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Figure 1. Synthetic images distilled from ImageNet-1K using our WMDD method with ResNet-18, capturing essential class features
aligned with human perception. We randomly sampled one image for each of the chosen categories from our output in the 10 IPC setting.

Abstract

Dataset Distillation (DD) aims to generate a compact syn-

thetic dataset that enables models to achieve performance

comparable to training on the full large dataset, signifi-

cantly reducing computational costs. Drawing from optimal

transport theory, we introduce WMDD (Wasserstein Metric-

based Dataset Distillation), a straightforward yet powerful

method that employs the Wasserstein metric to enhance dis-

tribution matching.

We compute the Wasserstein barycenter of features from

a pretrained classifier to capture essential characteristics of

the original data distribution. By optimizing synthetic data

to align with this barycenter in feature space and leverag-

ing per-class BatchNorm statistics to preserve intra-class

variations, WMDD maintains the efficiency of distribution

matching approaches while achieving state-of-the-art re-

sults across various high-resolution datasets. Our exten-

sive experiments demonstrate WMDD’s effectiveness and

adaptability, highlighting its potential for advancing ma-

chine learning applications at scale. Code is available at

https://github.com/Liu-Hy/WMDD and website

at https://liu-hy.github.io/WMDD/.

1 Introduction
Dataset distillation [46, 61] aims to create compact syn-
thetic datasets that train models to perform similarly to
those trained on full-sized original datasets. This tech-
nique promises to address the escalating computational
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costs associated with growing data volumes, enables effi-
cient model development across various applications [16,
27, 28, 34, 40, 56], and helps mitigate bias [7, 49], robust-
ness [50] and privacy [11, 38] concerns in training data.

The central challenge in dataset distillation lies in cap-
turing the distributional characteristics of an entire dataset
within a small set of synthetic samples [25, 34]. Exist-
ing methods often struggle to balance computational effi-
ciency with distillation quality. Some researchers formu-
late dataset distillation as a bi-level optimization problem
[30, 33, 48], which has inspired innovative approaches such
as gradient matching [57, 61], trajectory matching [3], and
curvature matching [39]. These methods align the optimiza-
tion dynamics between models trained on synthetic and
original datasets. However, they typically require second-
order derivative computation, becoming prohibitively ex-
pensive for large datasets like ImageNet-1K [9]. Alterna-
tive approaches directly align synthetic and original data
distributions using metrics like Maximum Mean Discrep-
ancy (MMD) [18, 42]. Despite their computational effi-
ciency, these methods typically underperform compared to
optimization-based approaches [25, 34]. We conjecture that
this performance gap is due to MMD’s limitations in quan-
tifying distributional differences in ways that provide mean-
ingful signals for generating effective synthetic images.

In this paper, we introduce the Wasserstein distance as an
effective measure of distributional differences for Dataset
Distillation. Wasserstein distance is known for compar-
ing distributions by quantifying the minimal movement re-
quired to transform one probability distribution into another
within a given metric space [44]. Grounded in Optimal
Transport theory [22], it provides a geometrically mean-
ingful approach to quantifying differences between distri-
butions. The Wasserstein barycenter [1] represents the cen-
troid of multiple distributions while preserving their essen-
tial characteristics. Fig. 2 illustrates this advantage by sim-
ulating distributions spread on circles and crosses on a 2D
plane (Fig. 2a), and their barycenters computed with differ-
ent distribution metrics. While KL divergence (Fig. 2b) and
MMD (Fig. 2c) barycenters produce a rigid mix-up of input
distributions, the Wasserstein barycenter (Fig. 2d) creates a
natural interpolation that preserves the structural character-
istics of the original distributions.

Motivated by these advantages, we develop a straightfor-
ward yet effective DD method using Wasserstein distance
for distribution matching. Unlike prior work using MMD
[18, 42], the Wasserstein barycenter [1] avoids reliance on
heuristically designed kernels and naturally accounts for
distribution geometry and structure. This allows us to sta-
tistically summarize real datasets within a fixed number of
representative and diverse synthetic images that enable clas-
sification models to achieve higher performance.

Furthermore, to address challenges in optimizing high-

dimensional data for DD, we present WMDD (Wasserstein
Metric-based Dataset Distillation), an algorithm that bal-
ances performance and computational feasibility on large
datasets. We embed synthetic data into the feature space
of a pre-trained image classifier following [53, 60, 62], and
use the Wasserstein barycenter as a compact summary of
intra-class data distribution. To leverage prior knowledge in
pretrained models, we propose a regularization method us-
ing Per-Class BatchNorm statistics (PCBN) for more pre-
cise distribution matching, inspired by previous work ad-
dressing data heterogeneity [17] and long-tail problems [5]
with variants of batch normalization [21]. By implementing
an efficient algorithm [8] for Wasserstein barycenter com-
putation, our method maintains the efficiency of distribu-
tion matching-based approaches [60] and can scale to large,
high-resolution datasets like ImageNet-1K [9]. Our exper-
iments demonstrate that WMDD achieves state-of-the-art
performance across various benchmarks. Our contributions
include:
• A novel dataset distillation technique that integrates dis-

tribution matching with Wasserstein metrics, bridging
dataset distillation with insights from optimal transport
theory.

• A balanced solution leveraging the computational feasi-
bility of distribution-matching based methods to ensure
scalability to large datasets.

• Comprehensive experimental results across diverse high-
resolution datasets demonstrating significant perfor-
mance improvements over existing methods, highlighting
our approach’s practical applicability in the big data era.

2 Related work
2.1 Data Distillation
Dataset Distillation (DD) aims to create compact synthetic
training sets that enable models to achieve performance
comparable to those trained on larger original datasets [47].
Current DD methods fall into three major categories [54]:
Performance Matching seeks to minimize loss of the syn-
thetic dataset by aligning the performance of models trained
on synthetic and original datasets, methods include DD
[47], FRePo [64], AddMem [10], KIP [33], RFAD [30];
Parameter Matching is an approach to train two neural net-
works on the real and synthetic datasets respectively, with
the aim to promote similarity in their parameters, methods
include DC [61], DSA [57], MTT [3], HaBa [29], FTD [13],
TESLA [6]; Distribution Matching aims to obtain synthetic
data that closely matches the distribution of real data, meth-
ods include DM [60], IT-GAN [59], KFS [24], CAFE [45],
SRe2L [53], IDM [62], G-VBSM [36], and SCDD [36].

2.2 Distribution Matching
Distribution Matching (DM) techniques, initially proposed
in [58], aim to directly align the probability distributions
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(a) (b) KL divergence (c) MMD distance (d) Wasserstein distance

Figure 2. The capability of Wasserstein barycenter in condensing the core characteristics of distributions: (a) distributions defined on
R2, concentrated on outlines of circles (blue) and crosses (green). Barycenters computed using: (b) KL divergence, (c) Maximum Mean
Discrepancy (MMD), which operates in a kernel-induced feature space, and (d) Wasserstein distance, which preserves geometric structure
through optimal transport. Color intensity represents probability density, while color hue shows different types of source distributions.

of the original and synthetic datasets [15, 34]. The funda-
mental premise underlying these methods is that when two
datasets exhibit similarity based on a specific distribution
divergence metric, they lead to comparably trained mod-
els [26]. DM typically employs parametric encoders for
projecting data onto a lower dimensional latent space and
approximates the Maximum Mean Discrepancy for assess-
ing distribution mismatch [41, 45, 53, 55, 58, 62]. Notably,
DM avoids reliance on model parameters and bi-level op-
timization, diverging from gradient and trajectory match-
ing approaches. This distinction reduces memory require-
ments. However, the empirical evidence so far suggests that
DM may underperform compared to the other approaches
[26, 55].

3 Preliminaries
We introduce the fundamental concepts of Dataset Distilla-
tion and Wasserstein barycenters that form the foundation
of our approach.

3.1 Dataset Distillation
Notations Let T = {(xi, yi)}ni=1 be the real training
set that contains n distinct input–label pairs and let µT

be its empirical distribution, i.e. xi → µT . Similarly, let
S = {(x̃j , ỹj)}mj=1 be the synthetic set with at most m dis-
tinct pairs and empirical distribution µS . Each data point
lies in an ambient space ! = Rd. Denote by X ↑ Rn→d

and X̃ ↑ Rm→d the matrices that stack the unique positions
in T and S , respectively. The probability mass associated
with the synthetic samples is stored in the weight vector
w ↑ ”m↑1, where wj is the weight of x̃j and ”m↑1 is the
(m ↓ 1)–simplex. Consequently, we can compactly write
the synthetic dataset as the tuple S = (X̃,w). Throughout,
ω(x, y;ω) denotes the loss incurred by a model with param-
eters ω on a single sample (x, y).

Dataset Distillation (DD) aims at finding the optimal
synthetic set S↓ for a given T by solving a bi-level opti-

mization problem as below:

S
↓ = argmin

S

E
(x,y)↔µT

ω (x, y;ω(S)) (1)

subject to ω(S) = argmin
ω

m∑

i=1

ω(x̃i, ỹi;ω). (2)

Directly solving the bi-level optimization problem poses
significant challenges. As a viable alternative, a prevalent
approach [35, 45, 53, 60] seeks to align the distribution of
the synthetic dataset with that of the real dataset. This strat-
egy is based on the assumption that the optimal synthetic

dataset should be the one that is distributionally closest to

the real dataset subject to a fixed number of synthetic data

points. We label this as Assumption A1. While recent
methods [45, 59, 60] grounded on this premise have shown
promising empirical results, they often struggle to balance
strong performance with scalability to large datasets like
ImageNet-1K.

3.2 Wasserstein barycenters
Our method computes representative features using Wasser-
stein barycenters [1], extending the concept of “averaging”
to distributions while respecting their geometric properties.
This approach relies on the Wasserstein distance to quantify
distributional differences.

Definition 1 (Wasserstein distance). Let (!, D) be a
metric space and denote by P (!) the set of Borel proba-
bility measures on !. For µ, ε ↑ P (!) the p-Wasserstein
distance is

Wp(µ, ε) :=
(

inf
ω↗!(µ,ε)

∫

”2

D(x, y)p dϑ(x, y)
)1/p

, (3)

where #(µ, ε) is the set of couplings (joint distributions
with the prescribed marginals). Intuitively, Wp measures
the minimum “work”—mass times distance—required to
morph µ into ε; hence it is also known as the earth–mover
distance.

Definition 2 (Wasserstein barycenter). Given N distri-
butions {εi}Ni=1 ↔ P (!), their p-Wasserstein barycenter is
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any solution of

argmin
µ↗P (”)

f(µ) :=
1

N

N∑

i=1

W
p

p
(µ, εi). (4)

The barycenter can be viewed as the “center of mass” of the
input distributions: it minimizes the average transportation
cost (squared when p=2) to all ui.

4 Method
The Wasserstein distance offers an intuitive and geometri-
cally meaningful way to quantify differences between dis-
tributions, as demonstrated by its superior performance in
preserving structural characteristics (Fig. 2). We leverage
these strengths to bridge the performance gap in dataset dis-
tillation and potentially surpass current state-of-the-art tech-
niques. This section establishes the connection between
Wasserstein barycenters and dataset distillation, presents
the efficient computation approach, and introduces our
complete method design.

4.1 Wasserstein barycenter in dataset distillation
We begin by representing both real and synthetic datasets
as empirical distributions. For the real dataset T , assuming
no prior knowledge and no repetitive samples, we adopt a
discrete uniform distribution over the observed data points,
µT = 1

n

∑
n

i=1 ϖxi , where ϖxi represents the Dirac delta
function centered at position xi. This function is zero ev-
erywhere except at xi and integrates to one.

For the synthetic dataset S , we define its empirical dis-
tribution as: µS =

∑
m

j=1 wjϖx̃j , where the weights satisfy
wj ↗ 0 and

∑
m

j=1 wj = 1. Learning these probabilities
provides additional flexibility in approximating the real dis-
tribution.

Following Assumption A1 and our choice of the Wasser-
stein metric, the optimal synthetic dataset S↓ should gener-
ate an empirical distribution that minimizes the Wasserstein
distance to the real data distribution:

µS→ = µ
↓

S
= argmin

µS↗Pm

W
p

p
(µS , µT ), (5)

where µS→ is the empirical distribution of the optimal
dataset, µ↓

S
is the optimal empirical distribution, and Pm ↘

P (!) denotes the set of distributions supported on at most
m atoms in Rd. This is a special case of (4) with N = 1.
Since the synthetic set S is fully specified by positions X̃
and weights w, we can find the optimal set S↓ by minimiz-
ing the below function:

f(X̃,w) := W
p

p
(µS , µT ). (6)

4.2 Computing the Wasserstein barycenter
To efficiently optimize f(X̃,w), we adapt the barycen-
ter computation method from [8], employing an alternat-
ing optimization approach that iterates between optimizing

weights and positions. This approach leverages the convex
structure of the optimal transport problem to ensure compu-
tational efficiency.

Weight optimization with fixed positions With fixed
synthetic data positions X̃, we first construct a cost matrix
C ↑ Rn→m where each cij = ≃x̃j ↓ xi≃

2 represents the
squared Euclidean distance between points in the two dis-
tributions. The Wasserstein distance calculation transforms
into finding the optimal transport plan T ↑ Rn→m, where
each tij represents the mass moved from position i to posi-
tion j:

min
T

⇐C,T⇒F subject to
m∑

j=1

tij =
1

n
, ⇑i, (7)

n∑

i=1

tij = wj , ⇑j, tij ↗ 0, ⇑i, j, (8)

where ⇐·, ·⇒F is the Frobenius inner product. The dual for-
mulation introduces variables ϱi and ςj that correspond to
the marginal constraints:

max
ϑ,ϖ




n∑

i=1

ϱi

n
+

m∑

j=1

wjςj



 (9)

subject to ϱi + ςj ⇓ cij , ⇑i, j. (10)
Through strong duality [2], the optimal dual variables

ςj provide the subgradient of the objective with respect to
w. This elegant property allows us to efficiently optimize
weights using projected subgradient descent, guiding mass
toward locations that minimize transportation cost.

Position optimization with fixed weights With w fixed,
the objective is quadratic in each x̃j ; its (classical) Hessian
is ⇔

2
x̃j
f = 2wjI. Performing one Newton step therefore

amounts to

x̃j ↖ x̃j ↓
1

wj

n∑

i=1

tij(x̃j ↓ xi). (11)

Intuitively, this update pulls each synthetic point toward real
data points based on the optimal transport plan, with the
“pull strength” weighted by the transport allocation. Points
with higher transport allocation exert stronger influence on
the synthetic positions.

By alternating between these two optimization steps, we
converge to a local optimum that represents the Wasserstein
barycenter of the real data distribution. Remarkably, we find
that even a small number of iterations produces high-quality
synthetic data. Further details on this method are available
in Appendix C.

4.3 Barycenter Matching in the Feature Space
Our above discussion shows that dataset distillation can be
cast as the problem of finding the barycenter of the real data
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Figure 3. Diagram of our WMDD method. Real dataset T and synthetic dataset S pass through the feature network f to obtain features.
The features of the real dataset are used to compute the Wasserstein Barycenter. The synthetic dataset is optimized via feature matching
and loss computation (combining feature loss and BN regularization) to align with the Barycenter, generating high-quality synthetic data
for efficient model training.

Algorithm 1: Wasserstein Metric-based Dataset
Distillation (WMDD)

Input: Real dataset T = {xk,i}
k=1,...,g
i=1,...,nk

, teacher
model f with feature extractor fe (before the
linear classifier), number of iterations K

1 Train model f on T ;
2 for each class k do
3 for each sample i do
4 Perform forward pass: f(xk,i);
5 Store feature: fe(xk,i);

6 Compute BNmean
k,l

, BNvar
k,l

;

7 for each class k do
8 {bk,j}j=1,...,mk , {wk,j}j=1,...,mk ↖

barycenter ({fe(xk,i)}i=1,...,nk), according to
Algorithm 2 (in Appendix D) with K

iterations;
9 Optimize {x̃k,j}j=1,...,mk according to Eq. 15;

Output: Synthetic dataset S with positions
{x̃k,j}

k=1,...,g
j=1,...,mk

and weights
{wk,j}

k=1,...,g
j=1,...,mk

.

distribution, and there is an efficient approach for comput-
ing this barycenter. However, for high dimensional data
such as images, it is beneficial to use some prior to learning
synthetic images that encode meaningful information from
the real dataset. Inspired by recent works [51, 53], we use
a pretrained classifier to embed the images into the feature
space, in which we compute the Wasserstein barycenter to
learn synthetic images. This subsection details our concrete
algorithm design, which is illustrated in Fig. 3, and summa-
rized in Algorithm 1.

Suppose the real dataset T has g classes, with nk im-
ages for class k (hence n =

∑
g

k=1 nk). Let us re-index
the samples by classes and denote the training set as T =
{xk,i}

k=1,...,g
i=1,...,nk

. Suppose that we want to distill mk images

for class k. Denote the synthetic set S = {x̃k,j}
k=1,...,g
j=1,...,mk

,
where mk ↙ nk for all k.

First, we employ the pretrained model to extract features
for all samples within each class in the original dataset T .
More specifically, we use the pretrained model f to obtain
the feature set {fe(xk,i)}i=1,...,nk for each class k, where
fe(·) returns the representation immediately before the lin-
ear classifier.

Next, we compute the Wasserstein barycenter for each
feature set computed in the previous step. We treat the fea-
ture set for each class as an empirical distribution, and adapt
the algorithm in [8] to compute the free support barycenters
with mk points for class k, denoted as {bk,j}j=1,...,mk , and
the associated weights {wk,j}j=1,...,mk , which are used to
weight the synthetic images.

Then, in the main distillation process, we use iterative
gradient descent to learn the positions of synthetic images
by jointly considering two objectives. We match the fea-
tures of the synthetic images with the corresponding data
points in the learned barycenter:

Lfeature(X̃) =
g∑

k=1

mk∑

j=1

≃fe(x̃k,j)↓ bk,j≃
2
2, (12)

where fe(·) is the function to compute features of the last
layer.

To further leverage the capability of the pretrained model
in aligning the distributions, previous DD works [51, 53]
have used BatchNorm statistics of the real data to regular-
ize synthetic images. However, the gradient on each syn-
thetic sample for optimizing global BN alignment in a batch
of mixed classes may not synergize well with the gradient
on the same sample for matching its class-specific objective
like the CE loss. Intuitively, the BN statistics within dif-
ferent data classes may vary, and simply encouraging align-
ment of global BN statistics does not provide enough infor-
mation about how synthetic samples from different classes
should contribute differently to the global BN statistics, po-
tentially leading to suboptimal distillation quality.
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Methods ImageNette Tiny ImageNet ImageNet-1K ImageNet-21K

1 10 50 100 1 10 50 100 1 10 50 100 10 20
Random [60] 23.5 ± 4.8 47.7 ± 2.4 - - 1.5 ± 0.1 6.0 ± 0.8 16.8 ± 1.8 - 0.5 ± 0.1 3.6 ± 0.1 15.3 ± 2.3 - - -
DM [60] 32.8 ± 0.5 58.1 ± 0.3 - - 3.9 ± 0.2 12.9 ± 0.4 24.1 ± 0.3 - 1.5 ± 0.1 - - - - -
MTT [3] 47.7 ± 0.9 63.0 ± 1.3 - - 8.8 ± 0.3 23.2 ± 0.2 28.0 ± 0.3 - - - - - - -
DataDAM [35] 34.7 ± 0.9 59.4 ± 0.4 - - 8.3 ± 0.4 18.7 ± 0.3 28.7 ± 0.3 - 2.0 ± 0.1 6.3 ± 0.0 15.5 ± 0.2 - - -
SRe2L [53] 20.6† ± 0.3 54.2† ± 0.4 80.4† ± 0.4 85.9†± 0.2 - - 41.1 ± 0.4 49.7 ± 0.3 - 21.3 ± 0.6 46.8 ± 0.2 52.8 ± 0.4 18.5 ± 0.2 21.8 ± 0.1

CDA‡ [52] - - - - - - 48.7 53.2 - - 53.5 58.0 22.6 ± 0.2 26.4 ± 0.1

G-VBSM [36] - - - - - - 47.6 ± 0.3 51.0 ± 0.4 - 31.4 ± 0.5 51.8 ± 0.4 55.7 ± 0.4 - -
SCDD [63] - - - - - 31.6 ± 0.1 45.9 ± 0.2 - - 32.1 ± 0.2 53.1 ± 0.1 57.9 ± 0.1 - -
WMDD 40.2 ± 0.6 64.8 ± 0.4 83.5 ± 0.3 87.1 ± 0.3 7.6 ± 0.2 41.8 ± 0.1 59.4 ± 0.5 61.0 ± 0.3 3.2 ± 0.3 38.2 ± 0.2 57.6 ± 0.5 60.7 ± 0.2 24.5 ± 0.1 29.3 ± 0.2

Table 1. Comparison of various dataset distillation methods. We used the reported results for prior methods when available. We replicated
the result of SRe2L on the ImageNette dataset, marked by †. Results of CDA did not include error bars, and the row is marked by ‡.

Thus, to better capture the intra-class data distribution,
we propose the Per-Class BatchNorm (PCBN) regulariza-
tion method, using BatchNorm statistics of the real data
within each class separately to regularize synthetic data.
While conceptually similar to previous BatchNorm vari-
ants for feature distribution heterogeneity [17] and long-tail
problems [5], it is fundamentally different in technical de-
sign. Specifically, we regularize synthetic images with

LBN(X̃) =
g∑

k=1

L∑

l=1

(
≃Amean({fl(x̃k,j)}

mk
j=1, {wk,j}

mk
j=1)↓ BNmean

k,l
≃
2
2

+ ≃Avar({fl(x̃k,j)}
mk
j=1, {wk,j}

mk
j=1)↓ BNvar

k,l
≃
2
2

)
.

(13)
Here, L is the number of BatchNorm layers, and fl(·) is
the function that computes the feature map that feeds the
l-th BatchNorm layer. BN

mean
k,l

and BN
var
k,l

denote the per-
channel mean and variance of class k, obtained from one
pass over the real data. The weighted aggregate opera-
tors Amean and Avar compute statistics of synthetic samples
while respecting the optimal transport weights. For feature
tensor F with spatial dimensions H∝U (height and width),
these operators compute channel-wise statistics:

Amean(F,w)c :=
1

HU
∑

mk

j=1 wk,j

mk∑

j=1

wk,j

H∑

h=1

U∑

u=1

Fj,c,h,u,

Avar(F,w)c :=
1

HU
∑

mk

j=1 wk,j

mk∑

j=1

wk,j

H∑

h=1

U∑

u=1

(
Fj,c,h,u ↓Amean(F,w)c

)2
.

(14)
Here, Fj,c,h,u denotes the activation at position (h, u) in
channel c for synthetic sample j. Each expression computes
statistics for channel c; concatenating across all channels
yields the complete mean and variance vectors.

Combining these objectives above, we employ the below
loss function for learning the synthetic data:

L(X̃) = Lfeature(X̃) + φLBN(X̃), (15)

where φ is a regularization coefficient. The synthetic set
S therefore comprises the positions X̃ and their associated
weights {wk,j}

mk
j=1, which are used in the FKD stage fol-

lowing previous DD works [36, 51, 53].

5 Experiments
5.1 Experiment Setup
We systematically evaluated our method on three high-
resolution datasets: ImageNette [20], Tiny ImageNet [23],
and ImageNet-1K [9]. We tested synthetic image budgets
of 1, 10, 50, and 100 images per class (IPC). For each
dataset, we trained a ResNet-18 model [19] on the real
training set, distilled the dataset using our method, then
trained a ResNet-18 model from scratch on the synthetic
data. We measured performance using the top-1 accuracy
of the trained model on the validation set. Results report
the mean and standard deviation from 3 repeated runs. Our
barycenter algorithm implementation used the Python Op-
timal Transport library [14]. We maintained most hyper-
parameter settings from [53] but adjusted our loss terms’
regularization coefficient φ. For barycenter computation
(Algorithm 1), we found K = 10 iterations sufficient for
high-performance synthetic data generation. Increasing K

yielded only marginal improvements, so we kept K = 10
to balance efficiency and performance. We provide full im-
plementation details in Appendix E.

5.2 Comparison with Other Methods
With this experimental setup, we now evaluate how our
Wasserstein metric-based approach performs against exist-
ing dataset distillation methods.

We compared our method against several baselines and
recent strong dataset distillation (DD) approaches, includ-
ing distribution matching-based methods like DataDAM
[35], SRe2L [53], CDA [52], G-VBSM [36], and SCDD
[63], selected for their scalability to large, high-resolution
datasets. Table 1 presents our experimental results along-
side reported results from these methods under identical
settings. Our method consistently achieved state-of-the-
art performance in most settings across different datasets.
Compared to MTT [3] and DataDAM [35], which show
good performance in fewer IPC settings, the performance
of our method increases more rapidly with the number of
synthetic images. Notably, in the 100 IPC setting, our
method achieved top-1 accuracies of 87.1%, 61.0%, and
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60.7% across the three datasets, respectively. These results
approach those of pretrained classifiers (89.9%, 63.5%, and
63.1%) trained on full datasets. This superior performance
highlights the effectiveness and robustness of our approach
in achieving higher accuracy across different datasets. Our
method is scalable to even larger datasets. We demonstrate
the scalability of WMDD on ImageNet-21K with 10 and 20
IPC, where our method consistently outperforms CDA and
SRe2L by a large margin.

5.3 Cross-architecture Generalization
Beyond achieving strong performance on the distillation ar-
chitecture, a critical test for any dataset distillation method
is how well the synthetic data generalizes to different model
architectures [4, 25]. For this aim, we conducted experi-
ments training various randomly initialized models on syn-
thetic data generated via our ResNet-18-based method. To
prevent overfitting on the small synthetic data while ensur-
ing fair comparison, we held out 20% of the distilled data
as validation set to find the best training epoch for each ex-
periment. We report the performance of different evaluation
models, ResNet-18, ResNet-50, ResNet-101 [19], ViT-Tiny,
and ViT-Small [12], in the 50 IPC setting on ImageNet-1K.
The results in Table 2 show that our method demonstrates
stronger cross-architecture transfer than previous methods.
Our synthetic data generalizes well across the ResNet fam-
ily, where the performance increases with the model capac-
ity. The performance on the vision transformers is relatively
lower, probably due to their data-hungry property.

Method Res18 Res50 Res101 ViT-T ViT-S

SRe2L 48.02 55.61 60.86 16.56 15.75
CDA 54.43 60.79 61.74 31.22 32.97

G-VBSM 52.28 59.08 59.30 30.30 30.83
WMDD (Ours) 57.83 61.22 62.57 34.25 34.87

Table 2. Cross-architecture generalization performance on
ImageNet-1K in 50 IPC setting. We used ResNet-18 for
distillation and different architectures for evaluation: ResNet-
{18,50,101}, ViT-Tiny and ViT-Small with a patch size of 16.

5.4 Ablation Study
To understand the individual contributions of our key design
choices, we conducted an ablation study examining which
factors drive our method’s improved performance. We ex-
amined two key factors: whether to use our Wasserstein
barycenter loss (Eq. 12) or the cross-entropy loss [52, 53]
for feature matching; and whether to use standard Batch-
Norm statistics or our PCBN method for regularization. We
evaluated these factors across different datasets using the
10 IPC setting, with results shown in Table 3. As discussed
in our method design (Section 4.3), standard BN computes

statistics from all-class samples, which does not synergize
well with the class-specific matching objective, leading to
mixed results with the Wasserstein loss. In contrast, our
PCBN method significantly improves performance on all
datasets by capturing intra-class distributions. When prop-
erly paired with PCBN, our Wasserstein loss yields further
significant gains across all datasets. As our WMDD method
already achieves high performance (with our 100 IPC re-
sults approaching those of full dataset training), these con-
sistent improvements confirm the effectiveness of our de-
sign choices.

Lfeature Lreg ImageNette Tiny ImageNet ImageNet-1K

Wass. PCBN 64.7± 0.2 41.8± 0.1 38.1± 0.1

CE PCBN 63.5± 0.1 41.0± 0.2 36.4± 0.2

Wass. BN 60.7± 0.2 36.6± 0.1 26.8± 0.3

CE BN 54.2± 0.1 38.0± 0.3 35.9± 0.2

Table 3. Ablation study on two variables: whether to use our
Wasserstein (Wass.) loss or the cross-entropy (CE) loss in previ-
ous DD works [52, 53] for feature matching (Lfeature), and whether
to use standard BatchNorm (BN) or our PCBN method for regu-
larization (Lreg). We report the mean and standard error of perfor-
mance on 5 repetitive runs.

Additionally, we find that directly replacing the Wasser-
stein metric in our method with MMD results in near-
random performance on Tiny-ImageNet and ImageNet-1K.
This motivates a deeper analysis of different distribution
metrics, which we provide below.

5.5 Comparison with Alternative Metrics
The MMD Metric. Table 1 shows that our method using
the Wasserstein metric outperforms all previous DD meth-
ods, including MMD-based methods such as [60]. A more
direct comparison between the two distribution metrics is
tricky, because existing MMD-based methods require fea-
ture spaces from dozens of randomly initialized models,
which is incompatible with our algorithm using a single
pretrained model. Simply replacing the Wasserstein met-
ric in our method with MMD results in near-random perfor-
mance. To try to make a fair comparison, we removed en-
gineering tricks from DD methods using both metrics and
evaluated their vanilla versions on Tiny-ImageNet. Specif-
ically, we compared our method with a seminal MMD-
based method [60] on Tiny-ImageNet, and removed all en-
gineering tricks including fancy augmentations (e.g., rota-
tion, color jitter, and mixup) used in both methods and the
FKD [37] used in our method. According to the result in
Figure 4, the Wasserstein metric yields better synthetic data
in all settings. In 1 IPC setting, the MMD metric yields
random performance, likely due to empirical approximation
errors and its focus on feature means rather than their geo-
metric properties. In Appendix B, we provide a possible
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theoretical explanation for the superior performance of the
Wasserstein metric by combining error bound analysis with
the practicality of existing MMD-based methods.

Figure 4. Performance comparison of MMD distance vs. the
Wasserstein distance. The evaluation model is ResNet18.

The Sliced Wasserstein Distance. Beyond MMD, we also
examined the Sliced Wasserstein (SW) distance [32], which
has shown promise in reducing computational cost while
retaining key aspects of Wasserstein geometry. In Table 4,
we compare our Wasserstein barycenters to those computed
with SW and show that the latter achieves comparable ac-
curacy with a modest increase in speed. However, our full
barycenter computation is already highly efficient, account-
ing for only a small fraction of the overall runtime.

Method Accuracy (%) Time (hour)

IPC 1 10 50 1 10 50

WMDD (Ours) 7.6 41.8 59.4 0.71 2.30 5.27
Sliced Wass. 7.4 41.1 58.3 0.68 2.23 5.16

Table 4. Performance and efficiency comparison with Sliced Wass.
Distance on Tiny-ImageNet.

5.6 Hyperparameter Sensitivity
We analyze the sensitivity of key hyperparameters below.
Regularization Strength. To analyze how the regulariza-
tion term affects our method (Eq. 15), we tested φ values
ranging from 10↑1 to 103 and evaluated performance on
three datasets in 10 IPC setting. Figure 5a shows that small
φ result in lower performance across all datasets. Perfor-
mance improves as φ increases, stabilizing around a thresh-
old of approximately 10.0. This demonstrates that while
regularization enhances dataset quality, our method remains
robust to specific φ values. Figure 5b illustrates the regular-
ization effect on synthetic images of the same class. When φ

is too small, synthetic images exhibit high-frequency com-
ponents, suggesting overfitting to model weights and archi-
tecture. In contrast, sufficiently large φ values produce syn-
thetic images that better align with human perception.
Features from Different Layers. Beyond regularization
strength, we also examined which network layer provides
the most effective features for our Wasserstein barycenter
computation. Table 5 shows the performance with features
from different layers of ResNet-18 on Tiny-ImageNet. The
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(a) Effect of ω on WMDD performance on the three datasets.

ω = 0.1 ω = 1

ω = 100 ω = 1000

(b) Visualization of synthetic images from Imagenet-1K
of classes indigo bird (left) and tiger shark (right), with
different ω.

Figure 5. Effect of regularization strength ω on our method.

accuracy increases and then stabilizes by Layer 16, indicat-
ing WMDD leverages high-level, abstract representations.

Layer 5 10 15 16 17 18

Acc (%) 2.4 11.3 37.6 41.1 41.6 41.8

Table 5. Performance of WMDD using features from different
layers of the backbone.

6 Conclusion
This work introduces a new dataset distillation approach
leveraging Wasserstein metrics, grounded in optimal trans-
port theory, to achieve more precise distribution match-
ing. Our method learns synthetic datasets by matching the
Wasserstein barycenter of the data distribution in the fea-
ture space of pretrained models, combined with a simple
regularization technique to leverage the prior knowledge in
these models. Through empirical testing, our approach has
demonstrated impressive performance across a variety of
benchmarks, highlighting its reliability and practical appli-
cability in diverse scenarios. Findings from our controlled
experiments corroborate the utility of Wasserstein metrics
for capturing the essence of data distributions. Future work
will aim to explore the integration of advanced metrics with
generative methods, aligning with the broader goal of ad-
vancing data efficiency in computer vision.
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