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Figure 1. We introduce TAD-E2E, a large-scale dataset for end-to-end autonomous driving, featuring extensive sensor data and challenging
urban scenarios. Experiments with state-of-the-art (SOTA) methods on this dataset show notable performance drops, highlighting its
complexity. To address these challenges, we propose SparseFusion-E2E (SPF-E2E), a multimodal end-to-end neural network that serves

as a strong baseline to facilitate further research.

Abstract

End-to-end autonomous driving technology has recently
become a focal point of research and application in au-
tonomous driving. State-of-the-art (SOTA) methods are of-
ten trained and evaluated on the nuScenes dataset. How-
ever, the nuScenes dataset, introduced in 2019 for 3D per-
ception tasks, faces several limitations—such as insuffi-
cient scale, simple scenes, and homogeneous driving behav-
iors—that restrict the upper-bound development of end-to-
end autonomous driving algorithms. In light of these issues,
we propose a novel, large-scale real-world dataset specif-
ically designed for end-to-end autonomous driving tasks,
named TAD-E2E, which is 25x larger, 1.7x scene complexity
over nuScenes, and features a highly diverse range of driv-
ing behaviors. We replicated SOTA methods on the TAD-
E2FE dataset and observed that these methods no longer per-
formed well, as expected. Additionally, in response to the
challenging scenarios presented in the TAD-E2E dataset,

*Equal contribution.

we devised a multimodal sparse end-to-end method that
significantly outperforms SOTA methods. Ablation studies
demonstrate the effectiveness of our method, and we ana-
lyze the contributions of each module. The dataset will be
released in the near future.

1. Introduction

In recent years, the technology of autonomous driving has
developed rapidly. As one of the forefront research di-
rections, data-driven end-to-end (E2E) autonomous driving
has demonstrated excellent performance. Compared to tra-
ditional modular approaches that involve mapping, local-
ization, perception, prediction, and decision-making, end-
to-end autonomous driving offers advantages in effectively
reducing information transfer loss by enabling joint learn-
ing and optimization among various modules at the feature
level. Due to the involvement of training and joint learn-
ing across various functional modules, end-to-end systems
also strongly demand high-quality, large-scale, full-chain
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ground truth data for autonomous driving. Notably, the term
“ground truth” here refers not only to the truth of a single
module but to the comprehensive coverage of all modules
under the same spatial and temporal conditions; i.e., it in-
cludes the 3D object information ground truth from the per-
ception module, the temporal trajectory ground truth from
the prediction module, the vector map ground truth from
the mapping module, and the driving trajectory ground truth
from the decision-making module.

Introduced in 2019, the nuScenes dataset meets the
above requirements for ground truth data structure. It is
currently the most widely used dataset for open-loop real-
world scenarios in state-of-the-art (SOTA) end-to-end au-
tonomous driving methods. However, the nuScenes dataset
was initially designed for 3D detection and tracking tasks
related to perception. Although it also provides mapping
and localization information, allowing it to support the de-
velopment of end-to-end autonomous driving models, its
overall construction and data collection methodology was
not specifically tailored for end-to-end algorithms. Conse-
quently, this limitation may hinder the exploration of upper
bounds for end-to-end autonomous driving algorithms:

1. Scale Issues: nuScenes provides only approx-
imately 40,000 annotated frames, which is insufficient
for contemporary mainstream algorithm models based on
BEV representation and Transformer modular connections.
For example, other single-module datasets, such as the
MSCOCO [20] for image recognition, contain 320,000
frames, and the Waymo [31] dataset for 3D perception in-
cludes 230,000 frames. Moreover, end-to-end autonomous
driving requires even more extensive data volumes.

2. Sensor Issues: The nuScenes dataset was collected
in early 2019, and the sensors used are now considered
outdated relative to those employed in current autonomous
vehicles. For instance, the LIDAR used in nuScenes only
has 32 channels, whereas the advancement in LiDAR hard-
ware has reached 64 channels or more. The enhancement
of sensor hardware capabilities necessitates corresponding
updates at the dataset level to support more advanced algo-
rithm research.

3. Scene Difficulty: Overall, the scenes in the nuScenes
dataset are relatively simple, with an average of 34.63 ob-
jects per frame and a ground truth frame rate of 2Hz. How-
ever, the short duration of trajectory sequences makes them
insufficient for exploring algorithms in complex urban road
scenarios.

4. Driving Behavior Issues: During the initial data col-
lection to recognize obstacles, the routes and driving be-
haviors captured in the nuScenes dataset did not receive
adequate attention. This has led to significant deviations
in driving path coverage within the dataset, contributing to
overfitting issues in recent end-to-end autonomous driving
algorithm research.

Recent studies have indicated that on the nuScenes
dataset, it is possible to achieve good results by inferring
vehicle driving trajectories using only the vehicle state and
multilayer perceptron (MLP) without relying on sensor data
or perception modules [18, 38]. Our experiments also con-
firm this observation, which is unreasonable and indicates
potential data issues when using nuScenes for decision-
making learning.

Based on the above analysis and research challenges,
we propose a novel, high-frequency, large-scale, real-world
dataset named TAD-E2E, explicitly designed for end-to-end
autonomous driving tasks. Compared to nuScenes, TAD-
E2E features 25 times more data, 1.7 times greater scene
complexity, and a diverse range of driving behaviors tai-
lored for end-to-end autonomous driving tasks. Addition-
ally, TAD-E2E provides high-quality ground truth for indi-
vidual modules, supporting independent and joint research
across submodules of autonomous driving, including 3D
detection, multi-object tracking, trajectory prediction, map-
ping, and decision-making.

We replicated SOTA methods on the TAD-E2E dataset
and observed a significant decline in performance, confirm-
ing the research value of more complex scene data and indi-
cating that the existing methods for end-to-end autonomous
driving still have upper bounds yet to be explored. Based
on SOTA methods, we designed a multimodal sparse end-
to-end autonomous driving network model that surpasses
SOTA performance. This model will be provided as the
baseline for the TAD-E2E dataset upon release. We expect
that the TAD-E2E dataset will accelerate the progress of re-
search on end-to-end autonomous driving algorithms and
provide a platform for exploring the upper limits of end-to-
end algorithm research.

In summary, the main contributions of this paper are:

* We proposed a large-scale end-to-end autonomous driv-
ing dataset, TAD-E2E, designed explicitly for complex
urban scenarios, providing comprehensive, high-quality
ground truth to support the expansion of research bound-
aries in autonomous driving algorithms. We conducted
detailed quantitative and qualitative analyses to demon-
strate the value of the TAD-E2E dataset.

* We replicated end-to-end autonomous driving SOTA
methods on the TAD-E2E dataset, confirming the limi-
tations of the nuScenes dataset in supporting trajectory
planning for end-to-end autonomous driving.

* We introduced a baseline multimodal sparse end-to-end
autonomous driving network that outperformed SOTA
methods. We conducted extensive quantitative, qualita-
tive, and ablation analyses to validate the effectiveness
of our approach. Additionally, we analyzed the necessity
and contribution of each module within the modular de-
sign of end-to-end autonomous driving methods.

* The dataset will be released in the near future.
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Table 1. Comparison of Real Sensor-Based Datasets Related to End-to-End Autonomous Driving. * E2E supported refers to the data

support from raw sensor data to ego trajectory in the same frame.

Dataset Year guils Perframe Lineth  Froguency Supporied Supported Supported Supporicd Supperted  Supporteds
nuScenes [2] 2019 40k 34.63 20s 2Hz v v v v v v
Waymo [31] 2019 230k  52.17 20s 10Hz v v v - - -
Argoverse2 [35] 2023  6M 75 15s 10Hz v v v - v -
ONCE [24] 2021 16k 26.06 - 2Hz v - - - - -
KITTI [10] 2013 7.4k  10.72 - 10Hz v - - - - -
Cityscapes [3] 2016 25k - - - v - - - - -
TAD-E2E (ours) 2025 1M 59.63 60s 10Hz v v v v v v

2. Related Work proposed by Nvidia in 2016 and other early methods that

2.1. Real World E2E-AD Datasets

There are numerous datasets related to autonomous driv-
ing, and for a complete AD datasets review, please re-
fer to paper [22]. Here, we only consider commonly
used or highly related to end-to-end autonomous driv-
ing [2, 8, 10, 24, 31, 35]. These datasets were generally cre-
ated focusing on specific autonomous driving module tasks,
such as 3D detection and tracking [2, 31, 35] and image
recognition [8, 10], rather than for end-to-end (E2E) au-
tonomous driving research. For modular design-based E2E
autonomous driving research, datasets must possess several
key elements: 1) 3D bounding box annotations for objects,
2) temporal and tracking ID annotations, 3) map informa-
tion, and 4) trajectories of the collection vehicle. There is
an urgent need in the industry for a dedicated, real-world
dataset aimed at E2E autonomous driving, characterized by
large-scale, complex scenarios and diverse ego vehicle be-
haviors, to support the rapidly evolving research in E2E au-
tonomous driving algorithms. This is the motivation behind
our proposed TAD-E2E dataset. Please refer to Table 1 for
a complete dataset comparison. In its latest version, nu-
Plan [16] released a 128-hour curated subset containing full
sensor data, theoretically enabling open-loop end-to-end
autonomous driving research. However, we observe that
few E2E-AD methodologies experiment on nuPlan open-
loop subset, but mostly on nuScenes [13, 15, 32, 37, 39].
We hypothesize this disparity may stem from nuPlan estab-
lished data usability (in SQL DB format). This observa-
tion motivates our proposal for a unified data interface that
maintains backward compatibility with nuScenes, enabling
seamless migration between benchmark environments.

2.2. E2E-AD Methods

The early development of end-to-end autonomous driving
methods can be traced back to the PilotNet [1] approach

bypassed intermediate tasks such as perception and pre-
diction [6, 7, 28]. Recently, with advancements in Bird’s
Eye View (BEV) representation [27] and Transformer [34]
modeling, research in E2E autonomous driving has rapidly
progressed. ST-P3 [12] introduced an E2E method based
on a modular loss function that utilizes BEV feature maps.
VAD [15] proposed a vectorized representation for scene
learning and instance-level planning. UniAD [13] pre-
sented a unified learning approach based on BEV repre-
sentation and Transformer KQV, achieving strong perfor-
mance across various submodule tasks. FusionAD [37]
further integrated LiDAR point cloud data for multimodal
learning, enhancing performance metrics. SparseDrive [32]
and SparseAD [39] proposed a symmetric system design
using sparse representations that do not rely on BEV fea-
ture expressions. Additionally, there are end-to-end meth-
ods based on large language models [25, 26, 29, 29, 33,
36], which incorporate natural language descriptions dur-
ing dataset construction with the expectation that the model
will learn interpretability in autonomous driving. Building
upon SparseDrive and FusionAD, we propose an end-to-
end model for multimodal sparse representation learning,
improving the performance metrics of various modules on
the nuScenes dataset and serving as the baseline method for
the TAD dataset.

2.3. Open-Loop and Close-Loop E2E AD

End-to-end autonomous driving can be categorized into two
main types: open-loop and closed-loop. Closed-loop E2E
AD refers to testing the driving behavior scores of au-
tonomous vehicles in a simulation environment [3, 5,9, 11,
14]. The simulation system allows the surrounding environ-
ment to interact with the autonomous vehicle and change its
behavior based on its actions, enabling the simulation of ex-
treme scenarios such as collisions. On the other hand, open-
loop E2E AD involves comparing the decision trajectories
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outputted by the autonomous driving model against expert
trajectories collected in real-world scenarios, utilizing met-
rics such as L2 distance and collision rates. For a detailed
introduction and analysis of the advantages and disadvan-
tages of open-loop and closed-loop evaluations, please refer
to [4]. This paper pertains to open-loop evaluations in real-
world scenarios, with further contemplation and exploration
of evaluation methodologies within open-loop contexts.

3. Dataset
3.1. Sensor Setup

The objective of this study is to provide ground truth data
that supports end-to-end autonomous driving research in
complex urban scenarios. Therefore, high-end collection
equipment is essential. In contrast to the sensors used in
the nuScenes dataset, the TAD-E2E collection vehicle em-
ploys higher-specification sensors, as outlined in Table 2.
The collection vehicle utilizes a sensor configuration com-
prising a surrounding perception system with five LIDARs
and six cameras, ensuring comprehensive perception nearly
without blind spots. A schematic representation of the col-
lection vehicle can be found in Figure 2. The LiDAR system
features a higher-resolution configuration with 128 beams
and 64 beams sensor, compared to nuScenes 32 beams sen-
sor. The cameras have an enhanced 1920 x 1080 resolution
sensor, compared to nuScenes 1600 x 900. These enhanced
sensors result an overall improvements of 4.9x for LiDAR
points and 1.44x for image pixels, ensuring a detailed cap-
tures and representations of complex scenarios. Addition-
ally, the sensor data provided by TAD-E2E—including sub-
sequent ground truth data—are delivered at a frequency
of 10Hz, representing a 5x increase over nuScenes’ 2Hz
data, thereby enabling more robust time-sequential frame
data essential for end-to-end autonomous driving studies.
Other sensors for autonomous driving, e.g., IMU, GNSS,
and wheel-speed-meter, are also utilized.

3.2. Synchronization & Calibration

All sensors on the vehicle are synchronized using a high-
precision PTP (Precision Time Protocol) server, aligning
their timestamps with that of the primary LiDAR (the 128-
channel LiDAR located at the front left of the vehicle).
Camera exposure is triggered based on the LiDAR scan
reaching the camera center and serves as the camera’s
timestamp. The LiDAR timestamps are recorded at the
completion of each full rotation of the LiDAR scan, and
motion compensation is applied to account for the duration
of the LiDAR scan using localization information.

The intrinsic parameters of the cameras are obtained
through checkerboard calibration [40], and the extrinsic pa-
rameters between the cameras and the LiDAR are acquired
through joint calibration using calibration boards within the

Sensor Num Specifications Purpose
Camerz 6 RGB image @ 1920x1080 Surround
amera resolution, 30Hz, FOV=100°. View

Spinning, 128 beams, 10Hz,

360°horizontal FOV @ 0.1°resolution, Surround
LiDAR-128 2 40°vertical FOV, uView

0.3~230m range @ +3cm accuracy,

with up to 6.9M points per second.

Spinning, 64 beams, 10Hz,

360°horizontal FOV @ 0.6°resolution, Bind Spots
LiDAR-64 3 104.2°vertical FOV, P

Supplement

0.1~60m range @ £3cm accuracy,
with up to 0.768M points per second.

Table 2. Sensor Specifications. We utilize 6 x cameras and 5 x
LiDARs with high-end specifications deployed in a 360-degree
configuration, to provide rich and nearly complete perceptual data
coverage without blind spots.

ﬁ LIDAR-128
' ﬁ LiDAR-64
ﬁ Camera

'

.

'

1
i

Figure 2. Sensor Deployment. We use 2xLiDAR-128, 3xLiDAR-
64 and 6xFOV100°camera. Blue shadow areas show the field of
view of cameras. Brown ellipse dots show the field of view of
LiDARs.

same field of view. The point clouds from the five LiDARs
are merged according to the coordinates of the primary Li-
DAR.

3.3. Coordinates

This data collection system involves five coordinate sys-
tems: the image UV coordinate system, the camera coordi-
nate system, the LiDAR coordinate system (after merging),
the ego vehicle coordinate system, and the world coordinate
system. Among these, the image UV coordinate system,
camera coordinate system, and LiDAR coordinate system
are provided based on calibration parameters. The ego ve-
hicle coordinate system has its origin at the center of the rear
axle, with the X-axis pointing forward, the Y-axis pointing
to the left, and the Z-axis pointing upward. The world co-
ordinate system is represented by an offset-adjusted UTM
(Universal Transverse Mercator) coordinate system.
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3.4. HD Map & Scenes

Figure 3. HD Map Sample Illustration.

We provide a high-definition map in the UTM coor-
dinate system, meticulously annotated through advanced
techniques to include critical map elements such as lane
markings, boundary lines, etc. The map features a variety
of intersections, T-junctions, and signal-controlled intersec-
tion data. Sample illustrations of the map can be seen in
Figure 3. To capture valuable data relevant to complex L4
scenarios, we selected peak traffic periods in bustling urban
areas of first-tier cities for data collection, including typi-
cal complex traffic scenarios such as subway stations, office
buildings, congested roads, and major intersections.

3.5. Ground Truths

3.5.1. Overview

The ultimate goal of end-to-end autonomous driving tasks
is to enable effective vehicle behavior decision-making.
Theoretically, decision ground truth feedback could satisfy
the training requirements for end-to-end networks. How-
ever, current SOTA E2E-AD methods still necessitate su-
pervisory signals derived from modular ground truth, as
seen in works like UniAD [13], BEVPlanner [18], and
SparseDrive [32]. Relying solely on decision ground truth
for supervised learning is an area worth exploring, such as
3D bounding boxes for perception, significantly reducing
data costs. Nonetheless, given the current stage of advance-
ments in SOTA end-to-end methods and conjunction with
the limitations of the nuScenes dataset, we provide not only
decision ground truth but also ground truth for individual
modules to support modular designs of end-to-end algo-
rithms. This dataset also facilitates the development of stan-
dalone module algorithms for autonomous driving tasks,
such as perception-based BEV detection and tracking, BEV
mapping, and multi-agent trajectory prediction. A visual-
ization of a sample frame containing ground truth data for
sensors(camera & LiDAR), detection, tracking, mapping,
prediction, and decision-making is displayed in Figure 1.

3.5.2. Planning GT

The decision ground truth refers to the accurate represen-
tation of the driving path provided for autonomous driving

decision-making algorithms. This data is generated through
a combination of high-precision vehicle localization and the
organization of temporal data. The high-precision localiza-
tion is achieved using a sensor fusion algorithm that inte-
grates LiDAR, Inertial Measurement Units (IMU), Global
Navigation Satellite System (GNSS), and wheel speed sen-
sors, yielding robust and high-precision localization mod-
ule.

The temporal aspect of the data is structured into clips
of 60 seconds each, with localization signals recorded at a
frequency of 100Hz, yielding a total of 6000 frames of tem-
poral localization data per sequence, providing sufficient
information for the alignments of sensor data and modu-
lar ground truth data. Driving behavior data is collected by
multiple professional autonomous driving safety operators.
Additionally, to ensure diversity, we resampled the distribu-
tion to cover typical and critic driving senarios, including
different weather conditions (sunny, rainy, night), driving
maneuvers (u-turn, lane change), and safety-critical scenar-
ios (non-protected left turn, traffic light, interactions with
other objects). Please refer to Table 3 for details.

Table 3. Distribution resampling over driving scenes.

Scenes Sunny Rainy Night U-Turn Nn?égr?&gﬁtcd ?ﬁ;ﬂf C%zﬁZe Interactions
Scene Counts 1152 238 276 138 152 175 274 335

3.5.3. Detection, Tracking and Prediction GT

The ground truth for perception refers to the 3D bounding
box annotations of surrounding objects within the vehicle’s
coordinate system. Ideally, this would involve comprehen-
sive manual annotation. However, the vast amount of data
in this dataset makes complete manual annotation impracti-
cal in terms of both time and cost. Therefore, we adopted
a methodology consistent with previous works (such as nu-
Plan [3], SAM [17], and H-V2X [21]) that employs a cold
start approach combined with offline pre-annotation using
large models.

In the cold start phase, we performed high-quality man-
ual annotations on approximately 10% of the total dataset.
For the offline pre-annotation, we utilized a hybrid train-
ing model that integrates both the nuScenes annotated data
and the manually annotated 10% of the TAD-E2E dataset.
We implemented a multi-model detection framework lever-
aging two distinct BEVFusion architectures [19, 23] with
large backbones, followed by Weighted Boxes Fusion
(WBF) [30] for optimal proposal aggregation. This en-
semble approach achieved 93.38% 3D mAP@IoU=0.5 and
95.24% BEV mAP@IoU=0.5 on our hold-out validation
set. Sequential tracking IDs are performed using offline
EKF-based tracking algorithms and further form tracking
and prediction ground truths. All pre-annotated data under-
went a further human verification process to ensure accu-
racy and quality.
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3.5.4. Mapping GT

The mapping ground truth, derived from lanes, boundaries,
etc., in the HD MAP, can be accurately projected onto im-
ages using vehicle localization and sensor calibration, as
shown in Figure 5. Unlike some industry practices, we
retained the complete mapping ground truth without filter-
ing for occlusions at the image level, thereby supporting
research into mapping predictions in occluded conditions.

3.6. Statistics

We statistically compare TAD-E2E and nuScenes in Fig-

ure 4:

 Figure a) illustrates navigation command distributions
(left turns, right turns, straight movements), categorized
by ego-vehicle positional changes over a 3-second hori-
zon. NuScenes exhibits significant homogeneity: 87.8%
straight driving versus 5.36% left and 6.88% right turns.
In contrast, TAD-E2E demonstrates balanced maneuver
diversity, with left/right turns constituting 43.1% of sce-
narios.

* Figure b) quantifies object density (annotated objects per
frame), serving as an indicator of environmental com-
plexity. TAD-E2E displays markedly higher complexity
than NuScenes, evident in both quantity and mean.

* Figure c) analyzes object distance distributions relative
to the ego vehicle. TAD-E2E contains a notably higher
proportion of medium-to-long range objects compared to
NuScenes, with absolute counts substantially exceeding
those in NuScenes.

* Figure d) and f) present average cases (based on object
density) for TAD-E2E and NuScenes, respectively. TAD-
E2E features a significantly more complex and challeng-

Figure 5. Map ground truth illustration: HD Map project to camera
view.

ing autonomous driving scene.

3.7. Privacy

For privacy and data security concerns, all faces and li-
cense plates in the dataset have been processed with mosaic
anonymization.

4. Experiments

This chapter quantitatively and qualitatively analyzes the
value contributions of the proposed TAD-E2E dataset and
presents an end-to-end algorithm model that surpasses
state-of-the-art (SOTA) performance.

4.1. Baseline Methods

To validate the effectiveness of the proposed TAD-E2E
dataset, we selected two representative SOTA end-to-end
methods and conducted experimental replication on the
TAD-EZ2E dataset.
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Table 4. Quantitative Metrics Comparison of E2E-AD Methods on nuScenes and TAD-E2E datasets. *UniAD evaluate mapping perfor-
mance using IoU rather than mAP. AD-MLP does not have perception module and thus has no related scores.

Detection? Tracking? Mapping? Prediction] Planning L2(m)| Planning Col(%).
Dataset No. Method mAP NDS  AMOTA mAP minADE Is 2s 3s avg Is 2s 3s avg
a AD-MLP [38] — - - - — 020 026 041 029 0.17 0.18 024 0.19
nuScenes b UniAD [13] 0.380 0.498 0.359 —* 0.710 045 070 1.04 073 062 058 063 0.61
c SparseDrive [32] 0415 0.526 0.373 0.556 0.634 032 063 1.04 0.69 0.01 0.10 033 0.14
d  SparseFusion (ours) 0.618 0.673 0.598 0.641 0.472 034 066 1.06 0.66 0.08 0.11 025 0.15
e AD-MLP [38] — — - — — 334 678 1042 437 9.79 1123 1347 11.50
TAD-E2E f UniAD [13] 0214 0.297 0.189 —* 0.642 1.12 2,02 321 217 256 443 665 454
g SparseDrive [32] 0.226  0.320 0.196 0.313 0.556 0.84 162 242 1.63 045 227 425 2.32
h  SparseFusion (ours) 0.659 0.646 0.628 0.385 0.473 035 068 1.06 0.70 022 035 079 045

4.1.1. Methods Description

1. AD-MLP [38]: AD-MLP proposes a trajectory decision-
making algorithm that completely eliminates the need for
camera data and perception algorithm modules. By solely
utilizing the ego vehicle’s state information (including ve-
locity, acceleration, and historical trajectory) along with
navigation commands, the MLP network performs reason-
ing to generate trajectory decisions for subsequent mo-
ments. AD-MLP serves as an effective baseline method that
appropriately reflects the driving difficulty inherent in the
dataset.

2. UniAD [13]: Proposed in 2023, this influential end-
to-end autonomous driving model effectively integrates var-
ious autonomous driving modules (perception, prediction,
mapping, decision-making) using BEV representation and
Transformer KQV patterns. It achieves excellent experi-
mental results at both the decision level and within each
individual module.

3. SparseDrive [32]: This recently introduced method
does not rely on BEV representations and focuses on a
sparse scene approach for end-to-end autonomous driving.
It features a symmetric system architecture and surpasses
SOTA performance metrics across various module indica-
tors.

4.1.2. Metrics

The evaluation metrics adopted are consistent with those
used in UniAD [13] and SparseDrive [32]. Due to space
limitations, we selected the most representative evaluation
metrics for each module, with detailed results provided in
Table 4.

4.2. Proposed Method: SparseFusion-E2E

To further investigate whether the simplicity of scenes in
nuScenes limits the upper bounds of end-to-end algorithms,
we propose the SparseFusion-E2E method, SPF-E2E for
short, inspired by SparseDrive [32] and FusionAD [37].
This method combines the advantages of both approaches
and designs a multimodal fusion sparse end-to-end network
integrating LiDAR and camera data. A schematic diagram
of the network model can be seen in Figure 6. We trained
and evaluated SPF-E2E on both nuScenes and TAD-E2E

datasets, with quantitative results presented in items ¢ and f
of Table 4.
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Figure 6. SparseFusion-E2E model architecture. We incorporate
LiDAR modality based on SparseDrive.

4.2.1. Training Details

The hyperparameters for model training on the TAD-
E2E dataset are mainly consistent with those used in
SparseDrive. The difference lies in our camera’s operat-
ing frequency of 10 Hz, allowing us to predict a 30-frame
trajectory for the ego vehicle and a 60-frame trajectory for
surrounding vehicles. Additionally, in the temporal fusion
module, we combined features from the previous 20 frames.
We set a confidence threshold of 0.2 for object detection and
only backpropagated gradients for targets exceeding this
threshold. The model was trained with a batch size of 64 on
eight L40 (48 GB) GPU cards for approximately ten days.

4.3. Analysis
4.3.1. TAD-E2E v.s. nuScenes

From the pairwise experimental comparisons (a-e, b-f, c-
g, d-h), it is evident that the same algorithm model ex-
hibits significant differences in quantitative performance
under different datasets. The quantitative scores of vari-
ous modules on the TAD-E2E dataset are worse than those
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on nuScenes, confirming our analysis that the TAD-E2E
dataset is more challenging and complex, thus providing a
higher research ceiling for end-to-end autonomous driving
algorithms.

4.3.2. Value of LIDAR-Camera Fusion Over Pure Vision

Comparisons between experiments (c-d and g-h) indicate
that the inclusion of LiDAR significantly enhances the per-
formance metrics of various modules (except for the plan-
ning module in nuScenes, as analyzed in Section 4.3.3).
This underscores the current necessity and value of LIDAR
sensors in complex urban scenarios while also highlight-
ing the considerable room for improvement in pure vision
methods.

4.3.3. E2E Planning Issue on nuScenes

In addition, from the comparison of experiments (c-d), we
observe that improvements from upper modules does not
translate to planning module. This finding aligns with ob-
servations in AD-MLP [38] and BEVPIlanner [18], where
good metrics were achieved using only the decision module
without perception modules. However, the same issue does
not exist in TAD-E2E, where AD-MLP no longer works
well.

4.3.4. Modular Contribution Analysis

In end-to-end autonomous driving research, evaluating the
necessity of ground truth supervision for individual mod-
ules holds critical industrial relevance due to its direct im-
pact on data acquisition costs and scalability. Through sys-
tematic analysis of the SparseFusion-E2E framework (see
Table 5), we demonstrate that each module’s supervision is
indispensable for achieving viable planning performance.
Notably, the perception module proves foundational: its
removal results in complete training failure, underscoring
its irreplaceable role in feature learning. Consequently,
developing methods that eliminate reliance on perception-
specific ground truth represents a high-value research di-
rection for cost-efficient, scalable autonomous driving sys-
tems.

Table 5. Modular Necessity and Contribution Ablation.

Detection Tracking Prediction Mapping Planning L2 AVG| Col AVG|

- - - - ‘/ - -
- - - ‘/ ‘/ - -
v - - - v 0.88 0.66
v v - v v 0.73 0.53
v v 4 - v 0.89 0.47
v v 4 v v 0.70 0.45

4.4. Qualilative Analysis

We conducted a qualitative visual analysis of the pure vision
SparseDrive and SparseFusion-E2E models on the TAD-
E2E dataset in Figure 7. In case 1, it can be observed

that SparseDrive shows significant deviations in detecting
the positions of vehicles directly ahead, along with missed
detections of occluded vehicles. This results in the ego ve-
hicle planning a trajectory with speed, posing a collision
risk. In case 2, due to camera truncation of the field of view,
SparseDrive fails to detect a vehicle truncated on the left
side and provides incorrect trajectory predictions for the ve-
hicle directly ahead, which leads to a collision risk. In sum-
mary, our SparseFusion-E2E model yielded accurate object
detection and trajectory prediction results while also plan-
ning more reasonable trajectories.

S —
SparseFusion casel

nnnnnnnnnn

Figure 7.
SparseFusion-E2E on the TAD-E2E dataset: (Left) Surround-view
camera inputs, (Middle) Model prediction results, (Right) Ground-
truth annotations.

Qualitative comparison of SparseDrive and

5. Conclusion

This paper introduces TAD-E2E, a large-scale autonomous
driving dataset tailored for complex urban environments in
end-to-end autonomous driving. TAD-E2E surpasses ex-
isting datasets used in state-of-the-art (SOTA) methods by
offering a grander scale, more objects, intricate scenes, and
diverse driving behaviors. We quantitatively and qualita-
tively compared TAD-E2E with nuScenes, highlighting its
advantages. Our experiments replicated SOTA methods on
TAD-E2E, revealing performance declines. Furthermore,
we developed a multimodal sparse end-to-end method that
outperformed existing approaches. Ablation analysis was
conducted to evaluate each module’s contribution to the
algorithm. Future plans include expanding TAD-E2E to
cover more cities and integrating language descriptions to
enhance research in the VLM-E2E domain.
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