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Figure 1. Preacher can generate long video abstract conditioning on input paper with diverse topics.

Abstract

The paper-to-video task converts a research paper into a
structured video abstract, distilling key concepts, methods,
and conclusions into an accessible, well-organized format.
While state-of-the-art video generation models demonstrate
potential, they are constrained by limited context windows,
rigid video duration constraints, limited stylistic diversity,
and an inability to represent domain-specific knowledge. To
address these limitations, we introduce Preacher, the first
paper-to-video agentic system. Preacher employs a top-
down approach to decompose, summarize, and reformulate
the paper, followed by bottom-up video generation, syn-
thesizing diverse video segments into a coherent abstract.

*Work done during an internship at DAMO Academy.
†Contributed equally. Ling Yang, yangling0818@163.com
‡Corresponding Authors: Hongyan Li, Mengdi Wang

To align cross-modal representations, we define key scenes
and introduce a Progressive Chain of Thought (P-CoT) for
granular, iterative planning. Preacher successfully gener-
ates high-quality video abstracts across five research fields,
demonstrating expertise beyond current video generation
models. Code will be released at: https://github.com/Gen-
Verse/Paper2Video

1. Introduction
According to Scopus data *, over three million scientific pa-
pers have been published since 2022, with an annual rise.
As the volume of academic publications continues to grow,
the need for effective dissemination and visibility has be-
come increasingly critical. Among various dissemination
strategies, video abstracts [18] offer a compelling means of

*https://www.elsevier.com/products/scopus
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communicating research findings by integrating visual and
auditory elements, thereby enhancing comprehension and
extending outreach. Studies have shown that papers ac-
companied by video abstracts receive 15% more citations
[4, 14, 75]. However, producing video abstracts remains
resource-intensive, requiring both domain-specific exper-
tise and professional video production skills, making it a
costly process.

Given the recent advancements in generative artificial in-
telligence for video generation [34, 35, 37, 50], develop-
ing an end-to-end video abstract generation model presents
a compelling alternative to the high costs of manual pro-
duction. While current methods can generate long-form
videos exceeding 60 seconds [35], they remain unsuitable
for video abstract generation. First, contemporary methods
exhibit inadequate capability in directly processing research
papers containing embedded multimodal elements and long
contexts. Second, video generation frameworks trained on
large-scale real-world video datasets [44, 45] exhibit rigid,
homogeneous visual style, making them ill-suited for cap-
turing the specialized representational demands of diverse
academic disciplines.

To address these issues, we introduce Preacher, a novel
paper-to-video agentic system integrating large multimodal
models (LMMs), and specialized generative models. We
introduce several key technologies in Preacher: (i) We con-
struct a top-down and bottom-up structure to support the
complicated modality transition. In the top-down struc-
ture, Preacher decomposes and reformulates the paper as
“key scenes”, structured textual representations that encap-
sulate essential content while including visual descriptions
to guide subsequent video generation. Serving as an in-
termediate bridge between textual and visual modalities,
these key scenes ensure accurate content representation. In
the bottom-up structure, key scenes are sequentially trans-
formed into video segments, which are then assembled into
a coherent video abstract. This structure enables precise
collaboration between LMMs and generative models, ef-
fectively mitigating context window limitations while en-
suring high-quality video generation. (ii) To enhance key
scene planning and counteract the performance degradation
of LMMs when handling long contexts [31, 32] or low-level
detailed planning [50, 66], we introduce a progressive chain
of thought (P-CoT). This method enables incremental fine-
grained planning, improving coherence and scene accuracy.
(iii) Preacher integrates video generation models with dis-
tinct styles, alongside Python-based professional visualiza-
tion tools, allowing for the adaptive presentation of special-
ized content in the most appropriate video format. By align-
ing content planning with style selection, Preacher ensures
that domain-specific concepts are effectively conveyed in
academically relevant visual representations.

Through the top-down and bottom-up structure, multi-

agent collaboration is effectively facilitated, generating
high-quality video abstracts. To conduct a systematic eval-
uation, we employ an LMM to comprehensively evaluate
the generated video abstracts across multiple dimensions,
including accuracy, professionalism, aesthetic quality, and
alignment with the input paper. We separately evaluate key
scene planning and video generation quality, enabling di-
rect comparison with alternative approaches. Preacher was
tested on papers from five research fields and compared
against state-of-the-art LMMs and video generation frame-
works. Empirical results indicate that Preacher outperforms
existing methods in both planning and generation, further
substantiating its efficacy and applicability.

Our main contributions are as follows:
• We introduce Preacher, the first agentic system to au-

tonomously convert papers into video abstracts.
• We develop a top-down and bottom-up structure to aug-

ment agent collaboration, and introduced key scenes
bridging the gap between disparate modalities, with P-
CoT enabling fine-grained key scene planning.

• We validate Preacher across five research fields, demon-
strating its capability as an end-to-end solution that miti-
gates the high costs of manual video production and en-
hances knowledge dissemination.

2. Related Work

2.1. Automatic Knowledge Summary
With the advancements in LMMs [56, 67], including en-
hanced text comprehension and expanding context lengths
[10, 13, 28], research has focused on leveraging LMMs
for automated knowledge extraction and summarization
[29, 43, 62]. [24] propose an end-to-end review-generation
pipeline with preprocessing, modeling, and evaluation
stages. Similarly, AutoSurvey [58] utilizes LMMs to re-
trieve and synthesize existing literature, while Tian et al.
[49] introduced techniques such as clustering, dimension-
ality reduction, and stepwise prompting to enhance knowl-
edge extraction from research papers. Agentic systems have
also been explored for automated paper reviewing [25, 73].
However, existing methods primarily output textual sum-
maries, which often fail to effectively convey key visual el-
ements such as figures, charts, and experimental workflows,
limiting the accessibility and impact of research findings.
To address this limitation, we propose automatically gener-
ated video abstracts as a more intuitive and comprehensive
alternative to traditional textual summaries.

2.2. Conditional Video Generation
Conditional video generation has been a core topic in ma-
chine learning research. Early models were constrained to
16-frame outputs [20], with subsequent approaches incor-
porating text-to-image diffusion models [41, 55, 65, 66] to
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extend generation length [26, 61]. Beyond text-based con-
ditioning, image-conditioned generation has emerged as a
complementary approach. VideoComposer [57] integrates
images as control signals into the diffusion process, and
VideoCrafter2 [6] leverages CLIP-derived textual and vi-
sual embeddings for cross-attention. However, these meth-
ods primarily produce simple motions and struggle with
frame consistency in extended sequences, which are fur-
ther improved in StreamingT2V [19] and VideoTetris [50].
Recent efforts have addressed these limitations by adopting
regression-based conditioning, leveraging previous frames
for improved temporal coherence in long-form video syn-
thesis [50, 64, 69, 70].

While closed-source models remain state-of-the-art in
performance [33, 35, 37], enabling generation at scales of
tens of seconds, they cannot process research papers as di-
rect inputs and fail to accommodate the stylistic diversity
required for video abstracts. To bridge this gap, we inte-
grate LMMs with a suite of heterogeneous video generation
tools, forming a collaborative framework capable of pro-
cessing research papers as input and producing long-form
video abstracts in varied, contextually appropriate styles.

2.3. Agentic Systems

Recent advancements in LMM-based agentic system have
demonstrated reasoning and planning capabilities ap-
proaching human-level performance, aligning with the ex-
pectations for autonomous agents—systems capable of per-
ceiving environments, making decisions, and executing ac-
tions. Compared to single-agent approaches [1, 51], agen-
tic systems harness collective intelligence and specialized
expertise, enabling them to address complex challenges,
including advanced programming tasks [11, 21, 30] and
planning in physical environments [8, 17, 22, 46]. Sev-
eral studies explore agentic systems to enhance the capa-
bilities of generative models [2, 15, 59]. In video gener-
ation, DreamFactory [63] employs multi-agent collabora-
tion and keyframe iteration to ensure consistency and style
in long-form videos, while Mora [68] integrates human-in-
the-loop feedback to refine output quality. SPAgent [53] au-
tonomously orchestrates tools for video generation and edit-
ing through a structured three-step framework. Unlike ex-
isting approaches, our methodology advances agentic sys-
tems by introducing enhanced collaborative mechanisms,
enabling the execution of cross-modal tasks that exceed the
capabilities of a single agent.

3. Preliminary

Let P represent a complete and standardized academic
paper, consisting of text, equations, figures, and tables.
A video V is represented as a sequence of frames:V =
F1, F2, ..., FT , where each Ft corresponds to an image at
time step t. Video abstracts may even incorporate mul-

tiple styles as a special kind of video [18] †. For clar-
ity, we define V specifically as a video abstract:V =
V s1
1 , ..., V sn

i , ..., V sN
H , where sn ∈ S and S is the space

of all possible video abstract styles, and V sn
i represents a

segment of a video abstract with a specific style.
Formally, we aim to learn a generative model G that

maps P into video abstract V within the video space V =
G(P ). We construct an agentic system, decomposing G
into a set of agents A, each dedicated to a distinct subtask.
These agents collaborate with each other, ensuring the gen-
eration of stylistically diverse video abstracts.

4. Preacher

Preacher is a paper-to-video agentic system integrating
LMMs, LMMs, and diverse generative models. Sec. 4.1
outlines the architecture of the system and the specialization
of the agents. Sec. 4.2 details the key scene planning and
presents the progressive chain of thought to improve plan-
ning accuracy. Finally, Sec. 4.3 introduces how Preacher
utilizes key scenes to generate video abstracts.

4.1. Overview of Preacher
Top-Down and Bottom-Up Structure Most existing
cross-modal agentic systems employ a unified multi-step
pipeline for cross-modal tasks [53, 68, 71, 74]. However,
their performance is heavily dependent on existing text-to-
visual generation models, making them ineffective for pro-
cessing highly complex inputs. Inspired by prior research
[11, 21, 38], we decompose and summarize input papers
before feeding them into generative models. While these
summaries improve compatibility, the resulting videos are
often low-quality and semantically hollow. This limitation
arises from insufficient detail in the summaries, preventing
accurate reconstruction of key content, and from granular-
ity constraints that hinder contemporary models’ ability to
fully leverage CLIP-based cross-modal mechanisms [39].

To address these challenges, we introduce a top-down
and bottom-up framework, inspired by the U-Net architec-
ture [42]. In the top-down phase, the paper undergoes de-
composition and summarization into multiple raw scenes,
each encapsulating core content while omitting fine details,
serving as anchors for content segmentation. Analogous
to the U-Net encoder, where spatial resolution is reduced
while feature depth increases, we perform structured plan-
ning on these downsampled raw scenes, enriching them
with higher-dimensional information.

Unlike prompt augmentation [3], Preacher’s planning
process continuously references the original paper, ensuring
that the generated content maintains precise semantic align-
ment with the source material. The planning results termed
key scenes, not only enhance compatibility with Preacher’s

†https://www.animateyour.science/post/8-ways-to-make-a-video-
abstract
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Figure 2. Overview of Preacher. The summary agent Asum decomposes and summarizes the paper into H raw scenes. Subsequently, the
planning agent Aplan and video generation agents Agen then iteratively process these scenes, generating H corresponding video segments,
which are subsequently assembled into a complete video abstract. For clarity, Aform is omitted, with the detailed workflow provided in
Appendix B.3.

generation tools but also embed rich semantic information,
providing multi-dimensional guidance for subsequent gen-
erative processes Sec. 4.2.

Within the bottom-up structure, agents equipped with
video generation tools reconstruct the key scenes, generat-
ing both video and corresponding audio. Each video seg-
ment is synthesized from these elements, and upon comple-
tion, all segments are integrated into the final video abstract.

Agent Specialization Agent specialization allows agents
to collaborate on tasks that a single agent cannot complete.
We have six agents in the Preacher: the Summary Agent
Asum, the Format Agent Aform, the Scene Planning Agent
Aplan, the Text Reflection Agent Atref, the Video Reflection
Agent Avref, the Video Generation Agent Agen. A brief de-
scription of agents follows, with more details in Sec. 5.1.
• Summary Agent Asum: This agent employs LMMs, such

as GPT-4o [1] and Gemini [48], to understand, decom-
pose and summary the input paper.

• Format Agent Aform: This agent employs LLMs, such as
Llama [51, 52] to format the output from Asum, ensuring
the output of Asum is correctly structured as raw scenes.

• Scene Planning Agent Aplan: This agent employs LMMs,
same as Asum, and its task is to provide a more detailed
plan for each raw scene.

• Rule-based Reflection Agents Atref and Avref: There are
two reflection agents in Preacher: Atref and Avref. They
are both based on LMMs.

• Video Generation Agent Agen: Agen is composed of
LMMs and video generation tools, designed to generate
videos with key scenes. Agen is equipped with variable
video generation tools: the Python package, text-to-image
models [40, 41, 60], text-to-video models [33, 35, 37, 41,
60], talking heads generation models[7, 16, 47].

4.2. Automatic Planning of Key Scenes
Progressive CoT Planning As illustrated in Fig. 3, key
scenes comprise essential elements, including duration,
video style, audio content, video prompts, and correspond-
ing sources (e.g., specific sections, figures, or equations
from the original paper). Serving as an intermediary be-
tween the top-down and bottom-up structures, key scenes
facilitate seamless cross-modal representation alignment.
To ensure effective planning, we employ a multi-agent col-
laboration framework to systematically refine key scenes.

{r1, r2, ..., rH} ← Aform(Asum(P )) (1)
ki ← Aplan(ri, P ), i = 1, 2, ...,H (2)

The quality of a video abstract is highly contingent on the
effective planning of key scenes. However, LMMs exhibit
degraded performance in low-level planning tasks, partic-
ularly when handling long-context dependencies [32]. A
common issue is the generation of partially inappropriate
scenes, which, despite evaluation and re-execution, may
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Figure 3. (a) A schematic representation of the progressive chain of thought. The key scenes consist of multiple components requiring
systematic planning. The Scene Planning Agent Aplan devises a structured plan for each component, which is then evaluated by the Text
Reflection Agent Atref. Based on the reflection outcome, Aplan either advances to the next component using the existing plan or revises
the current component, iterating this process until all components are effectively planned. (b) The Generation Agent Agen utilizes the key
scenes to synthesize video segments. The elements enclosed within the green frame represent the structured components of the key scenes.

correct prior errors while inadvertently introducing new
ones. Additionally, after multiple rounds of re-planning,
LMMs may deviate from the original task objective due to
accumulated contextual drift from repeated reflections.

To address these limitations, we introduce the Progres-
sive Chain of Thought (P-CoT), a specialized CoT frame-
work that incorporates reflection mechanisms to enhance
planning coherence. As illustrated in Fig. 3(a), when plan-
ning across J components, tasks are assigned to Aplan se-
quentially in a simple-to-complex order, with one compo-
nent planned at a time.

k̂ ←

{
Aplan(ri, P ) if j = 1,

Aplan(ri, P, {kn
i |1 ≤ n ≤ j − 1}) else.

(3)

where {kni : 1 ≤ n ≤ j − 1} are the approved compo-
nents in the ith key scene and k̂ is the plan for the current
component. The agent focuses on the k̂ji until it has been
approved byAtref. OnceAtref(k̂) is approved, it is fixed and
passed to Aplan to plan the subsequent components:

kj
i ← k̂, j ← j + 1 if Atref(k̂)→ Approved (4)

If disapproved, Atref provides reflection to Aplan for re-
planning Eq. (3). This iterative process continues until all
components within the key scene are approved. The pro-
gressive complexity approach mitigates the challenges of
intricate scene planning while addressing inconsistencies
arising from iterative plannings.

Structured Communication between Agents While
natural language communication between agents offers
convenience, it is inherently unstable, as LMMs may intro-
duce ambiguities or incomplete responses [21]. In Preacher,

incompleteness in natural language-driven planning can
substantially impair the effectiveness of the subsequent
video generation agent. Agen.

To address this issue, we implement a structured fill-in
task format, where the Format Agent Aform populates pre-
defined dictionaries with the appropriate content. As illus-
trated in Fig. 2, both raw scenes and key scenes are stored
as structured json files, ensuring consistency and reliability.
Additionally, human users retain the flexibility to manually
create or modify json files, either substituting the top-down
structure or refining existing scene plans as needed.

4.3. Generating Professional Video Abstracts
While existing video generation models [35] are proficient
in generating conventional scenes and motions, they en-
counter challenges in producing content that requires spe-
cialized knowledge, such as mathematical concepts or the
structural representation of specific molecules. To mitigate
this challenge, we have integrated multiple video genera-
tion tools in Agen. Upon acquiring key scene with style
sn, Agen initially selects the appropriate video generation
tool gsn . Six video styles are supported in Preacher: “talk-
ing heads,” “general,” “static concept,” “molecular visual-
ization,” “slides,” and “mathematics.” More details about
these video styles can be found in Appendix B.1. If the
style of the video in the key scene is “molecular visualiza-
tion”, “slides” or “mathematics”, we utilize LMMs to gen-
erate the corresponding Python code and execute it. Given
the inherent susceptibility of this process to execution fail-
ures,Atref iteratively reviews and refines the generated code
to enhance its executability, ensuring successful script exe-
cution:
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OpenAI-o3-mini+Sora

Math Style, “Perturbation methods and regularity theorems are utilized to 

establish the existence of Hermitian-Yang-Mills connections in stable …”

Slides Style,“This paper proves that stable holomorphic vector bundles over 

compact Kähler manifolds admit Hermitian-Yang-Mills connections.”

Math Style.“The Hermitian-Yang-Mills equations govern the curvature of vector 

bundles over compact Kähler manifolds. “

“A visualization showing the evolution of the lunar magnetic field, 

comparing data from the Chang'e-6, Apollo, and Chang'e-5 missions… “

“A video showcasing the Chang'e-6 mission include animations of lunar landers, 

the surface of the Moon, and the collection of basalt samples …” 

“A scientific video introducing the evolution of the lunar dynamo, 

explaining its importance in understanding the Moon's deep interior …”

Static Style, “An elegant visualization of the Moon with overlays of its 

magnetic field”

General Style,“Animation of future lunar exploration missions, with rovers 

and landers collecting data on magnetic anomalies and exploring the …“

Slides Style, “Magnetic anomalies on the lunar surface and the landing sites 

of lunar exploration missions. Chang'e-6’s far side landing site is a  …”

“A video explaining the historical and mathematical background of the 

Hermitian-Yang-Mills connection, specifically its role in the study of …”

“The proof of existence of Hermitian-Yang-Mills connections in stable vector 

bundles. Use animations to show the process of solving the perturbed ...”

“A visualization that introduces the Hermitian-Yang-Mills equations. Show 

the specific equation and explain how it represents a critical point of …”

Preacher (Ours)

Preacher (Ours)

(a)

(b)OpenAI-o3-mini+Sora

Figure 4. Comparison of the output videos generated by OpenAI o3-mini [23] + Sora [35] and Preacher. The upper and lower sections
present frames in video abstract generated from (a) “On the Existence of Hermitian-Yang-Mills Connections in Stable Vector Bundles”
[54] and (b) “A reinforced lunar dynamo recorded by Chang’e-6 farside basalt”[5], respectively. A selection of frames has been chosen
for demonstration.

V sn
i = gsn(τ), τ, sn ∈ ki (5)

where τ denotes the code or the prompt, and gsn represents
the video generation model or the execution of Python code.

To enhance the quality of the video, Avref conducts a
thorough evaluation of the generated video segment. The
evaluation criteria include: (i) Accuracy, (ii) Professional-
ism, (iii) Alignment between the video content and the pa-
per. If the video segment does not meet the required stan-
dards, Avref will directly modify τ and initiate the regener-
ation process Eq. (5).

Once the video segment is generated, Agen will generate
the corresponding audio αi and integrate it with the video
segment. This process is repeated H times and video seg-
ments are concatenated to form the final video:

V ←
H⊕
i=1

Ṽ sn
i , Ṽ sn

i ← syn(V sn
i , αi) (6)

where syn(·) and
⊕

represents the synchronization and
video composition, respectively.

5. Experiments

5.1. Experimental Setup

Benchmark. To assess the effectiveness of Preacher, we
constructed a benchmark dataset comprising 40 research pa-
pers spanning five distinct fields: Mathematics, Molecular
Biology, Geology, Machine Learning, and Climate Science.
These papers were randomly selected using GPT-4o [72],
and the complete list is provided in Appendix A.

As no directly comparable baseline exists, we establish
an end-to-end paper-to-video generation pipeline by inte-
grating an LMM with a video generation model. Specif-
ically, OpenAI-o3-mini-high [36] serves as the scene de-
composition module, segmenting the input paper into multi-
ple key scenes, while state-of-the-art video generation mod-
els synthesize 5-second video segments from these scenes.
We evaluate multiple video generation models, including
the open-source methods StreamingT2V [19], VideoTetris
[50] and Wan-2.1-t2v-14B [60], as well as the closed-source
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Table 1. Performance comparisons on forty videos in terms of ten metrics. We report mean values and standard error. The best is in bold,
while the second best is underlined.

METHOD
GPT EVALUATION HUMAN EVALUATION CLIP ↑ AE ↑Accuracy ↑ Professionalism ↑ Aesthetic ↑ Alignment ↑ Accuracy ↑ Professionalism ↑ Aesthetic ↑ Alignment ↑

OpenAI-o3-mini [36] + StreamingT2V [19] 3.35(0.98) 4.03(0.87) 4.00(0.77) 3.60(0.91) 3.13(0.93) 3.83(0.96) 3.10(1.21) 3.87(0.86) 0.23(0.04) 4.99(0.67)
OpenAI-o3-mini + Wan 2.1-14B [60] 3.75(0.43) 4.53(0.48) 4.15(0.41) 4.33(0.69) 3.63(0.91) 4.45(0.49) 4.33(0.51) 4.23(0.69) 0.29(0.07) 5.29(0.47)
OpenAI-o3-mini + Kling 1.6 [27] 3.70(0.61) 4.18(0.79) 3.98(0.73) 4.05(0.83) 3.40(1.06) 4.23(0.87) 4.13(0.69) 3.78(0.89) 0.26(0.07) 5.18 (0.63)
OpenAI-o3-mini + Sora[35] 4.33(0.94) 4.45 (0.49) 4.18(0.67) 4.30(0.73) 3.88(0.86) 4.50(0.67) 4.30(0.49) 4.38(0.59) 0.31(0.06) 5.31(0.53)

Preacher (Ours) 4.50(0.55) 4.63(0.44) 4.17(0.69) 4.35(0.98) 4.80(0.46) 4.78(0.46) 4.25(0.58) 4.75(0.43) 0.26(0.09) 5.20(0.83)

models OpenAI Sora [35] and Kling 1.6 [27]. To evaluate
the Preacher’s ability to plan key scenes, we also employed
other LMMs to directly plan key scenes and use GPT-4o as
the judge.

Evaluation Metrics. We utilize GPT-4 to evaluate the
quality of the final video, with GPT-4 providing scores rang-
ing from 1 to 5 in the following aspects: (i) Accuracy: Cor-
rectness of the video content, free from errors. (ii) Pro-
fessionalism: Use of domain-specific knowledge and ex-
pertise. (iii) Aesthetic Quality: Visual appeal, design, and
overall presentation. (iv) Alignment with the Paper: Seman-
tic Alignment with the paper. Additionally, we use the CLIP
text-image similarity score (CLIP) [39] and Aesthetic Score
(AE) [45] to evaluate the consistency with the prompt and
aesthetic quality. For key scene evaluation, we introduce
similar metrics: Accuracy, Professionalism, Compatibility,
and Alignment. Here, Compatibility measures the feasibil-
ity of directly generating scenes, reflecting the effectiveness
of the planning process. All metrics are computed individu-
ally, and the results are averaged across all videos for overall
evaluation. For quantitative analysis, we sample 60 frames
per video to ensure consistency across evaluations.

Implementation Details. Preacher primarily integrates
existing APIs and Python scripting, with no GPU require-
ment. We use Gemini-2.0-flash [48] as the LMM in Asum
and Aplan, as Gemini’s API allows the direct upload of
an entire encoded PDF as context. GPT-4o is utilized for
Aform,Atref, and Avref, where the PDF is processed through
an assistant pipeline ‡. For Agen, we employ specialized
Python libraries to generate professionally styled videos,
specifically using: manim for mathematical animations,
python-pptx for slide-based visualizations, and Pymol for
molecular visualization. Furthermore, we employ Wan-2.1-
t2i-turbo [60] as the text-to-image approach, CosyVoice2
[12] as the text-to-speech approach, Luma [33] as the text-
to-video approach, and Tavus [47] as the talking-head gen-
eration approach. Specific details regarding video styles and
implementation methods can be found in Appendix B.1.
5.2. Main Results
Tab. 1 compares Preacher with OpenAI o3-mini + state-
of-the-art video generation models. Preacher outperforms
existing methods in six out of ten metrics, notably in

‡https://platform.openai.com/docs/assistants/overview

Table 2. Performance comparisons on key scenes on four metrics.
We report mean values and standard error. The best is in bold,
while the second best is underlined.

METHOD Accuracy ↑ Professionalism ↑ Compatibility ↑ Alignment ↑

GPT-4o [72] 4.05(0.81) 4.30(0.71) 4.13(0.43) 4.40(0.51)
OpenAI-o3-mini [36] 4.05(0.73) 4.53(0.28) 4.20(0.56) 4.43(0.41)
Gemini-2.0-flash [48] 3.90(0.97) 4.40(0.79) 4.09(0.61) 4.35(0.49)
DeepSeek-R1[9] 4.45(0.54) 4.68 (0.49) 3.70(1.07) 4.05(0.81)

Preacher (Ours) 4.70(0.35) 4.63(0.34) 4.38(0.66) 4.50(0.31)

accuracy, professionalism, and alignment with the paper.
Human evaluations further confirm Preacher’s superiority,
as LMMs struggle to distinguish professional content in
videos. Preacher’s use of domain-specific styles (e.g., math-
ematical visualizations, slide-based formats) may reduce
scores in aesthetic quality and CLIP similarity, but this
trade-off preserves scholarly integrity.

Tab. 2 evaluates Preacher’s key scene planning, where it
leads in three out of four metrics. Chain-of-thought reason-
ing improves accuracy and professionalism but often results
in overly complex scene plans, reducing compatibility with
generative models.

Fig. 4 compares Preacher-generated video segments with
those from OpenAI-o3-mini+Sora. OpenAI-o3-mini sum-
marizes papers but lacks structured scene planning, leading
to excessively complex textual descriptions that generative
models struggle to process. General video generation mod-
els optimize for visual continuity and aesthetics but lack the
domain-specific adaptability required for research content.
In Fig. 4(a), existing methods fail to adequately convey the
concept of “vector bundles” and are unable to present the
critical proof from the input paper. In Fig. 4(b), although
the prompt includes the crucial concept of the “lunar mag-
netic field,” the excessive information in the prompt leads to
incorrect generation, preventing the accurate representation
of this important concept.

By integrating progressive planning, multi-stage re-
flection mechanisms, and diverse video generation tools,
Preacher ensures precise content representation, preventing
the propagation of erroneous information in video abstracts.

5.3. More Analysis

Ablation Study To assess the contribution of each mech-
anism in Preacher, we conducted comprehensive ablation
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Ablation Study

Figure 5. Ablation Study on Preacher. “w/o Progressive Planning”
refers to the planning of all components in key scenes at one time.

studies, as shown in Fig. 5. Using Preacher as the baseline,
we sequentially removed different mechanisms and evalu-
ated the impact on key scene planning, following the same
metrics outlined in Sec. 5.2.

Results in Fig. 5 indicate that accurate key scene plan-
ning relies on the synergistic interaction of all mechanisms.
Removing any component significantly reduces accuracy,
while professionalism and compatibility exhibit lower sen-
sitivity to such omissions. Notably, excluding the reflection
mechanism during key scene planning improves alignment
with the input paper. This is due to multi-round reflection
causing scene drift, where iterative refinements lead to devi-
ations from the original content. The progressive generation
mechanism in Preacher mitigates this by iteratively incorpo-
rating the input paper and approved key scene components,
ensuring that subsequent planning remains contextually an-
chored and prevents divergence.

Professionalism

Aesthetic 
Quality Accuracy

Alignment with Paper

Mathematics

Molecular Biology

Machine Learning

Climate Science

Geology

5 4.5 3.5

Figure 6. Performance of Preacher with paper from different re-
search fields.

Performance on Papers from Different Research Do-
mains Preacher generates key scenes with diverse video
styles, tailored to different research domains to ensure con-

tent alignment and effective knowledge dissemination. As
shown in Fig. 6, these styles produce distinct visual effects,
reflecting the unique requirements of various academic dis-
ciplines. While high evaluation scores are generally ob-
served across styles, achieving simultaneous excellence in
both professionalism and aesthetics remains challenging.
This trade-off likely arises from Preacher’s prioritization of
content accuracy, which inherently limits the complexity of
visual composition and stylistic embellishments. Moreover,
certain research fields, such as mathematics and molecular
biology, require precise and schematic representations, fur-
ther constraining the integration of elaborate visual effects.
However, as text comprehension capabilities in video gen-
eration models continue to improve, allowing for a more
balanced integration of scientific rigor and visual appeal.

6. Conclusions and Limitations

Conclusions We introduce Preacher, the first paper-to-
video agentic system. By leveraging a top-down and
bottom-up agentic architecture, Preacher facilitates en-
hanced collaboration between agents. Through progressive
chain-of-thought planning, Preacher systematically plans
key scenes, generating high-quality video abstracts enriched
with domain-specific expertise. Our evaluation across mul-
tiple research domains demonstrates Preacher’s effective-
ness in representing and communicating domain-specific
knowledge. In future work, we seek to broaden Preacher’s
scope and applicability by integrating more video genera-
tion tools with diverse stylistic capabilities, ensuring adapt-
ability to diverse disciplines and presentation formats.

Limitations As the first method to achieve paper-to-video
generation, Preacher has several limitations. First, its multi-
agent collaboration necessitates over an hour for end-to-
end processing, with token consumption for inter-agent
communication. Second, the absence of high-fidelity text-
to-animation models restricts Preacher’s ability to gener-
ate animation-style content, limiting its visual versatility.
Lastly, when processing papers in fields like artificial in-
telligence, key scenes are confined to “slides” and “talk-
ing heads” due to the abstract nature of such papers, which
primarily comprise methodological descriptions and exper-
imental analyses rather than concrete visualizable concepts.
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