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Abstract

A crucial issue in federated learning is the heterogene-
ity of data across clients, which may lead to model di-
vergence, eventually deteriorating the model performance.
Personalized federated learning (pFL) has been shown to
be an effective approach to addressing data heterogene-
ity in federated learning. However, many existing pFL
studies rely on directly using the global model for local
training without fully assessing its impact on the perfor-
mance of the local model, resulting in a potential con-
flict between personalization and generalization. To ad-
dress this issue, we propose a parallel structure of a lo-
cal supervisor and an inter-learning model for the local
model and introduce a novel pFL method called federated
learning by considering data similarity across clients as-
sisted by a local supervisor (FedSimSup). Specifically, Fed-
SimSup maintains an inter-learning model for each client
and refines the inter-learning model using a local super-
visor for each client. The local supervisor monitors the
aggregated global information and ensures that the inter-
learning model aligns with the local heterogeneous data to
enhance local model performance. Additionally, the simi-
larity between clients is measured based on differences in
local data distributions, and this similarity is used to adjust
the weights of the inter-learning models. Experimental re-
sults show that FedSimSup outperforms eight state-of-the-
art federated learning methods in handling heterogeneous
data. Additionally, it supports different model architectures
across clients, providing greater flexibility when computa-
tional resources vary among them. Our code can be found
at https://github.com/jqLil 626/FedSimSup.

* Equal contribution.
1 Corresponding author
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1. Introduction

With the increasing importance of data privacy in the digi-
tal era, federated learning (FL) has emerged as a response
to the growing need for data in artificial intelligence [9]. FL
aims to maximize the use of local data while maintaining
privacy and minimizing communication costs by training
a global machine learning model. Despite its widespread
use, the traditional federated learning method FedAvg [33]
often suffers from performance degradation and slow con-
vergence due to data heterogeneity [18, 34]. This issue is
prevalent in real-world applications, where data gathered
from different sources, such as users, devices, and organiza-
tions, typically exhibit distributional shifts (Non-IID data).

Personalized federated learning (pFL) [43] has emerged
as an effective solution for handling Non-IID data. Main-
stream pFL methods can be broadly divided into two
groups, one focusing on training a global model that gen-
eralizes well across all clients, while the other on train-
ing personalized models for each client to better address
data heterogeneity. For instance, the algorithms reported in
[2, 10, 30] construct client-specific models by dividing the
model for each client into a feature extractor (the backbone)
and a classifier. The backbone serves as the shared com-
ponent to capture generalization information across clients,
while the classifier focuses on learning personalized infor-
mation. Motivated by the observation that the decoupling
approach, which extracts information from model parame-
ters, may not fully exploit all the potential of the data, Zhang
et al. [51] propose generating a conditional policy for each
sample to separate global and personalized information in
its characteristics. Furthermore, it has been found that re-
taining all layers sensitive to Non-IID data for extracting
personalization information can degrade the collaborative
effect. To address this, Wu et al. [47] propose a sensitivity-



based quantitative metric to assess each parameter and iden-
tify those most sensitive for personalization. Recently,
Yang et al. [50] tackle the inter-client and intra-client in-
consistency between personalized and shared components
by introducing a federated parameter-alignment and client-
synchronization method, which shows promising results.

The aforementioned parameter decoupling method all
adopt a serial structure, where information of the backbone
and classifier is processed sequentially. However, the two
modules are often dependent on each other’s performance.
If the backbone is suboptimal, it can significantly affect
the classifier’s ability to function well. Additionally, a se-
rial structure often requires a unified model to handle data
heterogeneity, which, however, may lead to suboptimal re-
sults when the data distributions are highly different. More
importantly, information is processed step-by-step in serial
structures. Thus, there is a potential for information loss or
degradation, especially when one component (like the back-
bone) overshadows or fails to convey crucial details that
would benefit the classifier.

Therefore, we propose setting up a parallel structure of a
supervisor and an inter-learning model for personalization
and generalization, respectively. Our proposed algorithm
is termed FedSimSup (Federated learning by considering
Similarity across clients under a local Supervisor). The con-
tributions of our work are summarized as follows.

e We propose a novel supervisor-assisted pFL framework.
Each client is assigned a local unique supervisor to mon-
itor the information contained in the aggregated inter-
learning model received from the server. By utilizing a
parallel structure, each part of the model is better able to
preserve the original input data. The two branches en-
sure that distinct features or characteristics of the data are
captured independently, thereby minimizing the risk of
inaccurate final predictions that can arise from inconsis-
tencies between different components, as seen in a serial
structure.

We propose leveraging the local data distribution of each
client to enhance model training. By evaluating the simi-
larity based on the differences in local data distribution
between clients, each client can selectively learn from
others. Specifically, we maintain an inter-learning model
on the server for each client. If a client does not partic-
ipate in a particular round of communication, we aggre-
gate the inter-learning models of that client and others, us-
ing similarity values to update the client’s inter-learning
model.

We conduct experiments by adopting different supervisor
architectures across various clients. Compared to the se-
rial structure, the parallel architecture of our FedSimSup
enables clients to build supervisor architectures tailored to
their specific needs and computational capabilities, offer-
ing greater flexibility when computational resources vary
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across clients.

2. Related Work

Personalized Federated Learning is an effective way to
address data heterogeneous settings. Existing methods can
generally be categorized into several types. First, data aug-
mentation [13, 20, 40] aims to reduce data heterogeneity,
enabling the use of standard FL to address the problem.
Following this, regularization [1, 16, 26, 42] prevents client
overfitting and accelerates global convergence, enhancing
the overall robustness of the model. Additionally, meta
learning [14, 21, 38] enables the global model to achieve
personalization more quickly on the client side. Further-
more, multi-task learning [19, 41] treats each client as a dif-
ferent task and leverages relationships between them to han-
dle heterogeneous settings. Moreover, clustering [3, 15, 37]
divides clients into different homogeneous groups, within
which FL is performed more effectively. Knowledge distil-
lation [22, 25, 45, 48] transfers knowledge from the server
or other clients to a specific client, ensuring that each client
benefits from shared insights. Model interpolation learns
personalized models by combining local models with the
global model, thus balancing the model’s generalization and
personalization capabilities. Along this line, Hanzely et
al. [16] design a new objective function that incorporates
a penalty term with a coefficient. Deng et al. [12] pro-
pose a method to find an optimal combination of local and
global models, aiming to enhance model performance un-
der diverse client data distributions. Chen et al. [6] propose
elastic aggregation, which performs adaptive interpolation
based on the sensitivity of the model parameters, allowing
for dynamic adjustments according to the specific needs of
each client.

Parameter decoupling refers to separating the model’s
parameters and implementing stepwise training, with one
set of parameters being globally shared and another set
trained locally, thereby enhancing the personalization capa-
bility. There are several main decoupling methods. The first
method divides the network into base layers and personal-
ized layers [2, 31, 49], with the base layers being globally
shared to obtain the generalized feature information, while
the personalized layers are trained only locally to allow dif-
ferent clients to process the features in their own ways. The
second method uses embeddings from each client as per-
sonalization layers [4, 30], aiming to extract unique fea-
tures to be processed by the global model. Other meth-
ods, like [28], propose FedRAP, which learns a global view
and a personalized view locally on each client to achieve
personalization. Parameter decoupling reduces the amount
of transmitted parameters, thereby decreasing communica-
tion overhead to some extent. Although parameter decou-
pling has demonstrated its effectiveness in multiple aspects,
it still faces challenges in handling scenarios with extreme
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Figure 1. The main framework of FedSimSup. During each communication round, the server distributes the corresponding inter-learning
models to the participating clients. These clients train their inter-learning models under the supervision of the local supervisor. Once the
communication concludes, the inter-learning models are uploaded to the server, while the non-participating clients aggregate their inter-
learning model with the trained inter-learning model based on similarity information.

data heterogeneity. Future research could explore more ef-
ficient decoupling strategies to optimize the performance of
federated learning.

As mentioned above, due to data heterogeneity, each
client’s model is complemented by the data of other clients
with different weights. As a subfield of pFL, there is
also a line of research that manages to address poten-
tial conflicts of interest between competitive clients when
FL is adopted to provide personalized models to clients
[7,8, 29, 44, 46, 52].

3. Method

3.1. Problem Formulation

In this work, we assume supervised federated learning with
a total of n clients, each having its own Non-IID distributed
dataset D; = {(af,9}), («h,98),..., (¢}, ,¥8)} C
X x Y, fori € {1,2,...,n}, where m; is the amount of
data for client . We specifically focus on statistical het-
erogeneity, i.e., the differences in data distributions across
clients in this work. To model this, we use Dirichlet [17]
and Pathological distributions [33], which are commonly
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employed to simulate Non-IID data scenarios (detailed par-
titioning methods are provided in Sec. 7.2 in the Appendix).

The model of each client gy, : X — ) maps the input
' € X to predict the label g, () € Y, which is compared
to the true label corresponding to y; € Y. The local models
gp, are the same in standard FL, but differ in pFL. 0; € ©
represents the model parameters. The parameters of each
client’s model 6; are trained based on its local dataset by
minimizing the following objective function:

m;

_ 1 o
min L(D;, 0;) = Ezé(qa(%),yﬁ) ) ey
(2 J:1

0,€0
where ¢ : Y x Y — Ry is the loss function that mea-
sures the degree of inconsistency between the predicted la-
bels gp, () and the true labels .

The server distributes the model to clients, who then train
the model locally using the local objective function Eq. (1).
After training, the clients upload their models to the server
for aggregation [33]:

g1 — Eie/\[(t) mﬂf

) 2
Zie./\/(t) my



where 6! is the model of client  after completing local train-
ing in the ¢-th communication round, and N (¢) denotes the
set of clients participating in the ¢-th communication round.

Standard FL struggles with slow convergence and subop-
timal model performance when dealing with Non-IID data
across clients. Given that pFL has proven effective in ad-
dressing this challenge by learning personalized models for
each client, we build upon the pFL framework and present a
new, highly effective solution for handling statistically het-
erogeneous data, called FedSimSup. The details of our ap-
proach are outlined in the following sections.

3.2. Learning under Supervisor

In this work, instead of using a serial model as in exist-
ing pFL approaches, we divide the model into two paral-
lel parts. The first part is the supervisor, which is trained
locally but not uploaded. The second part is the inter-
learning model, which is uploaded and aggregated. The role
of the supervisor is to guide the local model during train-
ing by providing oversight based on the previously learned
local data. It helps prevent the model from deviating too
much from its fit to the local data while still incorporating
beneficial global updates. The supervisor ensures that the
inter-learning model maintains a balance between leverag-
ing global information and staying aligned with the local
distribution.

The local objective function also changes from Eq. (1) to

sieglig}ie@ L (D;,s;,0;)
L m i i\ i )
= EZj:lz (q91 (lj) + qs; (xg) 7yj) )
where s; € S is the parameters of supervisor and §; € ©
is the parameters of inter-learning model. Here, we simply
sum the results of the two models. The training process of
our model is divided into two parts:

glégL (D, si,0;), “)
gflelfelL(DmSi,ai)~ (5

The purpose of Eq. (4) is that if the global model contains
more beneficial information, the supervisor will undergo a
significant update to better assist the training process. How-
ever, if the global model is not beneficial to the local data,
the supervisor has already been fitted to the local data, we
hypothesize that it will undergo only minor updates or re-
main unchanged. The purpose of Eq. (5) is to train the
model under the supervision of the supervisor, ensuring that
after acquiring global information, it becomes more fitted to
the local data.

For demonstration purposes, we directly scale down the
inter-learning model proportionally to create the supervisor,

which then assists the inter-learning model in its usage. In
practice, the architecture of the supervisor does not need
to be the same for every client. Each client can indepen-
dently design their own supervisor architecture according to
their specific needs and capabilities. The server only needs
to manage the inter-learning model but not the whole local
model. This approach significantly enhances the personal-
ization capability of the model while simplifying manage-
ment. We demonstrate the performance results when clients
adopt different supervisor structures in Sec. 5.2. The effect
of the supervisor is verified in Sec. 7.5.

3.3. Utilization of Similarity Information

We establish an inter-learning model for each client based
on their local data distribution. At the end of a local
training round, we perform the following operations on all
clients’ inter-learning models (the following operations are
performed on the inter-learning model, unrelated to the su-
pervisor).

If a client ¢ participates in this round of communication,
then the inter-learning model ! ™" of the i-th client at ¢ + 1
round is set to the updated 6! after training without aggre-
gating information from other clients

oIt = ¢!, if i € N (). (6)
If the client ¢ does not participate in this round of commu-
nication, then 051" of the i-th client is updated as follows.

0 gLifi ¢ N(1),

Pt — (1 — at) ¢ t
i ( az) 4 + a; , Z N S
JEN(t) FHIEN(B) =1

(7

o = N, 3)

N = 2N ™ ©)
b Yjenwyms T K my
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t= v 10
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where a! is a parameter that represents how much the cur-
rent client is to learn from the clients participating in the ¢-th
communication. It is related to the volume of data and the
number of communication rounds. \! measures the amount
of data, calculated based on the ratio of the amount of lo-
cal data to the total amount of data of clients participating
in the ¢-th communication, which aligns with the original
standard FL concept. K is the number of clients partici-
pating in communication in each round. 3¢ is influenced by
the current number of communications rounds. In the initial
stages, it is set to 1, in which case a! will only be affected by
the amount of data. In later stages, to ensure convergence,
Bt gradually decreases under the control of parameters C



Algorithm 1 FedSimSup
Input: Dataset distributed across n clients D
{D1,Dy---D,}, client participating rate r, the global
communication rounds 7, inter-learning model epochs 7y,
supervisor epochs 7

1

0

. Initialize 69,609 --- 09,59, 9. 50

2. fort=1,2---T do

32 N (t) « Server randomly samples maz (1,nr)
clients

4 for Eachclienti € N (t) do

5: Client 7 initializes - « s/~

6: Server sends 9;71’7" to client ¢ as 95’0

7: s 9™ « LocalUpdate(s'®,01°, f;, D)

8: Client ¢ sends updated inter-learning model
09" to server

9: end for

10.  for Each clienti ¢ N (t) do

1 Set 570 < 57T

12: Aggregate 0™ by Eq. (7)

13: end for

14: end for

15:

16: LocalUpdate(s®, 0°, f, D):

17: for j =1,2--- 75 do

18: sl SGD (f(s771,6°),s771)

19: end for

20: forj =1,2--- 79 do

21: 67 « SGD (f(s™,0771),0971)

22: end for

23: return s”, 07°

and ~, where C' and y are constant values and 7" denotes
global communication rounds. s;; € [0, 1] is the value that
measures the similarity between the client ¢ and the client j.
A higher value of s;; indicates a greater similarity between
client ¢ and j. In Eq. (7), we aggregate the inter-learning
models of clients who do not participate in communication,
based on the volume of data, the similarity to the clients
participating in communication, and the current number of
rounds of communication. By doing this, we can ensure
that clients who do not participate in the training in each
round can still benefit from the clients who participate in
the training, thereby promoting effective global information
aggregation. In this work, the similarity information is rep-
resented by the cosine similarity between the proportions of
each client’s data-label distribution, which we believe bet-
ter reflects the intrinsic similarity between clients. This re-
quires us to collect the proportions of the label of the clients
at the beginning of the entire task and to compute the simi-
larity between each client on the server, as shown in Fig. 1.
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3.4. FedSimSup Algorithm

We provide the pseudocode for FedSimSup in Algorithm 1,
and below we will explain it in detail.

Local Update. In each communication round, clients
are randomly selected to participate based on a fixed partic-
ipation rate  and receive the inter-learning model 6 sent by
the server. Client ¢ participates in the ¢-th round, receives
the inter-learning model 6?, and has a supervisor s! stored
locally. The local supervisor is updated for 7, epochs.

).

where j € (1,2,---75), and 9?’0 denotes the inter-learning
model of client ¢ that has not been updated. we use Stochas-
tic Gradient Descent (SGD) [36] to update s?] based on the
gradient of sf] . Then, the inter-learning model is updated
within round 7y:

St,j—l

st SGD (f(s197,0°), 5! (11)

00/« SGD (f(si7. 0077107 a2
where j € (1,2,---7y). After completing these two pro-
cesses locally, the client ¢ saves the supervisor sz and up-
loads the inter-learning model 0; '™ for aggregation of other
clients.

Server Update The server receives the inter-learning
models uploaded from client set A (¢), without modifying
them. For clients who did not participate in the communi-
cation, it aggregates their models based on Eq. (2), leverag-
ing similarity information to learn from the clients that have
participated in this round of training.

4. Convergence Analysis of FedSimSup

4.1. Assumptions

We make the following standard assumptions that are
widely used in convergence analysis in federated learn-
ing [14, 16, 26, 27, 35].

Assumption 1 (Bounded Loss). There exists constant F'* €
R such that for any client i € {1,...,n}, f; is bounded
from below by F*, f;(s,0) > F* Vs, 0.

Assumption 2 (Smoothness). There exists L > 0 such
that for any client i € {1,...,n}, Vsfi(-,0), Vsfi(s,-),
Vofi(-,0) and Vo f;(s,-) are L-Lipschitz.

Assumption 3 (Bounded Gradient). Foralli € {1,...,n},
the gradient of loss function f; is bounded. There exists
G > 0 such that

IVsfi(s,0)] < G,

Assumption 4 (Unbiasedness). SGD estimator is unbiased.
There exists o > 0 such that for any client i € {1,...,n},

E[SGD(f:(s,0),s)] = Vsfi(s,0), Vs,0,
E[SGD(f;(s,0),0)] = Vo fi(s,0), Vs,0.

(14)



Assumption 5 (Bounded Variance). The variance of SGD
estimator is bounded. That is, for any clienti € {1,...,n},

E[ISGD(fi(s,0), 5) — Vafils,0)I] < 0%, ¥5,0. (15)
E[IISGD(fi(5,0).6) = Vo fi(5.0)|°] <0, ¥s,6. (16)

4.2. Main Theorem

With the above assumptions in Sec. 4.1, we present the con-
vergence of the proposed FedSimSup. The proof of the the-
orem is given in Sec. 8.

Theorem 1 (Convergence of FedSimSup). Suppose As-
sumptions | to 5 hold, and the learning rates in FedSimSup
are chosen as

nt =n/VTLr,, n=n/VTLt a7

with n < 1. The hyperparameters of FedSimSup are chosen

asy € (0,1/2) and C > 0. Then we have the following
bound for all client i.

l:[il [HV fi(sh? 9t’0)H2+2HV fi(s® et,o)HT
Ti:o AR 0Ji\%5 > Y4

L 0,0 50,0 * 3772G2 7702
< a7y S0 ) ED ot e
1 —7r)\G?
+(;)G<CQ(127)T2711nT
T

+C?* (142 C)TH ! + 30T+ 1/T — 02T272>

1—r)\n*G?
L A=)

o7 (3CT373/2 +9C°T* =32
.

+3CT 3% — 3O4T47‘9/2) :

(18)
Here, 2/(1/7s + 1/19) and X; =
max| | c1,....n} (O jen M5)/ o jen My + Kmy).

F =

The left-hand side of Eq. (18) is the average over time
of a weighted sum of the gradient norm. Convergence is
measured in the rate at which this quantity decays to zero.
We note that Theorem 1 and Fig. 2 together demonstrate
a trade-off between generalization and convergence speed.
As shown in Fig. 9 in the Appendix, larger values of C'
and y encourage inter-learning models to incorporate more
global information, enhancing their generalization perfor-
mance. In contrast, smaller values of C' and ~y direct the
local models to prioritize private data, leading to faster con-
vergence. This highlights the need for careful hyperparam-
eter selection. Additionally, clients with more private data
(smaller \;) require less global information and therefore
achieve faster convergence.
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5. Experiments

5.1. Experimental Settings

Datasets. We evaluate FedSimSup on classification tasks
using CIFAR10, CIFAR100 [23], FEMNIST [5], and IM-
AGENET [11]. For CIFAR10 and CIFAR100, we simulate
a Non-IID setting by partitioning data based on a Dirich-
let distribution with o« = 0.1 and o = 0.5, where a lower
« indicates a greater heterogeneity. FEMNIST and IMA-
GENET are partitioned using a Dirichlet distribution with
a = 0.1. To our knowledge, this is the first evaluation
of pFLs on IMAGENET. We compare the performance of
FedSimSup and competing algorithms on CIFARI10, CI-
FAR100, and IMAGENET under the Dirichlet distribution,
as well as under the Pathological distribution for CIFAR10
and CIFAR100. Further details on data partitioning and the
datasets are provided in Sec. 7.1 and Sec. 7.2 in the Ap-
pendix.

Baselines. We compare FedSimSup with eight state-
of-the-art methods, including FedAvg [33], FedProx [26],
Per-FedAvg [14], FedRep [10], FedProto [45], FedPac [48],
pFedFda [32] and FedAs [50]. Additionally, we also com-
pare our FedSimSup with the performance of conducting
local training separately on each client. Introduction of the
baselines, experimental settings of baseline, and training
details are provided in Sec. 7.3.

Model. Like most pFL approaches, FedSimSup uses
LeNet-5 [24] as the local model for each client, consider-
ing the communication cost. LeNet-5 consists of two con-
volutional layers and two linear layers. In fairness, we use
LeNet-5 as the model for all the algorithms in this work.
Since our FedSimSup includes both a supervisor and an
inter-learning model in each client. Thus, to ensure that
the number of parameters of FedSimSup is almost the same
as that of competing algorithms, we proportionally reduce
the size of LeNet-5 to approximately one-sixth of that of the
inter-learning model.

5.2. Experimental Results

Performance comparison. On the FEMNIST and IMA-
GENET datasets under a Dirichlet distribution, as shown in
Tab. 1, FedSimSup consistently outperforms all other meth-
ods on both datasets. We observe that FedAvg performs
surprisingly well on the FEMNIST dataset, likely because,
despite the non-IID nature of the data, clients share common
visual patterns such as digits and letters. Tab. 2 and Tab. 3
show the performance comparison in the CIFAR10 and CI-
FAR100 datasets under the Dirichlet distribution and the
Pathological distribution, respectively. In the Dirichlet dis-
tribution, our FedSimSup method consistently outperforms
all other methods across both the CIFAR10 and CIFAR100
datasets, achieving the highest accuracy in all cases. In the
Pathological distribution, although the accuracy of all meth-



Local FedAvg FedProx  Per-FedAvg  FedRep FedProto FedPac pFedFda FedAs FedSimSup
FEMNIST  .660(.003) .797(.023) .742(.017)  .025(.04)  .812(.027) .099(.06) .782(.014) .773(.004) .764(.006) .843(.006)
IMAGENET  .133(.002) .094(.033) .089(.024)  .013(.005)  .209(.007) .127(.013) .132(.004) .212(.005) .211(.003) .224(.008)

Table 1. Accuracy comparison on FEMNIST and IMAGENET under Dirichlet distribution with o = 0.1 (best valued per setup in bold).

CIFAR10 CIFAR100

No. of Clients (Dir) ~ 100(0.1)  50(0.1)  100(0.5)  50(0.5)  100(0.1)  50(0.1)  100(0.5)  50(0.5)
Local 863(.001) .853(.030) .588(.004) .611(.003) .399(.002) .415(.006) .175(.003) .209(.002)
FedAvg (2017)  .276(.026) .341(.058) .484(.015) .506(.028) .191(.006) .189(.009) .224(.005) .252(.010)
FedProx (2020)  .275(.023) .317(.039) .488(.011) .509(.028) .184(.006) .184(.008) .210(.007) .244(.008)
Per-FedAvg (2020)  .774(.005) .750(.024) .368(.006) .464(.015) .038(.001) .103(.002) .016(.001) .003(.001)
FedRep (2021)  .875(.009) .840(.053) .706(.011) .718(.015) .454(.008) .497(.020) .245(.009) .312(.011)
FedProto (2022)  .865(.001) .828(.030) .592(.004) .612(.002) .407(.002) .424(.003) .173(.002) .213(.002)
FedPac (2023)  .839(.014) .787(.047) .599(.017) .603(.033) .348(.006) .398(.023) .178(.008) .230(.006)
pFedFda (2025)  .878(.006) .867(.005) .703(.009) .714(.005) .463(.008) .509(.005) .307(.006) .332(.009)
FedAs (2024) 874(.003) .865(.006) .712(.004) .720(.004) .467(.005) .512(.004) .316(.005) .342(.008)
FedSimSup (Ours) .892(.002) .882(.004) .725(.005) .736(.006) .503(.004) .546(.003) .331(.006) .385(.005)

Table 2. Accuracy comparison on CIFAR10 and CIFAR 100 under Dirichlet distribution (best valued per setup in bold).

ods is generally lower compared to the Dirichlet case, our
FedSimSup still leads the performance. Methods like Fe-
dRep and FedProto show moderate performance, but are
still outperformed by newer methods like FedAs (2024) and
pFedFda (2025) in some cases. These results underscore the
superior effectiveness of FedSimSup in federated learning
tasks, particularly in the Dirichlet distribution setup.

We also compare the convergence speeds of different
methods. In Fig. 2, we present the accuracy changes of vari-
ous methods under Non-IID distributions for CIFAR10 and
CIFAR100, using the Dir (0.1) setting over 1000 commu-
nication rounds. On the CIFAR10 dataset, all methods ex-
hibit faster convergence, except for FedAvg and FedProx.
Notably, our proposed FedSimSup achieves the best per-
formance. In the more challenging CIFAR100 task, which

pFedFda
—— Fedas
FedSimSup

00 3 500

Fedsimsup

0 000 00 000

(c) Accuracy curve on IMAGENET (d) Accuracy curve on FEMNIST

Figure 2. Accuracy curve along global training rounds.
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involves a larger number of categories, FedSimSup shows
a slower initial improvement compared to other methods.
However, it eventually catches up and surpasses the others,
highlighting its robust learning capabilities, particularly in
settings with a higher number of categories. We provide
the accuracy curves on CIFAR10 and CIFAR 100 under all
Non-IID settings in Fig. 7 and Fig. 8 in the Appendix.

Different Supervisor Architectures. To demonstrate
the performance of FedSimSup with different supervisor
architectures across various clients, we allow each client
to randomly select one of three supervisor architectures: a
Transformer, a CNN, or LeNet-5. This variant of FedSim-
Sup, where clients use different supervisor architectures, is
termed FedSimSup-TCL. We refer to the average accuracy
achieved by the subset of clients using the Transformer,
CNN, and LeNet-5 as FedSimSup-T, FedSimSup-C, and
FedSimSup-L, respectively.

Tab. 4 presents a performance comparison between Fed-
SimSup and FedSimSup-TCL. We use a pre-trained Trans-
former, which explains the competitive performance of
FedSimSup-T. We also note that the overall performance
of FedSimSup-TCL is slightly lower than that of FedSim-
Sup, which is an inevitable consequence of model hetero-
geneity. However, the performance gap is not substantial,
and some clients achieved better results by selecting mod-
els better suited to their individual needs. Therefore, we
conclude that our proposed FedSimSup is flexible enough
to accommodate different model architectures for different
clients based on their computational resources and require-
ments, enabling them to achieve improved performance and
faster inference.

Ablation Studies. To demonstrate that similarity-based
model aggregation can accelerate the convergence speed,
we replace Eq. (7) with a direct model average as in Fe-



CIFAR10 CIFAR100

No. of Clients (Shard) 100 (2) 50 (2) 100 (5) 50 (5) 100 (5) 50 (5) 100 (20) 50 (20)
Local 859(.001) .881(.001) .646(.004) .681(.002) .664(.002) .647(.003) .275(.002) .340(.006)
FedAvg (2017) 348(.024) 312(.038) .484(.021) .478(.033) .119(.007) .124(.012) .192(.006) .294(.011)
FedProx (2020) 340(.021) .295(.032) .483(.019) .481(.031) .111(.008) .117(.011) .184(.007) .184(.012)
Per-FedAvg (2020)  .515(.001) .675(.012) .290(.001) .476(.050) .107(.001) .242(.023) .064(.001) .069(.002)
FedRep (2021) 858(.004) .871(.009) .735(.008) .759(.010) .614(.010) .657(.016) .380(.007) .450(.010)
FedProto (2022) 858(.001) .876(.001) .638(.002) .668(.001) .652(.003) .642(.003) .276(.003) .328(.002)
FedPac (2023) 839(.016) .857(.015) .648(.014) .658(.002) .513(.014) .572(.018) .201(.004) .330(.009)
pFedFda (2025) 862(.007) .871(.009) .746(.003) .763(.005) .642(.007) .683(.002) .443(.003) .440(.005)
FedAs (2024) 853(.004) .881(.007) .742(.002) .760(.006) .630(.002) .643(.005) .427(.005) .442(.004)
FedSimSup (Ours)  .866(.006) 877(.008) .757(.005) .757(.002) .637(.005) .652(.004) .464(.006) .480(.007)

Table 3. Accuracy on CIFAR10 and CIFAR 100 under Pathological distribution (best valued per setup in bold).

CIFAR10 CIFAR100
clients num (Dir) 100 (0.1) 50 (0.1) 100 (0.5) 50 (0.5) 100 (0.1) 50 (0.1) 100 (0.5) 50 (0.5)
FedSimSup-T  .898(.006) .908(.003) .693(.008) .721(.007) .504(.003) .548(.004) .293(.007) .354(.005)
FedSimSup-C  .835(.004) .864(.005) .680(.008) .707(.006) .432(.005) .437(.004) .244(.008) .296(.003)
FedSimSup-L .851(.007) .843(.004) .664(.012) .693(.004) .445(.003) .465(.007) .227(.003) .320(.001)
FedSimSup-TCL .861(.005) .871(.005) .679(.009) .707(.005) .460(.003) .482(.006) .254(.007) .323(.004)
FedSimSup 892(.002) .882(.004) .725(.005) .736(.006) .503(.004) .546(.003) .331(.006) .385(.005)
Table 4. Experiments of using different supervisor architectures.
80 on CIFARI100 under Dirichlet distribution with o = 0.1.
60 As shown in Fig. 4, the performance was subpar, demon-
a0 strating the effectiveness of our parallel architecture. More
20 detailed ablation experiments are provided in Sec. 7.4 in the
0 20 40 60 80 100

— FedSimSup
Figure 3. The accuracy with and without similarity information on
CIFAR10

0 /_/_/\//_
) /

0 200 400 600 800
FedSimSup with serial architecture

FedSimSup without similarity information

— FedSimSup
Figure 4. The accuracy with and without parallel architecture on
CIFAR100

dAvg. In Fig. 3, we compare the impact of using similarity
information versus not using it on the convergence speed.
The experiment is carried out on CIFAR10 in Dirichlet dis-
tribution with @ = 0.1, and we display the results for the
first 100 epochs. The results show that the use of similarity
information accelerates the convergence speed, demonstrat-
ing the effectiveness of our proposed similarity measure-
ment and aggregation strategy. Furthermore, to demonstrate
the effectiveness of the parallel structure in FedSimSup, we
replace the parallel structure with a serial model, as in Fe-
dRep [10]. Specifically, we adopt the inter-learning model
on each client and increase the number of parameters to en-
sure fairness. Only the backbone of the model is transmitted
between the server and the clients. We conduct experiments

Appendix.

Parameter Sensitivity Analyses. In the model aggre-
gation process of FedSimSup (see Eq. (7)), two critical pa-
rameters, C and -, are involved. These parameters work to-
gether to control ! in Eq. (7), which determines how much
the current client 4 learns from other clients. To analyze
their impact on performance, we evaluate four pairs of C
and ~y. Specifically, we set C' and ~ to (10, 1/3), (20, 2/5),
(40, 2/5), and (40, 3/7). The results on CIFAR10 and CI-
FAR100, shown in Fig. 9 in the Appendix, demonstrate that
setting C and ~y to 40 and 3/7 yields the best performance.

6. Conclusion

Our proposed FedSimSup allows each client to employ their
own supervisor with flexible architectures to assist local
training, preventing the model from deviating too much
from the local data. Additionally, we utilize the similarity
information to standardize the way of clients learning from
other clients’ information. Overall, FedSimSup provides
better performance in handling Non-IID scenarios, while al-
lowing clients to customize their model architectures.
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