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The person was
pushed but did not fall.

A person walks up the stairs with
his right hand on the handrail.
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Figure 1. Introducing OmniSkel: A text-driven motion generation framework that directly generates motions for any skeletons without
retargeting. Unlike traditional two-stage pipelines (top right) that require complex retargeting procedures, our single-stage approach
(bottom right) only needs text input and target bone lengths (which are easily obtainable) to generate desired motions. As shown on the
left, OmniSkel creates natural movements like “pushed but did not fall” and “walks up stairs with right hand on handrail” for characters
with different body proportions while maintaining action fidelity.

Abstract

Recent advances in text-driven motion generation have
shown notable progress. However, these methods are typ-
ically limited to standardized skeletons and rely on a cum-
bersome retargeting process to adapt to varying skeletal
configurations of diverse characters. In this paper, we
present OmniSkel, a novel framework that directly gen-
erates high-quality human motions for any user-defined
skeleton without retargeting. Specifically, we introduce a
skeleton-aware RVQ-VAE, which utilizes Kinematic Graph
Cross Attention (K-GCA) to effectively integrate skeletal in-
formation into motion encoding and reconstruction. More-
over, we propose a simple yet effective training-free ap-
proach, Motion Restoration Optimizer (MRO), to ensure
zero bone length error while preserving motion smooth-
ness. To support this research, we construct SkeleMotion-
3D, a large-scale text-skeleton-motion dataset based on Hu-
manML3D. Extensive experiments demonstrate the excel-
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lent robustness and generalization of our method.

1. Introduction
Recent years have witnessed remarkable progress in text-
to-motion (T2M) generation, showing promising poten-
tial in applications such as gaming, metaverse, and vir-
tual/augmented reality [10, 16, 32, 41, 50, 51]. This tech-
nology enables the intuitive creation of 3D character ani-
mations through natural language descriptions, significantly
simplifying content creation workflows in animation [20],
virtual reality [16], video games [30, 47], and robotics
[5, 22].

Despite these advancements, a fundamental limitation
restricts the practical application of current text-to-motion
generation methods. As illustrated in Figure 1, existing ap-
proaches primarily focus on enhancing the motion quality
and text-motion alignment, neglecting variations in skele-
tons and only generating human motions for standardized
skeletons. However, real-world production environments
routinely require varying skeletal configurations for diverse
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characters. To this end, practitioners must resort to skele-
ton retargeting - a technically demanding process that ne-
cessitates significant expertise and frequently fails to pro-
duce usable results, inevitably leading to laborious tuning
and production delays. Therefore, there is a pressing de-
mand for straightforward motion generation given arbitrary
skeletons.

To address this issue, we present OmniSkel, a novel
framework that can directly generate high-quality human
motion sequences for arbitrary character skeletons. As
shown in Figure 1, our approach eliminates the complex
retargeting stage required by traditional pipelines, offer-
ing a single-stage solution that directly produces character-
specific motion without specialized expertise. Specifically,
we propose a Skeleton-aware RVQ-VAE (SR-VAE) archi-
tecture, which utilizes Kinematic Graph Cross Attention
(K-GCA) to effectively integrate skeletal information into
the motion encoding and reconstruction. Unlike previ-
ous approaches, our design effectively separates skeleton-
invariant features, which is crucial for arbitrary skeleton
adaptation. To ensure zero bone length error while preserv-
ing motion smoothness, we further propose a training-free
approach, Motion Restoration Optimizer (MRO). With the
above designs, our OmniSkel can deliver high-quality mo-
tion generation precisely in line with textual descriptions
and character skeletons, providing robust support for prac-
tical text-to-motion applications.

To facilitate our research, we construct SkeleMotion-3D,
a large-scale dataset based on HumanML3D, pairing textual
descriptions with motion sequences across diverse skeletal
configurations. This dataset establishes a strong foundation
for motion generation with arbitrary skeletons.

Before delving into the details, we summarize our core
contributions in this work as follows:
• To the best of our knowledge, we present the first text-

to-motion generation framework capable of directly pro-
ducing motions for arbitrary character skeletons without
retargeting, significantly simplifying creation workflows
in real-world production environments.

• We propose a novel Skeleton-aware RVQ-VAE (SR-VAE)
architecture, which employs Kinematic Graph Cross At-
tention (K-GCA) to effectively integrate skeletal informa-
tion into the motion encoding and reconstruction. More-
over, we further introduce Motion Reconstruction Opti-
mizer (MRO) during inference, ensuring zero bone length
error while preserving motion smoothness.

• Based on HumanML3D, we construct SkeleMotion-3D, a
large-scale text-skeleton-motion dataset. This establishes
a foundation for arbitrary skeleton motion generation, fa-
cilitating future research in this field.

• To verify the effectiveness of our method, we conduct
extensive experiments on challenging datasets. Results
demonstrate the superior robustness and generalization of

our method. Further analysis reveals the contribution of
each component to the performance improvement.

2. Related Work
2.1. Text-to-Motion Generation
Text-to-motion generation has evolved significantly as a
vital research area in computer animation and human-
computer interaction.
Early Approaches. Initial methods established text-to-
motion mappings through alignment techniques [3, 4, 9, 26,
36, 46], but produced motions that lacked naturalism and
diversity due to their deterministic nature.
Probabilistic Frameworks. VAE-based approaches [6, 16,
28, 31, 32] model distributions of possible motions, while
vision-language alignment methods [27, 33, 37, 40] lever-
aged pre-trained models for better semantic consistency.
Recent Advances. Contemporary approaches include
diffusion-based models [7, 10, 12, 21, 38, 41, 51, 52] gener-
ating high-fidelity motions through progressive denoising.
Vector Quantized VAE (VQ-VAE) approaches treat motions
as discrete token sequences, including autoregressive mod-
els [19, 45, 50, 54, 55], bidirectional methods [18, 35],
and hybrid approaches [34]. Part-based generation meth-
ods [13, 54, 55] provide control over individual body com-
ponents.
Limitations. Existing approaches remain constrained to
standard skeletal structures, creating a gap between research
and industry needs where adaptability to various character
rigs is essential.

Our work addresses this limitation by developing a
skeleton-agnostic framework that generates semantically
consistent motions for arbitrary skeletal structures.

2.2. Motion Retargeting
Motion retargeting adapts existing motion data between
characters with different proportions and structures. His-
torically, Gleicher et al. [14] pioneered this field through
spacetime optimization with kinematic constraints. Follow-
ing this work, Lee and Shin [23] applied inverse kinemat-
ics with B-spline curve fitting, while Choi and Ko [11] si-
multaneously developed an online method preserving high-
frequency details.Tak and Ko [39] later enhanced these
approaches by utilizing dynamics constraints for physical
plausibility.

With the advent of deep learning, new approaches
emerged, including Villegas et al. [44] with unsupervised
retargeting via recurrent networks, Lim et al. [25] disen-
tangling pose and movement, and Aberman et al. [1] de-
signing skeleton-aware networks for cross-structural retar-
geting. More recently, research has shifted towards preserv-
ing motion semantics. For instance, Zhang et al. [49] de-
veloped a residual retargeting network with skeleton-aware
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Figure 2. Method overview. (a) Skeleton-aware Residual VQ-VAE: our framework processes source motion and skeleton through K-GCA
(Kinematic Graph Cross Attention), which divides the input into Q, K, and V branches, creating a hierarchical representation with motion-
invariant features. The residual quantization approach progressively captures motion details across multiple layers, enabling high-fidelity
reconstruction for arbitrary target skeletons. (b) Masked Transformer: base-layer motion tokens t0 are randomly masked during training
and the text-conditioned transformer learns to predict these tokens simultaneously, capturing fundamental motion patterns. (c) Residual
Transformer: builds upon the base layer by progressively predicting higher-level residual tokens tv conditioned on both text and previous
layer tokens, enhancing motion fidelity and skeleton-specific details.

and shape-aware modules. Similarly, Lee et al. [24] pro-
posed Skeleton-Agnostic Motion Embedding (SAME) us-
ing graph convolutional networks to separate skeleton infor-
mation from motion while preserving semantics. Building
upon these semantic approaches, Zhang et al. [48] intro-
duced Semantics-aware Motion reTargeting (SMT), lever-
aging vision-language models to extract and maintain mo-
tion semantics through a two-stage pipeline with skeleton-
aware pre-training and semantic constraints.

However, despite this significant progress, many ap-
proaches still struggle with maintaining semantic consis-
tency across dramatically different skeletal structures.

3. Approach
Our goal is to generate motion sequences M1:T of length T
conditioned on both a text description c and a target skeletal
structure S, where Mt ∈ RJ×Dm with J denoting the num-
ber of joints and Dm representing the dimension of joint fea-
tures. The skeletal structure S ∈ RJ×Ds characterizes the
static joint properties of the target character. As illustrated
in Figure 2, our framework consists of two main compo-
nents: a skeleton-aware VAE module that enables motion
generation for arbitrary skeletal structures (Section 3.2),
and a cooperative transformer architecture for motion to-
ken prediction (Section 3.3). We first introduce our newly
proposed dataset and its representation (Section 3.1) to fa-
cilitate better understanding of our method. Then, we detail

the complete training pipeline (Section 3.3) and inference
process (Section 3.4).

3.1. SkeleMotion-3D Dataset
Our dataset comprises three key components: textual de-
scriptions, motion sequences, and corresponding skeletal
structures. Building upon the HumanML3D dataset [16],
which combines motion data from AMASS [29] and
HumanAct12 [15], we significantly expand the motion-
skeleton pairs through a skeleton randomization process in-
spired by [24].
Feature Representation. We represent motion sequences
as M ∈ RT×J×Dm , where the motion feature Fmotion with
dimension Dm consists of:

Fmotion = [Ftopo, Froot, Fxyz, Frot, Fvel], (1)

comprising skeletal topology features, root joint features,
relative spatial positions, 6D rotation features, and velocity
features.

The skeletal structures are encoded as S ∈ RJ×Ds ,
where the skeletal feature Fskel with dimension Ds consists
of:

Fskel = [Ftopo, Fstatic], (2)

where Ftopo represents topology features and Fstatic denotes
static skeletal properties.
Dataset Construction. Following the preprocessing
pipeline established by HumanML3D, we standardize the
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raw motion sequences through temporal normalization (20
FPS), sequence cropping (maximum 10 seconds), skeletal
retargeting, and orientation alignment (Z+ direction). The
text annotations from HumanML3D, collected via Amazon
Mechanical Turk with quality control measures, are pre-
served in our dataset.
Dataset Statistics. The SkeleMotion-3D dataset contains
14,616 distinct motion patterns, 29,233 different skeletal
configurations, 43,848 unique text-motion-skeleton triplets,
and 44,970 textual descriptions with 5,371 unique words.
This represents a substantial increase compared to the train-
ing dataset (949 motion patterns and 4,745 motion-skeleton
pairs) used in [24]’s motion retargeting network. The signif-
icant expansion enhances the robustness and generalization
capability of our skeleton-aware motion generation model.

3.2. Skeleton-aware Residual VQ-VAE
We propose Skeleton-aware Residual VQ-VAE (SR-VAE),
a novel architecture that extends the conventional Resid-
ual VQ-VAE to enable skeleton-conditioned motion gener-
ation. Conventional motion VQ-VAEs [17, 19, 50, 53] and
recent RVQ-VAEs [18, 45] focus on reconstructing source
motions with identical skeletal structures. In contrast, as il-
lustrated in Figure 2, SR-VAE adopts an asymmetric VAE
architecture, consisting of an encoder, a decoder, a residual
quantization module, and a Kinetic Graph Cross Attention
(K-GCA) module, enabling motion reconstruction for arbi-
trary target skeletons.
Architecture Design. Our SR-VAE processes motion gen-
eration through three main stages. First, the input motion
sequence Min ∈ RT×J×Dm and its corresponding skeleton
structure Sin ∈ RJ×Ds are fused via K-GCA before being
encoded into latent features. Following MoMask [18], these
features undergo residual quantization to produce V + 1
ordered code sequences. Finally, the decoder incorporates
target skeleton features Stgt ∈ RJ×Ds through multiple K-
GCA layers at different decoding stages to generate the tar-
get motion Mtgt ∈ RT×J×Dm .

Let M̂tgt ∈ RT×J×Dm denote the predicted motion se-
quence and Mtgt denote the ground truth target motion. For
residual quantization, let rv ∈ RT×d represent the resid-
ual features at layer v ∈ {0, 1, ..., V } and bv ∈ RT×d

denote the corresponding quantized codes, where d is the
dimension of the latent representation. Additionally, let
Dxyz ∈ RT×J×3 and D̂xyz ∈ RT×J×3 represent the ground
truth and predicted joint positions in 3D space, respectively.
The overall training objective consists of three terms:

Ltotal = ∥Mtgt−M̂tgt∥1+β
V∑

v=0

∥rv−sg[bv ]∥22+λ∥Dxyz−D̂xyz∥1

(3)
where the first term is motion reconstruction loss, the sec-
ond term is commitment loss for residual quantization, and
the third term specifically focuses on joint positions accu-

Attention Energy Computation
ejk = LeakyReLU(asrc · Qj + adst · Kk)

Skeleton Graph Masking
ẽjk = { ejk, if Ajk = 1 -∞, if Ajk = 0 }

Graph-Structured Attention
αjk = exp(ẽjk) / Σl=1

J exp(ẽjl)
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Figure 3. Architecture of our Kinetic Graph Cross Attention.

racy. Here, sg[·] denotes the stop-gradient operation, β
and λ are weighting factors for the commitment loss and
joint position loss, respectively. The loss function is op-
timized via a straight-through gradient estimator [42]. Fol-
lowing [18, 35, 50], we employ exponential moving average
for codebook updates and reset.
Kinetic Graph Cross Attention. To effectively fuse mo-
tion and skeletal features, we propose Kinetic Graph Cross
Attention (K-GCA), as illustrated in Figure 3, extending
the traditional Graph Attention Networks (GAT) [8, 43] for
motion-skeleton feature fusion. Unlike standard GAT that
performs self-attention within a single feature type, K-GCA
enables cross-modal attention between motion and skeletal
features while preserving the skeletal graph structure.

Given motion features X ∈ RT×J×Dm and skeleton fea-
tures S ∈ RJ×Ds , K-GCA first projects them into a shared
space using learnable projection matrices Wm ∈ RDm×dk

and Ws ∈ RDs×dk , where dk is the dimension of the pro-
jected space:

Q = WmX, K = V = WsS. (4)

The attention scores between joints j and k are computed
using learnable vectors asrc ∈ Rdk and adst ∈ Rdk :

ejk = LeakyReLU(asrc ·Qj + adst ·Kk), (5)

To preserve the skeletal structure, we mask the attention
scores using the skeleton adjacency matrix A ∈ {0, 1}J×J ,
where Ajk = 1 if joints j and k are connected in the skele-
ton graph, and 0 otherwise. We set attention scores for dis-
connected joints to negative infinity before applying soft-
max:

ẽjk =

{
ejk, if Ajk = 1

−∞, if Ajk = 0
, (6)

αjk =
exp(ẽjk)∑J
l=1 exp(ẽjl)

, (7)

The final output X̂ ∈ RT×J×Dm is computed by applying
the attention weights to value matrix V in each head, con-
catenating results from all heads, and adding back to the
input through residual connection:

X̂ = LayerNorm(X+ MultiHead(α,V)). (8)
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where MultiHead(α,V) represents the multi-head
weighted combination of values using the computed
attention weights α. This design allows K-GCA to capture
dynamic relationships between motion and skeletal features
while maintaining the anatomical constraints imposed by
the skeletal structure. Compared to standard GAT, our
approach provides two key advantages: (1) the ability to
perform cross-modal attention between motion and skeletal
features, and (2) the incorporation of skeletal structure
constraints through attention masking.

3.3. Training Pipeline
Our training pipeline follows a sequential approach for
skeleton-agnostic motion generation from text, as shown in
Figure 2.
SR-VAE Training. First, we train the Skeleton-aware
Residual VQ-VAE (SR-VAE) to establish skeleton-agnostic
motion representation. This model encodes motion se-
quences into hierarchical tokens and decodes them back to
motion features, independent of skeletal structure. After
training, both encoder E and decoder D are frozen.
Tokenization of Training Data. Using the frozen SR-VAE
encoder, we convert all training motion sequences into hi-
erarchical token representations. For each motion Min with
corresponding skeleton Sin, we extract multi-level token se-
quences t0:V as targets for our text-to-token models.
Masked Transformer Training. Inspired by Mo-
Mask [18], we implement a bidirectional Masked Trans-
former to generate base-layer tokens (t0). This design of-
fers parallel generation capability and better global motion
coherence compared to autoregressive approaches. Dur-
ing training, the model learns to predict original tokens at
masked positions from text prompts.
Residual Transformer Training. Finally, we train the
Residual Transformer to predict higher-layer tokens (t1:V )
encoding motion refinements. Following MoMask [18], this
transformer takes both text descriptions and tokens from
previous layers as input, focusing on finer motion details
while maintaining consistency with the base motion.

3.4. Inference Process
During inference, OmniSkel generates skeleton-aware mo-
tions through the following steps:
Base Token Generation: Given a text prompt, the Masked
Transformer generates the base-layer tokens t̂0 that capture
primary motion patterns.
Hierarchical Refinement: The Residual Transformer pro-
gressively generates higher-layer tokens t̂1:V , starting with
layer 1 and proceeding sequentially. Each layer’s prediction
utilizes both the text prompt and all previously generated to-
ken layers.
Motion Decoding: Once we have the complete token hier-
archy t̂0:V , we feed these tokens along with the target skele-

ton structure Stgt into the frozen SR-VAE decoder to obtain
motion features.

Algorithm 1: Motion Restoration Optimizer
Input: Measurement data: Ftopo, Froot, Fxyz; Bone

lengths: S
Output: Smooth motion sequence Msmooth with

guaranteed skeletal consistency

1 // Step 1: Restore initial motion using
position-based approach;

2 Mric ← ric(Ftopo, Froot, Fxyz);

3 Msmooth ← ∅;

4 foreach frame f ∈Mric do
5 // Step 2: Extract unit direction vectors for

each bone (except the root);
6 Initialize set U ← ∅;
7 for i← 1 to J − 1 do
8 Let pi be the position of joint i in frame f ;
9 Let pparent(i) be the position of joint i’s

parent;
10 Compute displacement: vi ← pi−pparent(i);

11 Compute unit direction: ui ←
vi

|vi|
;

12 Add ui to U ;
13 end

14 // Step 3: Reconstruct the current frame
using extracted directions, bone lengths, and
topology;

15 frec ← ReconstructFrame(U , S, Ftopo, Froot);
16 Add frec to Msmooth;

17 end

18 return Msmooth;

Feature-to-Motion Conversion: Following the genera-
tion of motion features by our SR-VAE decoder, we face
the challenge of transforming these abstract representations
into production-ready motion data. Contemporary text-to-
motion frameworks typically rely on either position-based
restoration (offering fluidity but with bone length inconsis-
tencies) or rotation-based restoration (maintaining skeletal
integrity but introducing jitter and penetration artifacts).

To overcome these limitations, we employ our Motion
Restoration Optimizer (MRO, detailed in Algorithm 1),
which synergistically combines the strengths of both ap-
proaches. MRO guarantees two critical properties simulta-
neously: absolute preservation of skeletal proportions (zero
bone length error) and maintenance of smooth trajectory
characteristics, producing physically plausible output M̂tgt.
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Method FID↓ R Precision↑ MPJPE↓ Skeleton Error↓ Jitter Error↓ Skating Ratio ↓Top 1 Top 2 Top 3

SR-VAE (full model) 0.027 0.508 0.700 0.793 0.035 13.778 1.824 0.074

w/ Single-head K-GCA 0.040 0.497 0.685 0.789 0.034 12.294 2.935 0.061
w/o K-GCA 0.065 0.495 0.689 0.785 0.041 17.726 9.594 0.092
w/o RVQ 0.165 0.467 0.639 0.775 0.061 19.726 3.594 0.092
w/ Symmetric Reconstruction 0.885 0.450 0.641 0.745 0.097 89.747 9.867 0.067

w/ Rotation-based Restoration 0.027 0.508 0.700 0.793 0.063 0.00 30.724 0.193
w/ MRO 0.027 0.508 0.700 0.793 0.035 0.00 2.084 0.090

Table 1. Ablation study of SR-VAE components tested on the SkeleMotion-3D test set. Our SR-VAE is trained on the SkeleMotion-3D
dataset. To evaluate SR-VAE’s reconstruction performance for arbitrary skeletal motions, we input random skeleton motions to the encoder
and use the standard skeleton from the HumanML3D dataset as the target skeleton.

4. Experiments

We conduct extensive experiments to evaluate our approach
across multiple dimensions, focusing on both semantic ac-
curacy and physical plausibility.
Evaluation Metrics. We assess our model using estab-
lished semantic metrics from prior work [16]: (1) Frechet
Inception Distance (FID) for overall motion quality; (2) R-
Precision and multimodal distance for text-motion align-
ment.

To comprehensively evaluate physical plausibility—a
critical aspect for animation applications—we introduce
several specialized metrics:
• Skating Ratio: Measures foot sliding artifacts where feet

unnaturally glide across the ground
• Skeleton Error: Quantifies bone length variations

throughout motion sequences
• MPJPE (Mean Per-Joint Position Error): Assesses posi-

tional accuracy of joints
• Jitter Error: Evaluates motion continuity and natural flow
Detailed formulations of these metrics appear in the supple-
mentary materials.
Implementation Details. Our PyTorch implementation
features a Skeleton-aware Residual VQ-VAE (SR-VAE)
with residual blocks following T2M-GPT [50] and Mo-
Mask [18] architectures. We use a downscale factor of
4, with a residual quantization comprising 6 layers (each
containing 512 codes of 512 dimensions) and quantization
dropout ratio of 0.2. For the SR-VAE training objective,
we set commitment loss weight β to 0.02 and joint position
loss weight λ to 2.0. The K-GCA module employs 2-head
attention.

Both transformer models consist of 6 layers with 6 at-
tention heads and 384-dimensional latent representations,
trained on our SkeleMotion-3D dataset. We use a learning
rate of 2e-4 with linear warm-up over 2000 iterations, batch
sizes of 512 for SR-VAE and 64 for transformers. Dur-
ing inference, we apply classifier-free guidance (scale 4 for

masked transformer, 5 for refinement transformer) with 10
iterative decoding steps. All experiments run on NVIDIA
RTX 4090 GPUs.

4.1. Skeleton-Aware Disentanglement Analysis
A cornerstone of our approach is SR-VAE’s ability to disen-
tangle motion patterns from skeletal structures. We conduct
a targeted experiment to validate this skeleton-agnostic ca-
pability.

Figure 4 presents our analysis of four distinct motion
patterns, each performed by three different skeletal struc-
tures with varying proportions. We process these motion-
skeleton pairs through our SR-VAE encoder E and visualize
the resulting base layer tokens t0 on aligned line charts.

The results reveal that motions with identical seman-
tic patterns but executed by anatomically diverse skeletons
produce remarkably similar token sequences. This consis-
tency demonstrates that our encoder E successfully extracts
skeleton-invariant motion features, preserving essential se-
mantic content regardless of the executing skeletal struc-
ture.

This confirms that SR-VAE effectively decomposes mo-
tion into two orthogonal components: (1) skeleton-invariant
pattern information encoded in tokens, and (2) skeleton-
specific structural information provided separately to the
decoder. This disentanglement enables our model to gen-
erate physically plausible animations for arbitrary skeletal
structures while preserving intended motion semantics.

4.2. Ablation Study
To validate SR-VAE’s skeleton-aware capabilities, we con-
duct experiments using random input skeletons while de-
coding to standard HumanML3D [16] skeletons. This eval-
uates both semantic alignment and cross-skeleton recon-
struction capabilities.

Table 1 presents our ablation results on the SkeleMotion-
3D test set. The complete SR-VAE model achieves su-
perior performance with an FID of 0.026 and strong R-
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Figure 4. Motion token analysis across skeletal structures. This figure demonstrates token sequences generated by the SR-VAE encoder
for four distinct motion patterns, each performed by three skeletal structures with different proportions. The consistent token patterns across
each motion type (columns) despite skeletal variations demonstrates our encoder’s ability to extract skeleton-invariant motion features. Top
row shows skeletal visualizations while bottom row displays the corresponding quantized token values, revealing clear pattern preservation
across different anatomical configurations.

Person walks forwards and sits down and
scratches upper body and then gets up.

A person walks forward
and dances.

Someone walks counter-
clockwise in a circle.

Figure 5. Text-to-motion generation across different skeletal structures. Our OmniSkel framework generates diverse motions respond-
ing to different text prompts (columns) while adapting to different skeletal anatomies (rows). The human skeleton on the left is randomly
selected from Mixamo [2], demonstrating OmniSkel’s ability to maintain semantic consistency across dramatically different skeletal struc-
tures without retargeting.

Precision scores (0.508/0.700/0.793 for Top-1/2/3), demon-
strating excellent semantic consistency.

Architecture Components. Using symmetric reconstruc-
tion (same skeleton for encoder and decoder) drastically
increases FID to 0.885 and skeleton error to 89.747, con-
firming that asymmetric processing is essential for effec-
tive cross-skeleton learning. Removing K-GCA degrades
FID to 0.065 with a significant increase in jitter error (9.594
vs. 1.824), demonstrating its importance in capturing cross-
skeleton geometric correspondences.

Without RVQ, FID increases substantially to 0.165 and
MPJPE to 0.061, highlighting RVQ’s crucial role in main-
taining semantic consistency across different skeletal struc-

tures. The single-head K-GCA variant shows moderate per-
formance decline (FID: 0.040), indicating that multi-head
attention more effectively captures the rich geometric rela-
tionships between skeletons.

Motion Restoration. For motion restoration approaches,
rotation-based methods achieve perfect skeleton reconstruc-
tion (skeleton error: 0.00) but significantly increase jitter
error (30.724) and skating performance (0.193). In con-
trast, our MRO technique also achieves perfect skeleton re-
construction (skeleton error: 0.00) while maintaining low
jitter error (2.084) and better skating ratio (0.090). This
demonstrates MRO’s effectiveness in preserving physical
plausibility while maintaining motion quality across differ-
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ent skeletal structures.
Our ablation study confirms each component’s critical

contribution to the overall system: K-GCA and RVQ en-
hance cross-skeleton reconstruction and semantic align-
ment, while MRO ensures physical consistency in the gen-
erated motions. These findings validate our architectural
design choices for skeleton-aware motion generation and
demonstrate SR-VAE’s ability to effectively handle arbi-
trary skeleton motion retargeting with high fidelity.

4.3. Qualitative and Quantitative Analysis
Quantitative Evaluation. We evaluate our methods against
state-of-the-art text-to-motion approaches as shown in Ta-
ble 2. The fundamental distinction of our approach is the
ability to directly generate motions for arbitrary skeleton
structures—a paradigm shift from existing methods that are
restricted to fixed, pre-defined skeletons.

Datasets Methods FID↓ R Precision↑
Top 1 Top 2 Top 3

Human-
ML3D

TM2T [17] 1.501±.017 0.424±.003 0.618±.003 0.729±.002

T2M [16] 1.087±.021 0.455±.003 0.636±.003 0.736±.002

MDM [41] 0.544±.044 0.320±.005 0.498±.004 0.611±.007

MLD [10] 0.473±.013 0.481±.003 0.673±.003 0.772±.002

MotionDiffuse [51] 0.630±.001 0.491±.001 0.681±.001 0.782±.001

T2M-GPT [50] 0.141±.005 0.492±.003 0.679±.002 0.775±.002

ReMoDiffuse [52] 0.103±.004 0.510±.005 0.698±.006 0.795±.004

AttT2M [54] 0.112±.006 0.499±.003 0.690±.002 0.786±.002

Momask [18] 0.045±.002 0.521±.002 0.713±.002 0.807±.002

Skele-
Motion-3D

SR-VAE (ours) 0.027±.000 0.508±.002 0.700±.002 0.793±.002

OmniSkel (ours) 0.084±.004 0.507±.002 0.699±.003 0.797±.002

Table 2. Comparison with text-to-motion methods on standard
skeleton. Our approach introduces a novel pipeline trained on the
SkeleMotion-3D dataset, which fundamentally differs from tradi-
tional T2M methods. For fair comparison with existing methods
trained on HumanML3D, we configured our models (SR-VAE and
OmniSkel) to target the standard HumanML3D skeleton during in-
ference. Despite being designed for arbitrary skeleton generation,
our methods achieve competitive performance on this fixed skele-
ton setting, demonstrating strong text-to-motion capabilities even
when constrained to a single skeleton structure.

This fundamental difference presents a challenge for di-
rect comparison, as our methods operate on the newly intro-
duced SkeleMotion-3D dataset with diverse skeleton struc-
tures, while previous approaches are confined to the Hu-
manML3D dataset with a single skeleton configuration.
Notably, existing methods cannot be trained or evaluated
on our dataset due to their inherent architectural limitations
in handling skeleton variations.

To provide a meaningful comparison that highlights our
text-to-motion capabilities, we configure our models at in-
ference time to target the standard HumanML3D skele-
ton structure. Despite being designed for the more com-
plex task of arbitrary skeleton generation, both SR-VAE

and OmniSkel achieve competitive performance on the Hu-
manML3D test set, with comparable or superior metrics in
FID and R-Precision compared to specialized methods.

These results demonstrate that our methods success-
fully balance adaptability with generation quality, enabling
cross-skeleton applications without compromising perfor-
mance on standard benchmarks.
Qualitative Results. Figure 5 illustrates OmniSkel’s ca-
pability to generate motions across different skeletal struc-
tures. The visualization demonstrates: (1) diverse motions
for different textual descriptions, and (2) consistent seman-
tic motion across distinct skeletal anatomies.

Each column represents a different textual prompt, from
complex sequences to simpler actions. The model success-
fully captures the nuanced details of these descriptions, in-
cluding locomotion styles and sequential actions.

This comparison demonstrates OmniSkel’s precise per-
ception and effective integration of different semantics and
arbitrary skeletons. More visualization results are provided
in the supplementary materials.

4.4. Performance Comparison

Method Parameters Inference Time GPU Memory
MoMask [18] 44.85M 0.075s 1434M
Ours 38.73M 0.099s 1402M

Table 3. Computational cost comparison on RTX 4090.

Our method achieves comparable performance to state-
of-the-art approaches while maintaining slight GPU mem-
ory advantages as shown in Table 3 and uniquely enabling
end-to-end motion generation for arbitrary skeletal specifi-
cations. This efficiency demonstrates the practical viability
of our skeleton-agnostic framework for real-world applica-
tions requiring diverse character animations.

5. Discussion and Conclusion
In conclusion, we present OmniSkel, a text-driven motion
generation framework that enables motion synthesis for ar-
bitrary human skeletons through our novel K-GCA and
SR-VAE architectures. Our Motion Restoration Optimizer
(MRO) addresses the cross-skeleton motion reconstruction
challenge, ensuring both motion smoothness and skele-
tal consistency. Leveraging our SkeleMotion-3D dataset,
which pairs textual descriptions with diverse skeletal con-
figurations, our approach bridges the gap between research
and practical applications. Experiments demonstrate that
OmniSkel achieves competitive performance while main-
taining semantic alignment with textual descriptions. This
work establishes a foundation for more inclusive motion
generation systems that can serve diverse applications with-
out requiring conventional retargeting approaches.
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