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Abstract

Real-world data often exhibit long-tailed distributions,
which degrade data quality and pose challenges for deep
learning. To address this issue, knowledge transfer from
head classes to tail classes has been shown to effectively
mitigate feature sparsity. However, existing methods often
overlook class differences, leading to suboptimal knowl-
edge transfer. While the class space exhibits a label hi-
erarchy, similarity relationships beyond hierarchically re-
lated categories remain underexplored. Considering the
human ability to process visual perception problems in a
multi-granularity manner guided by semantics, this pa-
per presents a novel semantic knowledge-driven contrastive
learning method. Inspired by the implicit knowledge em-
bedded in large language models, the proposed LLM-based
label semantic generation method overcomes the limitations
of the label hierarchy. Additionally, a semantic knowledge
graph is constructed based on the extended label infor-
mation to guide representation learning. This enables the
model to dynamically identify relevant classes for learn-
ing and facilitates multi-granularity knowledge transfer be-
tween similar categories. Experiments on long-tail bench-
mark datasets, including CIFAR-10-LT, CIFAR-100-LT, and
ImageNet-LT, demonstrate that the proposed method signif-
icantly improves the accuracy of tail classes and enhances
overall performance without compromising the accuracy of
head classes.

1. Introduction

In recent years, deep learning [18, 33] has achieved re-
markable progress in computer vision tasks [27, 45, 49].
These tasks typically require large amounts of data and
a balanced distribution across classes, and this heavy re-
liance on data limits the development of deep learning.
However, real-world datasets are often imbalanced, with a
few classes containing an abundance of samples (i.e. head
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Figure 1. An example label hierarchy of CIFAR-100-LT. The
coarse-grained class “Non-insect invertebrates” is the parent class
of “Crab”. Meanwhile, “Turtle” and “Snail” do not belong to the
same subtree, but they all share semantic similarities.

classes), while other classes have only a limited number
(i.e. tail classes). The long-tailed distribution of data often
leads to deep learning models being dominated by the per-
formance of head classes, while the learning of tail classes
remains severely underdeveloped. As a result, data imbal-
ance presents novel challenges in training deep models ca-
pable of making accurate and reliable decisions between
different classes. To address the issue of unbalanced data,
various methods have been explored, mainly focusing on
re-sampling the training data [12, 31] and re-weighting the
loss of different classes [8, 15] to allocate more attention to
minority class samples.

However, compared to earlier approaches, research on
knowledge transfer for long-tailed recognition remains rel-
atively limited. The core objective of knowledge transfer
is to transfer the knowledge learned from the substantial
data of the head classes to the tail classes. Existing methods
may fail to account for class differences, leading to ineffec-
tive knowledge transfer. For instance, in the case where the
head class is “dog” and the tail class is “airplane”, transfer-
ring knowledge from the head class to the tail class would
be ineffective.

When addressing visual perception challenges, humans
employ a hierarchical framework to associate each ob-
ject with concepts of varying granularity, thereby enabling
learning and reasoning based on multi-granularity seman-
tic structures. In fact, the class space inherently contains
multi-granularity relationships, where similar fine-grained
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categories can be organized into coarser-grained concepts
based on semantic dependencies between classes in Word-
Net, thus forming a label hierarchy. Fig. 1 illustrates an
example label hierarchy of CIFAR-100-LT dataset with an
imbalance factor of 100. With the help of label hierarchy,
Zhao et al. [52] proposed a hierarchical knowledge transfer
method from coarse-grained to fine-grained classes.

However, the label hierarchy constructed based on Word-
Net is fixed. We observe that certain categories across dif-
ferent subtrees exhibit semantic similarities. For instance,
“Snail” and “Turtle” share characteristics such as possess-
ing a protective shell and moving slowly, as both can retract
into their shells for defense. Therefore, this study intro-
duces a novel perspective by focusing on the implicit simi-
larity relationships mentioned above, and proposes a novel
long-tailed classification method based on multi-granularity
knowledge transfer. Humans can leverage prior knowledge
to infer rare categories. For example, recognizing that air-
planes and birds share similarities allows us to infer certain
characteristics of airplanes.

Inspired by this, tail classes can borrow semantic trans-
formations from other classes, even if they do not belong
to the same coarse-grained category or are not at the same
hierarchical level. In this paper, due to the limited seman-
tic information contained in category labels, large language
models (LLMs) (e.g., ChatGPT [47], DeepSeek [11]) are
leveraged to enrich the label information as prior knowl-
edge, thereby enhancing semantic knowledge generation
and guiding the representation learning process. Due to
their wealth of potential knowledge, LLMs serve as a
teacher in our study, providing the model with effective
prior knowledge. Our framework aims to leverage the ca-
pabilities of large language models to generate customized
and diverse descriptions for each level. The generated de-
scriptions are fed into a sentence-transformer model to con-
struct a semantic similarity matrix, which captures relation-
ships both within and across hierarchical levels, enabling
the generation of a multi-granularity semantic knowledge
graph.

The key to addressing the long-tailed problem lies in
discovering and encoding the relationships between dif-
ferent classes. As shown in Fig. 2, we implement se-
mantic knowledge-driven contrastive learning (SKCL) in
a two-stage framework composed of a contrastive learn-
ing branch and a classification branch to better integrate
the obtained semantic similarity relationships into the rep-
resentation space. For each class, the Top-K classes are dy-
namically identified based on the multi-granularity seman-
tic knowledge graph, which is constructed through lever-
aging LLMs. The proposed multi-granularity knowledge
transfer constructs prototypes for each level, encouraging
sample representations to be more closely with their corre-
sponding similar category prototypes. This process facili-

tates both horizontal and vertical knowledge transfer, which
is particularly crucial for representation learning.

Our main contributions are summarized as follows: (1)
The proposed approach leverages the capabilities of large
language models to enrich label semantics, which is uti-
lized to construct a multi-granularity semantic knowledge
graph as prior knowledge. (2) To encode category similar-
ity, the proposed multi-granularity knowledge transfer con-
structs prototypes at different levels, enabling contrastive
learning driven by semantic knowledge. (3) Extensive ex-
periments on widely used long-tailed datasets demonstrate
that our method improves recognition for both tail and head
classes while achieving competitive overall performance.

2. Related Work

2.1. Long-tailed Recognition
Re-sampling is a fundamental approach in deep learning
that balances data by over-sampling tail classes [31, 32] or
under-sampling head classes [1, 12]. Re-weighting meth-
ods [8, 15] assign different weights to classes, enhanc-
ing the model’s focus on tail samples. However, both ap-
proaches may lead to overfitting of tail classes [3]. Re-
cently, decoupling methods [19, 53] have proven effective
in long-tailed learning by separating representation learn-
ing from classifier learning, mitigating the negative impact
of re-balancing on feature learning. To further enhance tail
class diversity, data augmentation techniques have been ex-
plored [14, 29]. For instance, ECS-SC [14] leverages multi-
granularity knowledge to identify semantic relationships,
utilizing head classes to enrich tail classes. Unlike these
approaches, our method guides representation learning by
exploring latent class similarity relationships.

2.2. Knowledge Transfer
Due to the abundance of head class samples, recent stud-
ies [5, 26, 50, 52] have explored knowledge transfer from
head to tail classes to mitigate the sparse representations of
tail classes. Liu et al. [26] propose a feature cloud represen-
tation, where the intra-class distribution learned from head
classes enhances the variability of tail class features. Chu et
al. [5] leverage class activation maps to disentangle class-
specific and class-generic features, augmenting tail-class
features by integrating class-specific features with generic
ones from head classes. However, these methods overlook
relationships between classes, potentially introducing irrel-
evant knowledge. To address this, HCKC [50] incorpo-
rates hierarchical relationships as auxiliary information and
transfers relevant knowledge through a hierarchical convo-
lutional neural network. Furthermore, MGKT-MFF [52]
employs a multi-scale feature fusion network to extract and
utilize rich feature information, enhancing multi-granularity
knowledge transfer. Unlike prior works, our approach
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Prompt

Please use the Template y to generate a 
description for class ..., ensuring the 
description does not exceed 300 words.

"A description of the class y, {based 
on its appearance characteristics} 
and {behavioral traits or functional 
features}."

Template y:

LLMs

...

Snake
Turtle
Dinosaur
Lizard
Crocodile

Extended 
Descriptions List

The turtle has a hard shell on its 
back and belly, and can retract its 
head into the shell, ...
...

The Snail class has a spiral shell 
that serves as protection. Its body 
is moist and smooth, ...

...

Long-tailed
dataset

Head Class

Tail Class

...

�����

�1

��

......

...
...
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Bee
Beetle
Butterfly
Caterpillar
Cockroach

Crab
Lobster
Snail
Spider
Worm

Figure 2. An overview of the proposed framework. We first utilize LLMs to generate a unified extended description list, which enables the
model uncover implicit category similarities beyond the label hierarchy and construct a semantic similarity matrix. Semantic knowledge-
driven contrastive learning is employed to establish a semantic space for multi-granularity knowledge transfer, while the weights of linear
classifiers at different levels are transformed non-linearly through an MLP to obtain representations of multi-granularity prototypes.

aims to improve tail class performance while ensuring a
balanced enhancement of head class performance through
multi-granularity transfer learning.

2.3. Contrastive Learning

Contrastive learning, which aggregates similar samples
while excluding dissimilar ones, has been widely applied
to feature representation learning across various tasks [23,
34, 46]. In long-tailed recognition, SSP [46] demonstrates
that class imbalance can be alleviated through both semi-
supervised and self-supervised approaches. Recently, su-
pervised contrastive learning (SCL) [21] has been applied to
image classification and long-tailed recognition, effectively
combining the strengths of supervised and contrastive learn-
ing methods. For instance, Hybrid-SC and Hybrid-PSC [40]
employ a two-branch network, where one branch utilizes
supervised contrastive learning to enhance feature represen-
tations, while the other reduces classifier bias. However,
due to the imbalanced data distribution, minority class sam-
ples often exhibit poor separability in feature space. To ad-
dress this, TSC [23] enforces a uniform distribution of class
features, while BCL [55] leverages class prototypes as ad-
ditional samples to enhance long-tailed recognition.

2.4. Large Language Models

Recently, large language models (e.g., BERT [9], Chat-
GPT [47], DeepSeek [11]) have been explored to address
long-tailed challenges from a semantic perspective. LLMs
serve as vast knowledge repositories [10]. Researchers have
investigated their generative capabilities to mitigate long-
tailed issues. For instance, LLM-AutoDA [41] discovers
effective data augmentation strategies for imbalanced dis-
tributions, while LTGC [51] generates diverse and accurate
tail data. Despite these advancements, practical deploy-
ment remains challenging due to the high computational
cost and extensive training time. In this work, we propose
a lightweight approach to harness LLMs’ latent knowledge,
enabling compact visual models to better understand cate-
gory relationships and addressing long-tailed challenges.

3. Methodology

3.1. Problem Setting

In the long-tailed recognition task, our goal is to cap-
ture semantic similarities between categories to facilitate
multi-granularity knowledge transfer and enrich the seman-
tic knowledge of both head and tail classes through rep-
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resentation learning. Given a long-tailed training dataset
D = {(xi, yi)}Ni=1, where xi denotes a sample and yi ∈ Y
represents its corresponding label. When the input image
xi is processed by a deep feature extractor fθ(·), the cor-
responding representation zi is extracted as zi = fθ(xi).
Consequently, the sample xi is mapped to a feature space
and the final prediction is given by the linear classifier. The
quality of these representations plays a crucial role in clas-
sification accuracy. Therefore, our objective is to learn an
effective encoder fθ(·) to enhance long-tailed learning.

3.2. LLM-based Label Semantic Generation

Real-world data often exhibit long-tailed distributions and
inherently possess a structure known as label hierarchy.
However, a significant limitation is that label hierarchy de-
rived from WordNet is static and contains restricted se-
mantic information. Intuitively, the different categories ex-
hibit varying degrees of similarity. We observe that fine-
grained categories under different coarse-grained categories
may have latent similarities, while fine-grained categories
under the same coarse-grained category also exhibit vary-
ing levels of similarity. For example, although “turtle”
and “crocodile” belong to the category “reptiles”, the class
“turtle” actually exhibits greater semantic similarity with
“snail”, which belongs to the category “non-insect inverte-
brates”. Both share characteristics such as a hard shell and a
slow-moving, ground-dwelling nature, which contribute to
their greater similarity in appearance and behavior.

To capture the implicit similarity relationships among
categories in the label hierarchy, semantic knowledge of
category labels can be utilized. However, the semantic
knowledge of category labels is inherently limited. There-
fore, we leverage the extensive common-sense knowledge
of large language models (LLMs), such as ChatGPT [47],
to generate textual descriptions based on existing labels.
In this process, the responses generated by LLMs may
vary, and at times, contain redundant information. This
variability and redundancy may hinder the subsequent
extraction of similarity, as it introduces unnecessary
complexity. To unify the format of label expansion descrip-
tions, we employ predefined text templates to constrain the
responses of LLMs. Specifically, for a given class y, the
template is defined as follows: "A description of
the class [y], {based on its appearance
characteristics} and {behavioral traits
or functional features}.", which includes the
given class, its appearance characteristics, and either its
behavioral traits (for animals) or functional features (for
other objects). The response template and Prompt are input
together into the LLMs to obtain the final description:
"Please use the Template y to generate
a description for class [y], ensuring
the description does not exceed 300

Please use the Template y to generate a description 
for class Turtle and Snail, ensuring the description 
does not exceed 300 words.

"A description of the class y, {based on its appearance 
characteristics} and {behavioral traits or functional 
features}."

The turtle has a hard shell on its back and belly, and can 
retract its head into the shell. It has short limbs with 
scales or flippers. Their slow movement is one of their 
most noticeable features, as they tend to move at a steady 
pace. They live on land or in water.

Template y:

The Snail has a spiral shell that serves as protection. Its 
body is moist and smooth, with a pair of tentacles 
extending from its head, often used for sensing its 
environment. Snails are slow-moving creatures that live 
in water or on land and often retract into their shells when 
threatened.

Figure 3. An example instruction for LLMs. When text templates
and multi-granularity labels are input into LLMs, semantically rich
descriptions can be obtained, revealing similarities between cate-
gories, such as the common traits of “turtle” and “snail”.

words." To ensure fairness in the subsequent similarity
comparison, we also impose a word limit on the descrip-
tions. As shown in Fig. 3, y represents the given class
label, and the LLMs automatically generate descriptions by
incorporating the class name, appearance characteristics,
and either functional features or behavioral traits according
to Template y. This standardization ensures that the gener-
ated descriptions are consistent and comparable across all
categories.

3.3. Semantic Knowledge Graph
Transfer learning is based on the continuous and iterative
assumption that the processing mechanism of deep neural
networks is similar to that of the human brain, as both rely
on existing knowledge to recognize new concepts [17]. In-
spired by the human cognitive process when encountering
new concepts, we construct a semantic knowledge graph as
prior knowledge using an extended description list, which
incorporates rich common sense knowledge from LLMs to
assist the model in recognizing rare categories. Let us de-
fine the semantic knowledge graph G = (V,E) for the class
space, where V = {v1, v2, . . . , vn} represents the set of n
nodes, and E ⊆ V ×V denotes the set of edges. Each node
v ∈ V represents a distinct class label, and (vi, vj) ∈ E in-
dicates the semantic similarity relationship between nodes
vi and vj .

To construct the semantic knowledge graph, we first em-
ploy the pre-trained model all-MiniLM-L6-v2 [42] to gen-
erate sentence embeddings ei for class vi, where ei is a 384-
dimensional vector representing the embedding of each de-
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scription. Then, the obtained sentence embeddings are ℓ2-
normalized to ensure that all sentence embeddings lie on the
unit sphere, which guarantees fairness in similarity compu-
tation. This normalization process is expressed as follows:

êi =
ei

∥ei∥2
. (1)

In the resulting sentence embedding space, the similar-
ity between vi and vj in the semantic knowledge graph is
computed using cosine similarity:

S(i, j) = êi · êj, (2)

where S ∈ Rn×n represents the semantic similarity matrix.

3.4. Multi-granularity Knowledge Transfer
To effectively incorporate semantic similarity knowledge
into the learned embedding space, we construct a multi-
granularity prototype space. In this space, class prototypes
can serve as learnable class centers without introducing ad-
ditional computational overhead. Specifically, we apply
nonlinear mappings to the weights of linear classifiers at
different levels, and treat the resulting outputs as prototypes
for each class. Through experimental investigations within
long-tail recognition tasks, we have observed that an exces-
sive amount of prior knowledge may introduce misleading
signals, thereby hindering the training process. To mitigate
this issue, we propose transferring the existing semantic re-
lationships between categories into the model by consider-
ing only the Top-K most similar classes. Formally, for the
i-th row of the similarity matrix S, the Top-K most similar
categories are found as follows:

Ii = TopK {S(i, j),K}nj=1 , i ̸= j, (3)

where n represents the total number of nodes in the seman-
tic knowledge graph G. Thus, (vi, vj) ∈ E if and only if
j ∈ Ii.

To facilitate knowledge transfer between similar cate-
gories, we introduce multi-granularity class center repre-
sentations, i.e., multi-granularity prototypes for semantic
knowledge-driven contrastive learning. The representation
zi in semantic knowledge-driven contrastive learning is ob-
tained using a multi-layer perceptron with one hidden layer,
followed by ℓ2-normalization of zi to produce z̄i. For an
instance xi with representation z̄i in batch B, the semantic
knowledge-driven contrastive loss LSKCL is defined by the
following expression:

LSKCL(xi) = −(
1

|Mi|
∑

cq∈Mi

log
exp(z̄i · cq/τ ′)∑n
j=1 exp(z̄i · cj/τ ′)

+

1

|Pi|
×

∑
z̄p∈Pi

log
exp(z̄i · z̄p/τ)∑

l∈Y

1
|Al|

∑
z̄k∈Al

exp(z̄i · z̄k/τ)
),

(4)

where Mi represents the set consisting of the class pro-
totype corresponding to yi and the prototypes of its Top-
K most similar classes, in other words, q ∈ Iyi

∪ {yi}.
Specifically, Al denotes the set of representations z̄l be-
longing to the class l, and Pi is a subset of B that con-
tains elements from Ayi excluding z̄i. | · | denotes the
size of the set, representing the number of samples.τ ′ and τ
(τ ′ > τ > 0) are scalar temperature hyperparameters that
control the model’s sensitivity to similar samples and class
prototypes. A smaller temperature value results in a lower
tolerance for similar samples [39].

By pulling the samples of the target class closer to the
prototypes of similar classes in the representation space,
our method achieves multi-granularity knowledge transfer.
This enables knowledge to be transferred not only within
the same label level but also across different granularity lev-
els.

3.5. Framework
The overview of the proposed framework is shown in Fig. 2.
We implement SKCL in a two-stage framework, consisting
of two main components: a contrastive learning branch and
a classification branch. To build multi-granularity proto-
types, for each level i ∈ {1, 2, . . . , L} in the label hierarchy,
we train a linear classifier on the learned representations
along with the corresponding labels to obtain the classifier
Gi. Then, the cross-entropy loss function Lce,i is computed
based on the classifier’s predictions. Accordingly, the total
classification loss function can be calculated as follows:

LCE =
∑L

i=1wiLce i (5)

where wi denotes the weights assigned to learning features
at different levels. The weights of the linear classifiers are
transformed non-linearly through an MLP to obtain multi-
granularity prototype representations. To unify the format
of an extended description list, we use text templates to
constrain the responses of LLMs. Then, the extended de-
scription list enriched with commonsense knowledge from
LLMs is input into a sentence-transformer model, and the
semantic similarity matrix is computed using cosine simi-
larity to construct the multi-granularity semantic knowledge
graph.

In the constructed semantic feature space, SKCL per-
forms multi-granularity knowledge transfer by encoding the
implicit similarity relationships between categories. Over-
all, we use a training objective composed of cross-entropy
loss LCE and contrastive loss LSKCL:

L = λLSKCL + LCE, (6)

where λ controls the impact of LSKCL. In the representation
space, SKCL enables both vertical and horizontal knowl-
edge transfer through the construction of multi-granularity
prototypes, while simultaneously enriching the semantic
knowledge of both head and tail classes.
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Table 1. Comparison results with state-of-the-art methods using ResNet-32 on the CIFAR-100-LT and CIFAR-10-LT datasets under
different imbalance factors, focusing on Top-1 accuracy(%). The best results are highlighted in bold.

Methods CIFAR-100-LT CIFAR-10-LT
100 50 10 100 50 10

Focal Loss [25] 38.41 44.32 55.78 70.38 76.72 86.66
CB-Focal [8] 39.60 45.17 57.99 74.57 79.27 87.10
LDAM-DRW [2] 42.04 46.62 58.71 77.03 81.03 88.16
SSP [46] 43.43 47.11 58.91 77.83 82.13 88.53
BBN [54] 42.56 47.02 59.12 79.82 81.18 88.32
Casual Model [38] 44.10 50.30 59.60 80.60 83.60 88.50
KCL [20] 42.80 46.30 57.60 77.60 81.70 88.00
Hybrid-SC [40] 46.72 51.87 63.05 81.40 85.36 91.12
MetaSAug-LDAM [22] 48.01 52.27 61.28 80.66 84.34 89.68
TSC [24] 43.80 47.40 59.00 79.70 82.90 88.70
ResLT [7] 48.21 52.71 62.01 82.40 85.17 89.70
Remix [4] 41.94 49.50 59.36 75.36 - 88.15
UniMix [44] 45.45 51.11 61.25 82.75 84.32 89.66
SMC [16] 48.90 52.30 62.50 - - -
ECS-SC [14] 43.16 47.32 59.68 - - -
HCKC [50] 39.00 45.31 57.56 77.05 - 87.81
MGKT-MFF [52] 46.36 52.34 64.18 - - -
BCL [55] 52.01 56.32 64.01 84.31 87.26 90.91
ConCutMix [30] 53.16 57.40 64.53 86.07 88.00 91.42
Ours 54.02 58.13 65.86 87.50 88.16 92.37

Table 2. Comparison results with state-of-the-art methods using
ResNet-32 on the CIFAR-100-LT dataset with an imbalance factor
of 100, focusing on Top-1 accuracy(%).

Methods Many Medium Few All
τ -norm [19] 61.4 42.5 15.7 41.4
Hybrid-SC [40] - - - 46.7
MetaSAug-LDAM [22] - - - 48.0
DRO-LT [37] 64.7 50.0 23.8 47.3
RIDE(3 experts) [43] 68.1 49.2 23.9 48.0
BCL [55] 67.2 53.1 32.9 51.9
ConCutMix [30] 67.4 53.9 35.8 53.2
Ours 68.3 54.1 37.2 54.0

4. Experiments

4.1. Datasets
Long-Tailed CIFAR. CIFAR-10-LT and CIFAR-100-
LT [2] are long-tailed versions of the CIFAR-10 and
CIFAR-100 datasets, respectively. Both datasets contain
60,000 images of size 32×32, covering 10 and 100 classes,
respectively. CIFAR-10/100-LT is constructed by expo-
nentially decreasing the number of training samples per
class. The imbalance ratio β is typically defined as β =
Nmax/Nmin, which quantifies the degree of class imbal-

ance in the dataset. In our experiments, we set β to 100, 50,
and 10 to analyze different levels of class imbalance.
ImageNet-LT. ImageNet-LT [28] is a long-tailed subset of
the large-scale ImageNet dataset [36], following a Pareto
distribution with a shape parameter of α = 0.6. It contains
115.8K images across 1,000 categories, with a maximum
of 1,280 images per class and a minimum of 5 images per
class.

4.2. Experimental Setup

Implementation Details. For both CIFAR-10-LT and
CIFAR-100-LT, following [30], we adopt ResNet-32 [13]
with AutoAugment [6] as the network backbone, with a
weight decay of 5e − 4. The batch size is set to 256, and
the temperatures τ and τ ′ are set to 0.1 and 0.2, respec-
tively. Each experiment is trained for 300 epochs, and K
is set to 2. For ImageNet-LT, we use ResNet-50 [13] as
our backbone. During training, we apply the same aug-
mentation strategy as in [30] for the two-branch framework,
with an initial learning rate of 0.1 and a weight decay of
5e − 4. The model is optimized using stochastic gradient
descent (SGD) with a momentum value of 0.9 and K set to
4. Since the ImageNet-LT dataset is inherently structured
based on the WordNet hierarchy with 12 subtrees, it does
not require classifiers at different levels. We utilize gpt-4.0-
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turbo for label semantic generation. CIFAR-100-LT con-
sists of 20 coarse-grained classes, each of which comprises
5 fine-grained classes. Meanwhile, we group the 10 classes
of CIFAR-10-LT into two coarse-grained categories, “vehi-
cles” and “animals”, based on semantic similarity.
Evaluation Metrics. To evaluate the performance of our
method more reasonably, we divide these classes into three
groups based on the number of training samples, follow-
ing [55]: classes with more than 100 training samples are
considered head classes, those with 20 to 100 training sam-
ples are classified as medium classes, and classes with fewer
than 20 training samples are categorized as tail classes. Ad-
ditionally, we compute the Top-1 accuracy across all test
samples under different imbalance factors.
Compared Methods To validate the effectiveness of the
proposed method, we compare it with several state-of-
the-art methods from six different categories: (1) Class-
blalanced classifiers: τ -norm [19], LWS [19], and Dis-
Align [48]. (2) Loss functions: Focal Loss [25], CB-
Focal [8], LDAM-DRW [2], DRO-LT [37], BALMS [35],
and LADE [15]. (3) Contrastive learning methods:
SSP [46], Hybrid-SC [40], KCL [20], BCL [55], TSC [24],
and SMC [16]. (4) Transfer learning: BBN [54],
HCKC [50], and MGKT-MFF [52]. (5) Data augmentation:
Remix [4], UniMix [44], MetaSAug-LDAM [22], ECS-
SC [14], and ConCutMix [30]. (6) Other methods: [38],
ResLT [7], and RIDE [43].

4.3. Comparison with State-of-the-art Methods

Long-tailed CIFAR. As illustrated in Tab. 1, our method
outperforms existing advanced approaches across all imbal-
ance ratios on CIFAR-100-LT and CIFAR-10-LT, demon-
strating its effectiveness in addressing long-tailed chal-
lenges. Recent contrastive learning methods [21, 23, 55]
exhibit limited performance due to their disregard for se-
mantic relationships between classes, as they often treat all
classes equally. This limitation hinders the model’s ability
to learn discriminative and meaningful representations, par-
ticularly in imbalanced settings.

We observe that SKCL, which integrates multi-
granularity knowledge for representation learning, sur-
passes ECS-SC [14], which focuses on selecting and com-
bining easily confused tail samples. This advantage stems
from leveraging the common-sense knowledge of large
models to capture implicit semantic relationships between
categories. In addition, we compare the performance of
BCL [55] and SKCL at different imbalance factors in
Fig. 4, and the results demonstrate that the proposed method
achieves significant performance improvements across var-
ious imbalance factors. By constructing a multi-granularity
prototype space, our method enables the model to learn
a more semantically discriminative feature space, mitigat-
ing the representation learning deficiency caused by limited

Table 3. Comparison results with state-of-the-art methods using
ResNet-50 on the ImageNet-LT dataset, focusing on Top-1 accu-
racy(%).

Methods Many Medium Few All
Focal Loss [25] 64.3 37.1 8.2 43.7
τ -norm [19] 59.1 46.9 30.7 49.4
BALMS [35] 62.2 48.8 29.8 51.4
LWS [19] 60.2 47.2 30.3 49.9
Casual Model [38] 62.7 48.8 31.6 51.8
LADE [15] 62.3 49.3 31.2 51.9
DisAlign [48] 62.7 52.1 31.4 53.4
RIDE(2 experts) [43] - - - 55.9
BCL [55] 67.2 53.9 36.5 56.7
ConCutMix [30] 70.7 56.6 39.8 59.7
Ours 71.5 56.8 41.5 60.4

Figure 4. Comparison of Top-1 accuracy(%) with the baseline
BCL on CIFAR-100-LT and CIFAR-10-LT datasets under differ-
ent imbalance factors.

samples.
Furthermore, we report the accuracy of three groups of

classes on CIFAR-100-LT with an imbalance factor of 100
to further verify the effectiveness of the proposed method.
As shown in Tab. 2, our method achieves the highest Top-1
accuracy across all class groups. Notably, SKCL not only
benefits tail classes by effectively utilizing semantic knowl-
edge but also enhances feature learning for head classes,
in contrast to methods that improve tail-class performance
at the expense of head-class accuracy. Our method achieves
state-of-the-art performance, improving accuracy for many-
shot, medium-shot, and few-shot classes by 0.9%, 0.2%,
and 1.4%, respectively.
ImageNet-LT. Experiments are also conducted with
ResNet-50 on ImageNet-LT as shown in Tab. 3. The meth-
ods LWS [19], τ -norm [19], and DisAlign [48] follow
a two-stage learning strategy, focusing on fine-tuning the
classifier in the second stage, while overlooking the impact
of tail-class data scarcity during the representation learning
stage. Compared to the recent strong baseline BCL [55],
SKCL achieves a performance gain of 4.3% for many-shot
classes, 2.9% for medium-shot classes, and a notable 5.0%
for few-shot classes, leading to an overall performance im-
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(a) Label Semantics
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0.41 1.00 0.33 0.28 0.60 0.57 0.47 0.59 0.59 0.55 0.24 0.32

0.52 0.33 1.00 0.43 0.53 0.32 0.29 0.30 0.26 0.32 0.50 0.52

0.70 0.28 0.43 1.00 0.26 0.29 0.25 0.33 0.19 0.30 0.39 0.75
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0.35 0.55 0.32 0.30 0.53 0.73 0.66 0.79 0.54 1.00 0.26 0.35
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0.72 0.32 0.52 0.75 0.29 0.23 0.23 0.31 0.19 0.35 0.58 1.00

(b) LLM-based Label Semantic

Figure 5. Comparisons of similarity matrices constructed us-
ing original label semantics and LLM-based label semantics on
CIFAR-10-LT.

Figure 6. Comparison between a portion of the multi-granularity
semantic knowledge graph and the label hierarchy on CIFAR-10-
LT.

provement of 3.7%. The recently proposed data augmenta-
tion method, ConCutMix [30], constructs augmented sam-
ples with semantically consistent labels to improve long-
tailed recognition. In contrast, SKCL further extracts se-
mantic knowledge without requiring significant additional
computation, leading to an overall performance improve-
ment of 0.7%. This demonstrates that leveraging the rich
common-sense knowledge of LLMs to expand semantic la-
bels is effective. The constructed multi-granularity pro-
totype space enables knowledge transfer across levels and
subtrees between similar categories.

4.4. Ablation Study

To demonstrate the effectiveness of multi-granularity
knowledge transfer, we conducted an ablation study, with
all experiments performed on CIFAR-100-LT at an imbal-
ance ratio of 100. We use a strategy that transfers knowl-
edge exclusively between coarse-grained and fine-grained
levels (C-F) as a baseline. Meanwhile, F-F serves as a base-
line that focuses on the similarity within the same level for

Table 4. Ablation study on the CIFAR-100-LT dataset with an
imbalance factor of 100, using different knowledge transfer strate-
gies.

C-F F-F Many Medium Few All
67.2 53.1 32.9 51.9

✓ 68.1 53.9 34.6 53.1
✓ 67.5 53.3 36.5 53.2

✓ ✓ 68.3 54.1 37.2 54.0

knowledge transfer. As shown in Tab. 4, limiting knowledge
transfer to only the corresponding coarse-grained category
does not effectively enhance the performance of tail classes,
while constraining transfer learning within the same hierar-
chical level prevents head classes from benefiting. In con-
trast, incorporating both horizontal and vertical knowledge
transfer leads to significant performance improvements, si-
multaneously enriching the representations of both head
and tail classes.

4.5. Semantic Similarity Analysis
To verify the effectiveness of LLMs in semantic expan-
sion, we visualize the semantic similarity matrices in Fig. 5,
which are generated from original and LLM-based label se-
mantics. In the LLM-based matrix, the most similar cate-
gory to “airplane” is “bird,” which is not in the same sub-
tree. This highlights that the original label semantics ma-
trix fails to reveal such relationships, despite the fact that
both “airplane” and “bird” share the characteristic of flight.
Fig. 6 further illustrates that the multi-granularity seman-
tic knowledge graph can effectively uncover latent class re-
lationships (i.e. “bird” and “airplane”). Even though the
categories share a sibling relationship, they are still con-
nected based on semantic similarity to the most similar ones
(i.e. “deer” and “horse”). Unlike the fixed label hierarchy,
the multi-granularity semantic knowledge graph can adapt
based on the semantic knowledge of categories, which is
crucial for representation learning.

5. Conclusion
In this paper, we introduce semantic knowledge-driven con-
trastive learning (SKCL) to address the challenges of long-
tailed classification. Inspired by the implicit knowledge in
large language models, SKCL overcomes the limitations
of label hierarchy by utilizing an extended semantic list to
capture category similarities, thereby constructing a multi-
granularity semantic knowledge graph. Furthermore, a pro-
totype space is constructed to encourage the model to dy-
namically identify relevant classes for learning, thereby fa-
cilitating multi-granularity knowledge transfer. Extensive
experiments on long-tailed benchmark datasets validate the
effectiveness of the proposed method.
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