.2. Comparison with the state of the art
FSC-147 [35]. In the category-agnostic counting task, we
evaluate our method on the FSC-147. This means that we
train our model on the train set of FSC-147 and evaluate it
on the test and val sets for novel categories. We classify

other open-world counting methods based on the type of
prompt used: those using only text prompts, those using
only visual exemplar prompts, and those using both text and
visual exemplar prompts simultaneously.

As shown in Table 1, our method outperforms all other
methods in the zero-shot setting relying solely on text
prompts. Compared to the previous best method, our
method outperforms in terms of MAE by 15.4% and 22.5%
on the val and test sets, respectively. Even in the few-shot
setting where only visual exemplar prompts are used, our
method remains superior, outperforming the best method
by 4.4% and 9.4% in MAE on the val and test sets, re-
spectively. Among all methods, CountSE is only slightly
inferior to CountGD, which utilizes both text and visual ex-
emplar prompts. This is because, while soft exemplars also
provide object information, they do not achieve the same
level of accuracy as precisely annotated visual exemplars.
Nevertheless, our method significantly improves the perfor-
mance of pure text-guided methods, and the selected soft
exemplars can still provide relatively accurate object fea-
tures information.
CARPK [17]. We also test generalization ability of
CountSE on the CARPK vehicle counting dataset. CountSE
was trained solely on the FSC-147 train set, without any
additional CARPK images for training. As shown in Ta-
ble 2, CountSE outperforms all state-of-the-art methods on
CARPK, even surpassing previous best-performing method
CountGD by 24.1% and 18.7% in terms of MAE and
RMSE, respectively.
ShanghaiTech-A [53]. We train the model on the FSC-
147 train set and evaluate its generalization on the
ShanghaiTech-A. Compared to FSC-147, the Shanghai
Tech-A has higher population density and greater scale
variation, making it more challenging. In Table 3, we
compare the performance of CountSE with other meth-
ods. CountSE significantly outperforms the representa-
tive specific-category counting methods in the table. Ad-
ditionally, our method achieves a 32.6% improvement in
MAE and a 16.2% improvement in RMSE over the open-
set counting method CLIP-Count. In conclusion, the exper-
iments demonstrate the strong generalization ability of our
method across different datasets.

4.3. Ablation study

Ablation of each module. We investigate the effective-
ness of each module of our proposed method through ab-
lation experiments. The results are shown in Table 4. We
first conduct a baseline experiment without any modifica-
tions, where only text input is provided and no visual exem-
plars are used. Introducing the Semantic-guided Exemplar
Selection (SES) module reduces the Mean Absolute Error
(MAE) by 3.51 and 2.99 on the val and test sets, respec-
tively. Next, we introduce the Clustering-based Exemplar
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Figure 3. Visualization of soft exemplar. For better viewing, we enlarge the selected soft exemplars.

N Val Set Test Set

MAE RMSE MAE RMSE

14 9.19 56.01 8.53 96.79
16 8.99 53.37 7.95 83.05
18 8.51 54.93 7.84 82.99
20 9.08 55.86 8.25 90.39
22 9.04 56.18 9.24 106.66

Table 5. Ablation experiment for N

Filtering (CEF) module, which further reduces MAE by
0.05 and 0.69 on the val and test sets. The smaller improve-
ment on the val set might be because the soft exemplars
extracted from the val set are already sufficiently accurate,
making the filtering process have a less significant impact
on the selected exemplars.

The experimental results show that introducing the SES
module, which selects multiple soft exemplars, provides ad-
ditional object information that helps the model address
high intra-class variance and scale variations. When the
CEF is removed, performance decreases, demonstrating
that CEF effectively filters out inaccurate soft exemplars,
thereby improving the richness of object information.
Ablation of N. We also experimented with the impact of
the number of soft exemplars N on performance. As shown
in Table 5, we set N to 14, 16, 18, 20, and 22. The results
clearly show that the model achieves the best performance
when N is set to 18. This is because a smaller N doesn’t
provide enough diversity in the extracted soft exemplars,
failing to capture all representative features. On the other

λ
Val Set Test Set

MAE RMSE MAE RMSE

3 9.12 56.49 9.59 106.51
4 8.75 48.23 9.03 98.53
5 8.51 54.93 7.84 82.99
6 8.81 58.92 7.99 90.24
7 9.13 61.97 9.38 89.47

Table 6. Ablation experiment for λ

hand, a larger N increases the number of extracted features,
introducing noise that negatively affects the performance.
Ablation of λ. As shown in Table 6, experimental results
indicate that when the λ is set to 5, both the MAE and
RMSE on the test and val sets are relatively low, demon-
strating that this parameter setting achieves a good balance
to simultaneously consider accurate object recognition and
essential localization information in an open-set scenario.

In an open-set setting, the model needs to accurately
identify objects of various categories. If the λ is too low,
the model tends to focus excessively on object localization,
attempting to precisely locate objects but failing to classify
them correctly, which leads to increasing counting errors.
As the model’s ability to distinguish object categories weak-
ens, the MAE and RMSE on the test and val sets increase.

Conversely, since the counting task also requires precise
localization, setting the λ too high may cause the model
being unable to accurately localize the objects. In such a
case, the model may only classify whether an object be-
longs to a certain category without providing accurate posi-
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Figure 4. Visualization of counting results. We compare our method with the state-of-the-art COUNTGD in two scenarios: (1) using
only text prompts and (2) using both text prompts and exemplars simultaneously. The red dashed box represents the annotated exemplars
provided to COUNTGD, while the number in the upper right corner represents the annotation time required.

tional information, resulting in issues like double counting
or missed counts.

4.4. Qualitative Result

Visualization of soft exemplar. To validate the effective-
ness of semantically guided soft exemplars, we visualize
them for representative images (cropped and enlarged for
clarity). For simplicity, we visualize one soft exemplar per
scale, and different scales are marked with dashed boxes of
different colors. As shown in Figure 3a, for images con-
taining multi-scale objects, our method can accurately cap-
ture the complete object information, such as a fully visible
seagull or the edge features of an object, like the wing of a
seagull.

However, as shown in Figure 3b, for complex scenes
where objects and backgrounds are highly similar or contain
multiple types of objects, our method fails to accurately ex-
tract soft exemplars at certain scales. Solving this problem
may require more precise pre-training to avoid the associa-
tion between semantics and irrelevant content.
Visualization of counting results. We compare our
method with COUNTGD [2] on images with varying
densities and scales (Figure 4). Our approach matches
COUNTGD’s performance on sparse, uniform-scale im-
ages but outperforms it significantly for dense, multi-scale
scenes. Although adding visual exemplars reduces the er-

ror of COUNTGD, it still does not perform as well as our
method. The results demonstrate that our method effec-
tively handles dense object images with large-scale varia-
tions while significantly reducing annotation costs.

5. Conclusion
We propose CountSE, a novel zero-shot counting method

that eliminates complex manual annotation in few-shot set-
tings and overcomes the limited information from text de-
scriptions in zero-shot settings. CountSE introduces soft
exemplars to enrich object representations while handling
scale diversity in dense scenes. Extensive experiments
on benchmark datasets validate its effectiveness and cross-
dataset generalization.
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[42] Nikola Ðukić, Alan Lukežič, Vitjan Zavrtanik, and Matej
Kristan. A low-shot object counting network with iterative
prototype adaptation. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 18872–
18881, 2023. 1, 2, 3, 5, 6

[43] Mingjie Wang, Hao Cai, Yong Dai, and Minglun Gong.
Dynamic mixture of counter network for location-agnostic
crowd counting. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 167–
177, 2023. 3

[44] Zhicheng Wang, Liwen Xiao, Zhiguo Cao, and Hao Lu.
Vision transformer off-the-shelf: a surprising baseline for
few-shot class-agnostic counting. In Proceedings of the
AAAI Conference on Artificial Intelligence, pages 5832–
5840, 2024. 1, 3, 5

[45] Weidi Xie, J Alison Noble, and Andrew Zisserman. Mi-
croscopy cell counting and detection with fully convolutional
regression networks. Computer methods in biomechanics
and biomedical engineering: Imaging & Visualization, 6(3):
283–292, 2018. 3

[46] Chenfeng Xu, Dingkang Liang, Yongchao Xu, Song Bai,
Wei Zhan, Xiang Bai, and Masayoshi Tomizuka. Autoscale:
Learning to scale for crowd counting. International Journal
of Computer Vision, 130(2):405–434, 2022. 1, 3

[47] Jingsong Xu, Litao Yu, Jian Zhang, and Qiang Wu. Au-
tomatic sheep counting by multi-object tracking. In 2020
IEEE International Conference on Visual Communications
and Image Processing (VCIP), pages 257–257. IEEE, 2020.
1, 3

[48] Jingyi Xu, Hieu Le, Vu Nguyen, Viresh Ranjan, and Dim-
itris Samaras. Zero-shot object counting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15548–15557, 2023. 1, 3, 5

[49] Zhiyuan You, Kai Yang, Wenhan Luo, Xin Lu, Lei Cui, and
Xinyi Le. Few-shot object counting with similarity-aware
feature enhancement. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
6315–6324, 2023. 3, 6

[50] Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral

21545



clustering. Advances in neural information processing sys-
tems, 17, 2004. 2, 4

[51] Chengyang Zhang, Yong Zhang, Bo Li, Xinglin Piao, and
Baocai Yin. Crowdgraph: Weakly supervised crowd count-
ing via pure graph neural network. ACM Transactions on
Multimedia Computing, Communications and Applications,
20(5):1–23, 2024. 3

[52] Shiwei Zhang, Wei Ke, Shuai Liu, Xiaopeng Hong, and
Tong Zhang. Boosting semi-supervised crowd counting with
scale-based active learning. In Proceedings of the 32nd ACM
International Conference on Multimedia, pages 8681–8690,
2024. 3

[53] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao,
and Yi Ma. Single-image crowd counting via multi-column
convolutional neural network. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 589–597, 2016. 2, 5, 6

[54] Huilin Zhu, Jingling Yuan, Zhengwei Yang, Yu Guo, Zheng
Wang, Xian Zhong, and Shengfeng He. Zero-shot object
counting with good exemplars. In European Conference on
Computer Vision, pages 368–385. Springer, 2024. 1, 3

21546


