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Abstract

Overlapping text poses significant challenges for text-
related perception tasks, particularly in open scenes char-
acterized by diverse fonts and visual effects. While exist-
ing research has primarily addressed the overlapping prob-
lem in documents, its applicability to other scenes remains
limited. To bridge this gap, we propose a new task of
multi-scenario overlapping text segmentation and introduce
a corresponding real dataset in both English and Chinese,
spanning various contexts such as printed text, bills, artis-
tic designs, and house numbers. To further enhance the
generalization of overlapping text segmentation models, we
propose a hierarchical training data synthesis strategy that
simulates diverse overlapping patterns across different sce-
narios. Furthermore, we found that depth maps can provide
clear relative position relationships in three-dimensional
space, assisting the model in capturing complex overlap-
ping relationships between text instances. Building on this
insight, we present a depth-guided decoder that seamlessly
integrates image and depth features to capture overlapping
interactions. Our proposed model achieves a 5.3% im-
provement in text mIoU and a 6.4% improvement in overall
mIoU compared to existing SOTA methods on our bench-
mark and SignaTR6k datasets, respectively. Our code and
dataset will be released at https://github.com/
willpat1213/MOTS.

1. Introduction

In the field of OCR research, deep learning-based text
recognition has made remarkable progress, offering effec-
tive solutions to challenges such as variations in lighting
and shadow effects, blurriness in document images [9, 29],
and text distortion caused by bending or tilting in com-
plex scenes [19, 24, 27]. However, current state-of-the-
art (SOTA) text recognition methods encounter significant
challenges when dealing with overlapping text, where one
piece of text partially or fully obscures another within an
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(b) MOT (ours)

(a) SignaTR6K

Figure 1. The overlapping text examples of SignaTR6K and
MOT (ours).

image. Overlapping text can be categorized into two types
based on the degree of overlap: “text-in-text,” where the
texts significantly overlap, and “sticky text,” where only the
edges of the texts intersect. As shown in Fig. 1(b), these
phenomena frequently occur in various everyday scenar-
ios, such as invoices, receipts, educational documents, ad-
vertisements, slogans, artistic designs, house numbers, and
other intricate outdoor settings.

Previous studies [11, 14, 30] have recognized the criti-
cal need for tackling overlapping text in real-world appli-
cations. These works employ various segmentation mod-
els to deconstruct overlapping text into regular text. How-
ever, these studies have primarily concentrated on address-
ing overlapping patterns in document-specific scenarios, as
illustrated in Fig. 1(a), without extending their focus to
multi-scenario text overlap challenges. This paper aims to
bridge this research gap by proposing a novel segmentation
framework specifically designed for comprehensive over-
lapping text analysis across diverse real-world scenarios.

Unlike document scenario overlapping text segmenta-
tion, multi-scenario overlapping text segmentation presents
two unique challenges, as outlined below: (1) Lack of over-
lapping text data in multiple scenarios. Previous overlap-
ping text datasets primarily focus on specific document-
based contexts, such as educational papers, historical
archives and legal documents. These scenarios typically
display similar overlapping patterns, which can be handled
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by straightforward expert models. However, this limits the
model’s ability to generalize across diverse scenarios. (2)
Complex and Diverse Challenges in multi-scenario. Multi-
scenario overlapping text segmentation is especially diffi-
cult due to diverse backgrounds, dynamic text variations
(such as changes in size, color, and font), and irregular
occlusions from design elements or shifting perspectives.
Furthermore, the arrangement and layout of text can vary
significantly across scenes, further increasing the unpre-
dictability of the segmentation task.

To address the above challenges, we propose the follow-
ing solution:

(1) Real dataset MOT and synthetic strategy HSOT.
We aim to develop a universal solution for overlapping
text images applicable to multiple scenarios. To this end,
we manually annotated a Multi-scenario Overlapping Text
dataset (MOT) which contains 1,250 images from diverse
and complex scenes, such as forms, bills, and open street
scenes. The dataset includes various text types, including
printed, handwritten, and artistic fonts. However, relying
solely on real-world datasets does not fully enhance the
model’s generalization capabilities. To overcome this, we
designed a Hierarchical Synthetic Overlapping Text strat-
egy (HSOT) to simulate the sources and overlap patterns
found in real datasets. Specifically, we classified the data
into two categories: document-related and scene-related.
For document scenarios, we extended SynthTiger [41], en-
abling it to generate overlapping text in a more flexible and
realistic document style. For scene-related scenarios, we
developed an end-to-end optimization model based on Con-
trolNet [44], which generates overlapping text images that
closely resemble real-world scene compositions. Experi-
mental results show that pre-train with synthetic data from
our proposed HSOT strategy achieves better performance
than pre-train with data from a single pipeline.

(2) Depth-guided decoder. Depth maps represent the
three-dimensional structure of the natural world, and we
found that they can map overlapping text images into 3D
space. In this space, the front-back and occlusion rela-
tionships between the overlapping texts become more dis-
tinct. This insight motivated us to investigate whether depth
maps can serve as an effective auxiliary modality to help
the model capture the features of overlapping texts. Based
on this insight, we propose a depth-guided decoder, which
consists of two core stage: a feature enhancement stage
and a Depth-guided Cross-Attention stage. The feature en-
hancement refines the depth features to extract fine-grained
depth information, while the Depth-guided Cross-Attention
mechanism uses these depth features to guide the model in
distinguishing between different texts. This approach en-
hances the model’s ability to understand overlapping rela-
tionships, particularly for depth-in-occluded texts.

In summary, this paper makes the following advantages:

• We present a challenging task: multi-scenario overlap-
ping text segmentation and construct a comprehensive
dataset (MOT) to benchmark the performance.

• We design a synthetic data generation strategy (HSOT) to
improve the model’s generalization by effectively simu-
lating complex real-world overlapping scenes.

• We realize the value of depth information for overlapping
text images and design a depth-guided decoder that uses
depth maps to enhance the recognition of overlapping
texts. This is achieved by refining depth features and em-
ploying a depth-guided cross-attention mechanism, sig-
nificantly improving the model’s understanding of occlu-
sion relationships.

• Our model achieves (5.3% Text mIoU) and (6.4% mIoU)
improvements on MOT and SignaTR6k datasets, re-
spectively. We validate the effectiveness of the HSOT-
generated dataset and depth-guided decoder.

2. Related Work
Since our method focuses on addressing the segmentation
problem of multi-scenario overlapping text, we briefly re-
view the recent advances in the following areas: overlap-
ping text segmentation dataset and model.

2.1. Overlapping Text Segmentation Dataset
Based on the review of previous work on overlapping text
in the preceding section, it is evident that past research has
predominantly focused on document domains, with the pro-
posed datasets reflecting this concentration. OverlapText-
500 [14] is a dataset collected from financial documents
and math exercise sheets, encompassing Arabic numer-
als, mathematical symbols, uppercase and lowercase En-
glish letters, and 3,000 commonly used Chinese charac-
ters. WGM-SYN [30] is a synthesized dataset derived
from scanned images of historical archives, while Sig-
naTR6K [11] originates from scanned images of legal doc-
uments. Both datasets focus on the overlap between hand-
written and printed texts within document scenarios charac-
terized by black text on a white background. In summary,
previous work has focused on specific types of documents
within a single scenario. These datasets often share sim-
ilar backgrounds, fonts, colors, and overlapping patterns.
However, there is a lack of a multi-scenario overlapping text
dataset that reflects more general cases.

2.2. Overlapping Text Segmentation Model
Text Segmentation. Text segmentation involves predict-
ing detailed masks for text in images with varying scene
complexities. Traditional methods, such as thresholding
techniques [22, 23, 26, 28] and low-level feature-based ap-
proaches [18, 28, 31], have faced challenges when applied
to images with intricate colors and textures. With the advent
of deep learning, models like SMANet [2] have leveraged
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encoder-decoder structures and multi-scale attention mech-
anisms to improve segmentation performance. Further ad-
vancements, such as TextFormer [32] and TexRNet [36],
have introduced hierarchical segmentation frameworks and
fine-grained annotations to enhance text detail perception
and segmentation accuracy. To address the lack of Chi-
nese text in segmentation datasets, the BTS dataset [37]
was introduced, while PGTSNet focuses on using pre-
trained detection models to constrain segmentation to de-
tected text regions. Addressing the challenge of variable
stroke shapes in artistic text, WASNet [35] incorporates a
transformer decoder with layer-wise momentum queries to
preserve attention on special-shaped stroke regions. Sim-
ilarly, EAFormer [42] integrates edge information through
symmetric cross-attention submodules to guide the model’s
focus on text edges from the outset. Additionally, Hi-
SAM [40] presents a unified framework for hierarchical text
segmentation and layout analysis, based on the strong seg-
mentation fundation model SAM [16].
Overlapping Text Segmentation. Early studies on over-
lapping text primarily focused on simple overlap scenarios
within document scenes. These approaches commonly uti-
lized Hidden Markov Models (HMMs) [12] and Support
Vector Machines (SVMs) [10], following the binary classi-
fication paradigm typical of conventional text segmentation.
Text was treated as instances, requiring models to learn ab-
stract representations of overlaps. As a result, the separa-
tions were relatively coarse and often plagued by residual
noise, posing challenges for downstream recognition tasks.
RecycleNet [14] introduced a two-stage, end-to-end train-
able instance segmentation network to help improve separa-
tion quality. WGM-MOD [30] and MFM [11] apply seman-
tic segmentation to separate overlapping handwritten and
printed texts; while WGM-MOD lacks explicit modeling of
overlaps, MFM treats them as a separate category, assign-
ing pixels to individual texts in post-processing. Both fo-
cus mainly on historical and legal documents, limiting their
generalization to other scenarios. These works reflect on-
going research efforts to address specific application limita-
tions in handling overlapping text.

3. MOT Dataset and HSOT Strategy
To address the issue of extensive overlapping text in both
document and natural scenarios, we introduce a real dataset
(MOT) and a synthetic strategy (HSOT). Relying on them
can help the community achieve more valuable work in fu-
ture overlapping text research.

3.1. MOT Dataset
3.1.1. Data Collection and Annotation
Previous overlapping text datasets primarily focus on
document-based scenarios. To address this, our dataset in-
cludes a diverse range of scenarios with significant domain

gaps, such as printed text, form tickets, art designs, door
signs, and other forms of expression featuring overlapping
text. To collect images of overlapping text in diverse scenes,
we use search engines like Google and Baidu to search for
relevant keywords related to scenarios where overlapping
text is likely to appear, examples include: (1) Handwrit-
ten or printed text: Content written on a printed document;
(2) Street view: Overlapping text created by the interaction
of transparent foreground elements and background text on
billboards; (3) Digital file processing: Overlapping text due
to printing errors or anti-counterfeiting features; (4) Art de-
sign: In certain advertisements and art designs, multiple
texts often overlap as part of the design elements such as
some similar examples are in the Wordart dataset [34, 35].

To ensure image privacy, our data collection is sourced
legally through public channels. Following this, multi-
ple rounds of manual screening were conducted to remove
poor-quality images that are indistinguishable to the human
eye, as well as images that do not contain overlapping text.
As a result, we collected 1,250 images containing 2,620 text
instances. To facilitate model training and testing, we di-
vided the dataset into two equal parts: 630 images for train-
ing and 620 images for testing.

解决的问题和对应的方法

Masks Labels

Image with char bboxes

“foshua”

“ROD”

Figure 2. Example annotations from the proposed MOT dataset.
The top-left image displays the original image with character-level
bounding boxes. The pixel-level character masks for each instance
are organized into overlapping layers, ordered from foreground to
background, with each instance corresponding to a unique label.

Our dataset includes detailed, multi-level annotations to
support future research in related fields. After defining the
labeling format, we labeled different datasets and conducted
cross-validation after annotation to minimize the impact of
human factors on label quality. Labeling experts identified
the text in overlapping areas based on their prior knowledge
of the characters. Due to the richness of the information in
our dataset, the labeling process was complex and took six
months, including significant time spent on data cleaning.
The annotation details for the dataset are shown in Fig. 2.
Our annotations include three levels: pixel-level text masks,
character-level bounding boxes, and text-level labels, along

https://www.google.com/
https://www.baidu.com/
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with other relevant information. To represent the overlap-
ping relationships between text instances, we annotate the
text masks from foreground to background, with each oc-
clusion layer identified by its corresponding file name. This
implicit annotation provides valuable information for fu-
ture researchers, aiding in the separation of overlapping text
based on these relationships.

3.1.2. Data Statistics
We aim to ensure that the degree of overlap between text
instances is not overly extreme—that is, neither completely
non-overlapping (as in standard multi-line text) nor entirely
overlapping (making it impossible for humans to predict
or annotate). To verify the rationality and predictability of
the MOT dataset, we analyzed the overlap patterns among
text instances in each image. As shown in Fig. 3(a), we
present the bbox plots for mask IoU and bbox IoU within
the dataset. Mask IoU represents the overlap of strokes
between different text instances. A higher mask IoU in-
dicates more severe occlusion of text strokes, making them
harder to discern. The results show that mask IoU is pri-
marily distributed around 0.2, with some hard cases not ex-
ceeding 0.5, demonstrating that there are no instances in
the dataset that are impossible to predict or annotate. Ad-
ditionally, bbox IoU reflects the overlap between bounding
boxes. The bbox IoU distribution reveals a range of over-
lapping patterns, including cases with slight overlaps (IoU
near 0) and more challenging text-in-text overlaps (IoU ap-
proaching 0.8). Fig. 3(b) further illustrates the distribution
of image sizes in the dataset, which includes images with
varying aspect ratios and resolutions.

(a) Distribution of Mask IoU and Bbox IoU (b) Distribution of  Image size

Figure 3. Statistical analysis on MOT dataset.

3.2. HSOT Strategy
As our overlapping text algorithm is applicable to all
scenarios and existing methods center around processing
document-type situations, we propose a Hierachical Syn-
thetic Overlapping Text (HSOT) construction pipeline, as
illustrated in the Fig. 4.

3.2.1. Document-related
For document-related scenarios, as shown in Fig. 4(a),
we synthesize overlapping text images using the non-deep

解决的问题和对应的方法

• 问题2：真实数据不足以训练分割模型，不同场景的数据gap较大

(b) Scene-related

(a) Doc-related

OverlapSynthTiger
Guide Generate

Overlap 
ControlNet

Guide Generate

多层级的数据合成方法可以合成更丰富的重叠的文本图像。

Hierarchical Synthetic Dataset

real image

real image

synthetic image

synthetic image

Figure 4. The proposed HSOT construction pipeline.

learning data synthesizer SynthTiger. The process involves
the following steps: first, we update SynthTiger’s synthesis
pipeline to enable the superposition of multiple texts. Then,
we sample parameters such as text color, font, and perspec-
tive from a real dataset to ensure they follow the same dis-
tribution as in the real world. The background images are
directly extracted from the real dataset to maintain a high
degree of similarity with real data. This approach ensures
that the distribution and characteristics of the synthesized
data closely match those of real-world documents.

3.2.2. Scene-related
For scene-related scenarios, as shown in Fig. 5. we design
a text-to-image generation model that creates aligned over-
lapping text images by using masks and input prompts.

解决的问题和对应的方法

OverlapControlNet

• 问题2：真实数据不足以训练分割模型，现有的合成数据方法服务场景较少

Human-Annotated Training Triplets Train

Generate

New Image

New Mask

Training

Inference

Masks Images
Prompts

keep，SACRED

Overlap 
ControlNet

“begin and ONC, and the colors of 
the two text are obviously different”

Prompt

Mask Render
Guide

训练流程：
1. 从BMOT训练集中提取单词信息，生成包含提示、掩码和

图像的训练三元组，通过颜色化掩码帮助模型区分文本区域。

2. 训练ControlNet模型，确保生成图像中的重叠文本轮廓与掩

码对齐，实现像素对齐的多样化图像生成。

推理流程：
1.生成多样的合成文本掩码，并随机选择单词进行旋转和位置

调整。

2.使用250种字体和仿射变换生成最终提示，输入训练好的

ControlNet生成重叠文本图像。

利用Diffusion的丰富先验知识可以更贴近的表

示复杂的场景重叠文本图像的重叠情况。

Figure 5. The proposed OverlapControlNet pipeline.

Training Pipeline. During training, we first extract word-
level information from MOT dataset images and use it as
prompts to create training triples in the form of ¡prompt,
mask, image¿. The masks are colorized to help the model
better distinguish different text regions. We then train a
ControlNet model to map the prompt and mask to a gener-
ated image, ensuring the outline of overlapping text aligns
precisely with the mask. This approach enables the model
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to generate diverse, pixel-aligned images.
Inference Pipeline. During inference, we generate diverse
synthetic text masks using our Mask Render. For each
mask, we randomly select two words (4 to 10 letters) based
on the letter distribution in the MOT dataset, apply a ran-
dom rotation between -30° and 30°, and position the words
within the image boundaries. We use 250 scene fonts and
apply an affine transformation to introduce skew and dis-
tortion. Finally, we generate the prompt by incorporating
the text information from the mask into a template, which
is used to create the overlapping text image. After con-
structing the synthetic text mask and prompt, we use the
trained ControlNet to generate the final text image. Specifi-
cally, the final image is produced by feeding the prompt and
mask into the ControlNet, which generates the correspond-
ing overlapping text image.

4. Methodology
In this section, we first give an overview of our proposed
model, and then provide a detailed introduction to our pro-
posed Depth-guided decoder.

4.1. Overall
As shown in the Fig. 7, we propose a multimodal overlap-
ping text segmentation method using Mask2Former [7] as
the meta-architecture. The core component is the depth-
guided decoder, which mainly consists of two stages: deep
feature fusion and depth-guided cross-attention. To begin,
we provide a brief overview of the segmentation process.
Extract Features. First, Given the input overlapping text
image X ∈ R3×H×W , a pre-trained monocular depth es-
timation model [38, 39] is employed to compute the cor-
responding depth map. Then, we employ the same en-
coder for depth and image, but without weight sharing, to
extract depth features D = {D1,D2,D3,D4} and image
features I = {I1, I2, I3, I4} separately, where Di and Ii
represents the features at the i-th layer of the ResNet-
like [13] backbone.
Multi-Modal Feature Fusion. For image features I, we
use a pixel decoder [6] to process the low-resolution fea-
tures from the backbone, enhancing their expressive capa-
bility. This results in a high-resolution mask feature MI

and a multi-scale image feature Î = {Î1, Î2, Î3} after fu-
sion. For depth features, we design a lightweight and fully
convolutional process (see Sec. 4.2) that generates a high-
resolution depth mask feature MD and multi-scale depth.
After enhancement, the features from both modalities are
fed into the Depth-guided Cross Attention module (see Al-
gorithm 1) for further fusion. This process yields the final
enhanced depth aware mask feature MF and depth aware
multi-scale features F̂ = {F̂1, F̂2, F̂3} for segmentation.
Decoding. Following the Deformable DETR Decoder [3,
45] in Mask2Former, the enhanced multi-scale fusion fea-

tures are sparsely sampled using the deformable attention
mechanism. The mask head generates a binary mask by de-
coding the per-pixel embeddings from the pixel decoder and
the learnable queries from the Deformable DETR Decoder.

解决的问题和对应的方法

• 问题3：当前的文字分割模型无法捕获遮挡的层级关系

Depth信息反映了自然世界的三维结构，能够将重叠文本图像映射到三维空间，使前后和遮
挡关系更加明确。

引入Depth信息

Figure 6. Visualization of depth map.

4.2. Depth-guided Decoder
Overlapping text segmentation differs from conventional
text segmentation due to challenges such as feature simi-
larity between overlapping texts and occlusion between dif-
ferent text instances. Standard feature representations are
insufficient to address these issues. As shown in Fig. 6,
we observed that the depth map provides valuable three-
dimensional spatial information, enhancing feature repre-
sentation and improving the handling of occlusion relation-
ships. To leverage this, we introduced depth modality in-
formation and designed a Depth-guided Decoder (shown in
the gray area in Fig. 7) to integrate depth information into
the segmentation process.

To leverage text-level depth relationships for segmenta-
tion guidance, we implement a feature enhancement stage
within our depth-guided decoder. This sub-process employs
a lightweight and fully convolutional method to extract hi-
erarchical features: First, multi-scale depth features D are
transformed to a unified scale using a 1x1 convolution, re-
sulting in D̂. The largest-scale feature D4 is then processed
with a 3x3 convolution and added to D̂3 to generate the
high-resolution depth mask feature MD, forming a struc-
ture similar to FPN [17]. This can be expressed as:

D̂k = Conv1x1(Dk), k ∈ [1, 3], (1)

MD = Conv3x3(D4) + D̂3, (2)

4.2.1. Depth-guided Cross Attention
As seen the Algorithm 1, Stage 1: the module first concate-
nates the mask features MI ,MD from two modalities into
a global mask feature MG Simultaneously, it fuses multi-
scale features {Îk, D̂k}3k=1 across scales by concatenation
to form global multi-scale features F̂G. This step ensures
the integration of both local mask information and multi-
scale context from different modalities.

Stage 2: Depth features D̂ are normalized using Lay-
erNorm [1] and treated as queries, while the global multi-
scale features F̂G serve as both keys and values. Multi-head
attention is then computed to dynamically weight feature
interactions, prioritizing depth-informed regions for precise
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Figure 7. The overall architecture of our model.

Algorithm 1 Depth-guided Cross Attention

Input: Multi-scale feat. {Îk, D̂k}3k=1, mask feat. MI , MD

Output: Fused feat. {F̂i}3i=1, text mask MG

1: Stage 1: Feature Fusion
2: MG ← Concat(MI ,MD)
3: F̂G

i ← Concat(Îi, D̂i), ∀i ∈ [1, 3]
4: Stage 2: Cross Attention
5: for i = 1 to 3 do
6: Qi ← LN(D̂i) ▷ Layer normalization
7: (Ki,Vi)← (F̂G

i , F̂
G
i ) ▷ Shared features

8: V̂i ← CA(Qi,Ki,Vi)
9: end for

10: Stage 3: Feature Aggregation
11: for i = 1 to 3 do
12: V̂D

i ← D̂i + V̂i ▷ Residual addition
13: F̂i ← FFN(LN(V̂D

i )) + V̂D
i

14: end for
15: return MG, {F̂i}3i=1

fusion. This stage emphasizes depth-driven feature align-
ment between modalities.

Stage 3: The output of the cross-attention is combined
with original depth features through a residual connection.
This aggregated result undergoes two consecutive transfor-
mations: (1) a feed-forward network (FFN) followed by
LayerNorm, and (2) another residual addition. This dual-
path design preserves feature integrity while refining fused
representations through non-linear modeling. The module
ultimately outputs the global mask feature MG and the
refined fused features{F̂i}3i=1, which capture rich multi-
modal correlations guided by depth information.

4.3. Loss Functions

We utilize cross-entropy loss for the classification of differ-
ent semantics and dice loss [21] for mask prediction. Given
that overlaps are relatively rare, we further incorporate focal
loss to address the long-tail distribution issue:

L = λceLce + λdiceLdice + λclsLcls, (3)

Following the baseline’s settings, we set λcls = 2, λce =
λdice = 5 to increase the model’s focus on overlapping ar-
eas (hard class). The higher weights on λce and λdice specif-
ically amplify the contribution of pixel-wise classification
and region overlap accuracy in these challenging regions.

5. Experiments

5.1. Implementation Details
The proposed model is implemented in PyTorch and eval-
uated on a server with 8 RTX 3090 GPUs. We use the
AdamW [20] optimizer with a weight decay of 0.05 and
apply a poly [4] learning rate schedule, starting with an ini-
tial learning rate of 10−4. The batch size is set to 4, and the
number of iterations is 60,000. For each experiment, we cal-
culate the IoU for three classes: Occlusion (Occ), Occluded
(Occd), and Overlap (Ov). Additionally, we compute the
mean IoU as the average of the IoUs for these three classes.

5.2. Experimental Results
5.2.1. Results on the MOT dataset
To evaluate the effectiveness of our overlapping text seg-
mentation method, we conducted extensive experiments
on the MOT dataset comparing against SOTA seman-
tic/text segmentation models. Experimental results in Tab. 1
demonstrate our method achieves superior performance
across all metrics, outperforming existing approaches. No-
tably, our pre-trained version (Ours (pre-train)) shows sig-
nificant improvement with 75.53% mIoUText - a 4.97%
gain over the non-pretrained variant, confirming the value of
synthetic and multi-source data for domain adaptation. The
most substantial improvement appears in IoUov (60.66%)
improved by 7.84%, indicating enhanced capability in pro-
cessing occluded and low-visibility text instances.

5.2.2. Results on the SignaTR6K dataset
Additionally, we validated the effectiveness of our proposed
model on another overlapping text dataset, SignaTR6K. As
shown in Tab. 2, our model, without requiring pre-training,
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Model IoUOcc IoUOccd IoUOv mIoUText

Unet [25] 80.23 65.68 40.73 62.21
Deeplab v3+ [5] 83.16 71.20 49.25 67.87
OCRNet [43] 81.04 68.47 47.75 65.75
Segformer [33] 83.59 74.11 49.27 68.99
Maskformer [6] 83.47 70.26 51.40 68.38
TexRNet [36] 84.22 73.16 49.25 68.88
EAFormer [42] 83.78 74.23 50.47 69.06
WASNet [35] 84.81 74.35 53.12 70.76

Mask2former [7] 84.72 73.29 52.82 70.28
Ours 85.17 77.54 54.93 72.55
Ours (pre-train) 86.77 79.17 60.66 75.53

Table 1. Performance comparison with other segmentation meth-
ods on MOT dataset. “pre-train” indicates that the model was
firstly trained on HSOT-generated data and MOT datasets and sub-
sequently fine-tuned on the MOT dataset.

outperforms the MFM model in its best configuration on
SignaTR6K across all IoU categories, including printed text
(PT), handwritten text (HT), and background (BG). The
mean IoU improved by 6.35%. Notably, the performance
gain in the occluded category (PT) reaches 17.41%, demon-
strating that our model deeply understands overlapping phe-
nomena and can effectively detect occluded text.

Model Training & Testing Data PT (%)

MFM [11] SignaTR6K 73.05
ours SignaTR6K 90.46

Table 2. Performance comparison with other segmentation meth-
ods on SignaTR6K dataset.

5.3. Ablation Study
As shown in Tab. 3, we evaluate the effectiveness of our
proposed dataset synthesis strategy and model design. First,
the Hierarchical Synthetic Overlapping Text (HSOT) strat-
egy explicitly synthesizes multi-scale overlapping text pat-
terns during pre-training, enabling the model to learn the in-
herent spatial relationships between overlapping characters.
This data-centric approach significantly improves the sep-
aration of overlapping regions, boosting IoUOV by 6.74%
and mIoUText by 3.90%.

Furthermore, the Depth-guided Decoder (D-Decoder)
leverages depth information to explicitly guide the segmen-
tation of occluded text regions. By dynamically integrat-
ing depth-aware features, it refines boundary localization
for partially obscured text, leading to a 3.19% improvement
in IoUOD. The synergy between HSOT and D-Decoder
achieves a final mIoUText of 75.53%, with an additional

1.35% gain over the pre-trained baseline. These results un-
derscore HSOT’s unique ability to resolve overlapping text
ambiguity through data synthesis and D-Decoder’s strength
in utilizing depth cues for occlusion reasoning, together ad-
vancing SOTA performance in multi-scenario overlapping
text segmentation tasks.

Methods IoUOcc IoUOccd IoUOv mIoUText

baseline [7] 84.72 73.29 52.82 70.28
+ HSOT 86.00 76.98 59.56 74.18
+ D-decoder 86.77 79.17 60.66 75.53

Table 3. Ablation study on our proposed datasets and modules.

To further explore how the data synthesis strategy HSOT
enhances model performance, we present a detailed ablation
study on HSOT, including: the scale of synthetic data and
the scenario of synthetic data.
Scaling Up of Synthetic Data. To ensure sufficient pre-
training data for effective model training, we investigated
model performance with varying amounts of pre-training
data. To maintain consistency in data distribution, we kept
the proportion of different scenes fixed while only adjust-
ing the volume of synthetic data. As shown in Tab. 4, we
observed that increasing the amount of pre-training syn-
thetic data led to a steady improvement in model perfor-
mance, which also demonstrates the effectiveness of our
HSOT strategy. Additionally, when the data scale exceeded
280k, model performance approached saturation. There-
fore, we selected 280k synthetic data as the pre-training data
for other experiments.

Scaling up IoUOcc IoUOccd IoUOv mIoUText

70k 86.00 78.16 60.14 74.77
140k 86.16 77.77 60.66 74.86
210k 86.50 78.98 59.67 75.05
280k 86.77 79.17 60.66 75.53
350k 86.81 79.12 60.71 75.59

Table 4. Ablation Study on Synthesis Data Scale.

Scenario of Synthetic Data. A key feature of the HSOT
synthesis strategy is the use of different synthesis meth-
ods tailored to specific scenarios—doc-related and scene-
related. This approach enhances the model’s generalization
ability across diverse scenarios and better supports multi-
scenario situations in the MOT dataset. To verify this,
we conducted separate evaluations based on the scenario.
As shown in the Tab. 5, r1 was fine-tuned using only real
data, r2 and r3 were pre-trained with scene-related and doc-
related data, respectively, and r4 was pre-trained using both
datas. The results show that using either scene-related or
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document-related synthetic data yields varying degrees of
performance improvement, while combining both datasets
simultaneously leads to a further enhancement in model
performance.

Dataset IoUOcc IoUOccd IoUOv mIoUText
Real Doc* Scene*

r1 ✓ 85.17 77.54 54.93 72.55
r2 ✓ ✓ 85.60 77.72 56.41 73.24
r3 ✓ ✓ 85.86 78.90 60.64 75.13
r4 ✓ ✓ ✓ 86.77 79.17 60.66 75.53

Table 5. Ablation Study of the HSOT Strategy Across Various
Scenarios. * denotes document-related and scene-related data gen-
erated using the HSOT strategy, respectively.

5.4. Discussions
Downstream Applications. To evaluate the effectiveness
of our approach, we conducted a text recognition experi-
ment on the MOT test set and compared our method with
SOTA recognizers. Notably, the MOT dataset includes im-
ages with overlapping multi-line text, which can negatively
impact recognition performance. To isolate the influence
of multi-line text, we excluded such images and curated a
subset of 556 images from the test set for this experiment.
The results (Tab. 6) reveal distinct outcomes across the
three categories of overlapping text handling strategies. Un-
like one-stage recognition methods, our approach employs
a ”segment-then-recognize” pipeline: overlapping text is
first decoupled and binarized into conventional single-line
text images, enabling standard recognizers to operate with
high accuracy. Our method outperforms the one-stage base-
line significantly in both accuracy and edit distance met-
rics. Furthermore, attention-based recognizers achieved su-
perior results over CTC-based models on images with mini-
mal overlap. This disparity arises because CTC-based mod-
els are inherently disadvantaged when processing overlap-
ping text sequences, whereas attention-based mechanisms
exhibit greater robustness to mild overlap.

Category Model Acc.↑ Edit Dis.↑

Recognizer SVTRv2 [8] 4.04 37.01
MAERec [15] 8.72 48.65

Segm-based Ours 78.15 86.95

Table 6. Performance of ours in enhancing the text recogni-
tion task.The recognizers process the overlapping image directly.
SVTRv2 is used as the recognizer for the segm-based methods.

Advantages of Depth-Guided Model in Training. The
training loss curves (Fig. 8) reveal that ours achieves both

faster convergence and a lower final loss plateau compared
to baseline. This stems from the depth decoder’s ability
to disentangle occluded regions through explicit 3D spatial
priors. While conventional models rely on ambiguous RGB
cues to infer overlaps, depth maps explicitly model layer
ordering (e.g., foreground vs. background), sharpening the
model’s focus on physically plausible occlusion boundaries.

Figure 8. Training loss comparison with baseline.

Limitations. In cases where overlapping texts share nearly
identical visual features (e.g., same font, color, and size),
the depth-guided decoder may fail to prioritize subtle
boundary cues. This is particularly evident in ”text-in-text”
overlaps with high mask IoU (>0.5), where even human an-
notators face ambiguity. We may propose some solutions to
this problem in future work.

6. Conclusion

The paper addresses the critical challenge of overlapping
text segmentation across diverse real-world scenarios, a
problem underexplored in prior research focused primar-
ily on document contexts. We propose a novel task, multi-
scenario overlapping text segmentation, and introduce two
key contributions to advance the field. First, we col-
lected and annotated a real multi-scenario text dataset MOT
for benchmarking the performance, complemented by our
HSOT synthesis strategy that enhances model generaliza-
tion through scenario-specific text overlap simulation. Sec-
ond, we pioneer the use of depth-guided 3D spatial reason-
ing for overlapping text analysis. Our Depth-guided De-
coder effectively leverages depth maps to resolve occlu-
sion relationships, enabling precise segmentation of inter-
twined texts across variable layouts and backgrounds. Ex-
tensive experiments validate the superiority of our model,
highlighting the significance of synthesizing multi-scenario
training data and integrating depth-aware feature fusion.
These advancements are crucial for a wide range of applica-
tions, from invoice parsing to outdoor signage recognition.
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