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Abstract

Towards visual room rearrangement for embodied agents,
this paper tackles the intricate challenge of restoring a dis-
arrayed scene configuration to its intended goal state. The
task necessitates a range of sophisticated capabilities, in-
cluding efficient spatial navigation, precise and accurate
object interaction, sensitive scene change detection, and
meticulous restoration techniques. The inherent complexity
of this endeavor stems from the diverse nature of potential
object changes, encompassing movements within the space,
alterations in appearance, and changes in existence—where
objects may be introduced or removed from the scene. Pre-
vious methods, either end-to-end reinforcement learning or
modular approaches, struggle with handling these changes
in a unified manner due to the heterogeneous nature of
the inference spaces. To address this, this paper proposes
a Trial-Oriented Visual Rearrangement (TOR) framework,
which leverages the principles of stronger embodiment to
prune the joint reasoning space and identify a smaller
shared space for processing various object changes. TOR
maintains a differential point cloud representation to cap-
ture environmental changes and uses two core mechanisms,
assessment and trial, to iteratively restore the scene to the
goal state. Experimental results demonstrate the effective-
ness of TOR in restoring both object movement and appear-
ance changes and show its generalization to complex multi-
room environments.

1. Introduction
Visual room rearrangement remains a core challenge for
embodied agents, whose goal is to recover a shuffled scene
configuration to the goal state. This task demands a wide
range of capabilities from the agent, including foundational
skills such as efficient navigation and accurate interaction
with objects. However, the principal challenge lies in scene
change detection and scene change restoration. In real-
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world scenarios, changes in objects exhibit considerable di-
versity, primarily categorized into three types, movement,
appearance and existence changes, which together consti-
tute the inherent complexity of visual rearrangement, as
shown in Fig.1(a)

Recent works can be divided into end-to-end reinforce-
ment learning methods and modular methods. Reinforce-
ment learning methods [11, 35] try to leverage a lot of ex-
perience in training and memorize the environment states in
parametric mapping mechanism. However, due to the lim-
itations of model parameters and training data, the end-to-
end RL methods struggle to handle such difficult task with
excessive complexity of state space. Alternatively, modu-
lar methods seek to partition the task into perception and
planning modules, which construct and compare the ex-
plicit scene graphs of two environment states to infer rear-
rangement goals. While achieving reasonable performance
on addressing movement changes, the modular methods
encounter challenges to handle appearance and existence
changes in a unified manner. The underlying reason lies in
the highly heterogeneous nature of the inference spaces for
movement, appearance, and existence changes. Integrating
these factors within a unified reasoning framework can re-
sult in explosive inference complexity, thereby reducing the
confidence in decision-making. If decoupled, each change
form would require a individual module, reducing overall
re-usability.

To address this issue, our motivation is to prune the joint
reasoning space and identify a smaller shared space for uni-
fied processing various object changes. Traditional prun-
ing methods typically impose prior distributions on the rea-
soning space. Specifically, for embodied agents perform-
ing tasks in real-world physical environments, their prior
knowledge inherently includes various physical laws. Al-
though a fully accurate world model adhering to all physi-
cal laws has yet to emerge, every action taken by an embod-
ied agent inherently complies with these laws. Therefore,
we can leverage the continuous interactions with environ-
ment of the embodied agent to directly prune search spaces
that violate physical principles. Besides, as illustrated in
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Figure 1. (a) The types of object changes are highly varied and can be primarily classified into three categories: movement, appearance, and
existence changes. Together, these changes form the fundamental complexity of visual rearrangement tasks. However, existing methods
only focus on movement changes and fail to handle appearance and existence changes in a unified manner. (b) As the task setting becomes
more complex, the confidence in decision-making tends to decrease, whereas the confidence in perceiving and assessing environmental
states remains relatively stable. Thus, we can achieve a unified framework for various scene changes by iteratively employing trial and
assessing the effectiveness of each action based on whether the current scene more closely approximates the goal state.

Fig.1(b), while decision confidence may decrease with in-
creasing task complexity, the confidence in assessing envi-
ronmental states remains relatively stable. Based on this ob-
servation, for each action performed by agent, we can eval-
uate whether the current scene is closer to the target state.
This evaluation serves as a measurement of the action’s ef-
fectiveness, enabling the agent to refine its decision-making
process and complete the task more effectively.

We propose Trial-Oriented Visual Rearrangement
(TOR), to the best of our knowledge, a more embodied
pioneering attempt to tackle visual rearrangement task,
compared to previous works with pre-defined polices.
Our method views the agent’s intelligent behavior as an
inseparable integration of its physical presence, perceptual
abilities, and dynamic interactions with environment.
Specifically, we maintain a differential point cloud repre-
sentation to capture scene changes, recording information
about newly protruding and missing parts in shuffled scene
configuration. To restore these changes throughout the
scene, we design two core modules, interaction assessment
module and trial module, which operate alternately. The
assessment module analyzes the trends in differential point
cloud to quantify the extent to which the behavior reduces
the discrepancy between the current and goal scene config-
uration. Meanwhile, the trial module, informed by current
observations and feedback from assessment module,
recurrently attempts the next optimal operation from trial
space until a successful restoration is achieved. Through

this iterative cycle of trail-assessment-refinement, the agent
restores all objects to their goal states in succession.

We evaluate our TOR model on AI2THOR rearrange-
ment benchmark based on RoomR dataset. The experimen-
tal results demonstrate the effectiveness of our method in
restoring both object movement and appearance changes.
Given that RoomR dataset includes only single-room scenes
and lacks existence changes, we build a more practical and
challenging dataset called Versatile Indoor Rearrangement
(VIR) based on multi-room environments, covering diverse
object changes encountered in real-world scenarios. The
results on VIR exhibit the exceptional superiority of our
method even in such complex environments.

2. Related Works

2.1. Embodied AI

Embodied AI refers to artificial intelligence that is inte-
grated into a physical form and interacts with its environ-
ment in a way that mimics human-like perception, reason-
ing, and action. The key characteristics of embodied AI
include real-time environmental interaction and feedback,
which can be simulated on software platforms supporting
such scenarios [12, 16, 21, 30]. Various tasks for embodied
agents have facilitated the development of methodologies
and techniques that enhance the perceiving and reasoning
abilities of agents, such as object navigation [23, 33, 34, 38–
41], scene exploration [9, 25, 26, 28], embodied question

8023



answering [5, 6, 36] and object manipulation [10, 37]. How-
ever, most of these works pertain to the domain of weak em-
bodiment, where the agents perform tasks with pre-defined
policies without considering the feedback of interaction.
In contrast, our method leverages information accumulated
from unsuccessful attempts to guide agent in refining its in-
teraction strategy to complete visual rearrangement task.

2.2. Rearrangement
Rearrangement planning [2–4, 8, 19, 20, 22] has long been
a research hot spot in the field of task and motion plan-
ning [13–15, 17, 18], focusing on the capability of inter-
acting with and manipulating objects to achieve specific
environment layouts. Such rearrangement planning tasks
generally do not tackle perception issues directly, instead,
they assume that the state of the objects can be fully ac-
cessed. In recent years, visual room rearrangement [1, 35]
has emerged as an important area within the field of em-
bodied AI, where agents perceive the environments solely
through visual input. The spatial scope of rearrangement is
also not limited to the desktop but extends across multiple
rooms, presenting greater challenges for intelligent agents
in understanding and reasoning about the environment.

2.3. AI2THOR Rearrangement Challenge
We focus on the AI2THOR Rearrangement Challenge [35],
which is built on an open source interactive environment
simulator, AI2THOR [21]. The rearrangement task can be
divided into two variants: one-phase and two-phase. In the
one-phase task, the agent has the same perspective on both
the current environment and the target environment simul-
taneously. In the two-phase task, which is our main focus,
the agent should first explore the target environment au-
tonomously to memorize it, then take actions to rearrange
the shuffled environment. Prior works focus on semantic-
level scene understanding and memorizing, including meth-
ods of 3D sematic mapping [31] and object relationship
graph [11, 29, 32]. CAVR [24] proposed a category ag-
nostic model for visual rearrangement task, which utilizes
differential point cloud detection to represent scene change.
Distinguishing from previous work that is only capable of
object movement, our work propose a trial-oriented frame-
work to handle various scene changes uniformly, including
movement, appearance and existence changes.

3. Visual Rearrangement
3.1. Task Definition
According to the rearrangement setting formally defined by
Batra et al[1], this task is a special case of Partially Observ-
able Markov Decision Processes(POMDP) and requires an
agent to transform an environment from an initial state s0
to a goal state s∗ ∈ S∗ via a sequence of actions a ∈ A.

The set of goal states S∗ and initial state s0 both belong to
the world state space S, which is factorized as the Cartesian
product of all rigid-body pose spaces: S = S1 × S2 . . .Sn,
where Si = SE(3) = R3 × SO(3) denotes the space of
ith rigid-body space, with R3 and SO(3) representing 3D
locations and rotations space, respectively. But due to the
noisy and incomplete onboard perception in embodied AI,
the agent typically have no access to world states and oper-
ate solely from sensory observations o ∈ O and goal spec-
ification g = ϕ(s0, S

∗), where ϕ : S × 2S 7→ G denotes a
goal specification function. The goal specification g encom-
passes a variety of forms, including GeometricGoal, Image-
Goal, LanguageGoal, ExperienceGoal, et al.

We focus on an instance of general rearrangement task
specified by ExperienceGoal[35], which takes the agent’s
experience in goal state as goal specification and has two
stages, walkthrough and unshuffle. In walkthrough stage,
the agent is placed into a room with goal state s∗ and
should collect as much information as needed for that par-
ticular state of the room. Then we remove the agent from
the room and change some objects’ state. This state will
be the initial state s0, where the agent is initialized at the
beginning of unshuffle stage and needs to convert s0 to
s∗. At each timestamp t, the agent receives egocentric
RGB-D observations and executes a discrete action, where
the action space consists of move ahead, turn right,
turn left, look down, look up, pick, put, open,
remove, push, stop. The agent autonomously executes
the action stop when it determines to complete the task.

3.2. Challenges and Insights

The primary challenges of the visual rearrangement task lie
in addressing three distinct types of rigid object changes:
movement, appearance, and existence. Movement
changes involve the relocation of objects of varying sizes
over different distances, even including cross-room trans-
portation, requiring the agent to possess precise path plan-
ning and operation control. Appearance changes, aligned
with the capabilities of simulators and requirements of real-
world scenarios, mainly focus on the opening or closing
state of containers in this paper. Existence changes per-
tain to the disappearance of objects (e.g., taken by a guest)
or the occurrence of new items (e.g., empty bottles left be-
hind). The agent must discover newly introduced objects
that do not belong to the original room and remove them.
Given the agent’s inability to create objects from nothing,
disappearance of originally existing objects is not consid-
ered in this paper.

In visual rearrangement task, the agent must infer and ex-
ecute a sequence of actions to restore the scene to its initial
state. This process requires exploring a reasoning space that
encompasses all possible action sequences, approaching in-
finity with timestep. Existing methods infer object move-
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Figure 2. Pipeline of our TOR model. (a) To provide a unified representation of various scene changes, we build and maintain the
diff-cloud dynamically, including the moved (blue points) and protruding (red points) point cloud in the shuffled configuration, compared
to the goal configuration. (b) Interaction assessment module analyzes the variation of diff-cloud, evaluates effectiveness of operations, and
provides feedback to trial module. (c) To transport each protruding cluster to its goal state, the trial module first evaluates and prioritizes
all potential operations in trial space according to the scene information and then attempts operations sequentially based on the feedback
from assessment module.

ment by scene change detection and matching, and convert
the reasoning into action sequence, keeping complexity dm
manageable. However, when the agent needs to handle ap-
pearance and existence changes additionally, with complex-
ities defined as da and de, the joint reasoning space approx-
imates Cartesian product of these with complexity around
O(dm ∗ da ∗ de), which is excessively large. To effectively
pruning the reasoning space, we try to employ a trial mech-
anism, which iteratively attempts and prunes physically in-
feasible actions, turning reasoning problem into discrimi-
nation task. This shifts complexity from multiplicative to
additive, reducing it to around O(dm + da + de).

4. Method
In this section, a modular approach, which includes scene
change detection module, interaction assessment module,
and trial module, is presented to tackle the challenging task,
as shown in Fig.2. The scene change detection module
(Sec.4.1) utilizes a dynamic differential point cloud to unify
the representation of diverse scene changes (movement, ap-

pearance and existence). The interaction assessment mod-
ule (Sec.4.2) evaluates the effectiveness of interaction be-
havior, providing the assessment of actions for trial mod-
ule. Sec.4.3 introduces a trial strategy, which enables the
agent to refine its operation based on not only the visual
perception but also the feedback from assessment module,
progressively accomplishing the task.

4.1. Scene Change Detection
4.1.1. Differential Point Cloud
Representing the diverse forms of object changes in a uni-
fied format is an important issue for the rearrangement set-
ting. Several conventional choices, like voxel-based se-
mantic maps and scene graph, can capture significant spa-
tial movements but struggle with localized, fine-grained
changes in appearance and position of objects. Our ap-
proach builds off recent work that use the differential
point cloud (diff-cloud) to capture various scene changes
precisely[24], as the point cloud contains rich geometric,
positional, and scale information of objects and remains
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robust against varied observation angles and obstructions
from other objects. Our work differs from previous in that
we maintain the diff-cloud dynamically, considering the in-
teractions between the agent and the environment, such as
moving objects (like furniture) or changing object states
(like doors and stoves). In contrast, previous methods only
construct diff-cloud based on static scene information and
consider interaction with the environment only after the
point cloud is fully constructed.

In particular, during walkthrough stage, the agent only
explores the environment without interacting with it. We
generate the egocentric point cloud pegow using depth obser-
vation D. Given current pose xw, we transform the egocen-
tric point cloud pegow from the agent’s coordinate system to
world coordinate system. The geocentric point cloud with
current pose (pgeow , xw) is recorded in the agent’s memory.

Then during unshuffle stage, the agent operates in two
modes of exploration and interaction alternately. For explo-
ration mode, we also calculate the geocentric point cloud
pgeou with pose xu. If current view xu aligns with a previ-
ous pose xw existing in the memory, we contrast two corre-
sponding point clouds and extract the moved and protruding
parts of current configuration relative to goal configuration.
For interaction mode, we refresh the diff-cloud within the
current field of view rather than update it by adding up, so
that the changes can be captured immediately.

4.1.2. Scene Change Matching
To recover the scene configuration to goal state, we need
to match changes across various locations in the scene.
Specifically, we first cluster the two components of the
diff-cloud, the protruding part Ωp and the moved part Ωm,
to obtain item-level information, yielding Ωp = {ωp

i }
and Ωm = {ωm

j }. Subsequently, we build off recent
work[24] that trains a geometric feature extractor based
on PointNet++[27] and conduct weighted bipartite graph
matching between Ωm and Ωp, according to the similarity
of geometric feature. If ωp

i matches nothing, its associated
variation is regarded as existence change; otherwise, it is re-
garded as movement or appearance change. The results of
scene change matching will be considered in the following
restoration strategy in Sec.4.3.

4.2. Assessment of Interaction
Although diff-cloud enables identification of diverse scene
variations, determining the precise restorative interactions
remains challenging. However, there exists a unified as-
sessment method that can reliably determine whether each
interaction effectively reduces the discrepancy between cur-
rent and target scene configuration, making it possible to re-
store the scene by iteratively employing trial and assessing
the effectiveness of each action as detailed in Sec.4.3.

Specifically, we evaluate the interaction behaviors by
quantifying the impact on diff-cloud. Let ∆Pt denote the

diff-cloud at time t. After executing an action at, the up-
dated diff-cloud is represented as ∆Pt+1. To assess the ef-
fectiveness of the action, we compute the reduction in the
discrepancy using the following metric:

∆C(at) = ∥∆Pt∥ − ∥∆Pt+1∥

where ∥·∥ is a norm operator that quantifies the magnitude
of the diff-cloud as the number of differing points. The ac-
tion at is deemed effective if ∆C(at) > τ,, where τ is a
predefined threshold, indicating a significant reduction in
the discrepancy.

4.3. Trial Module
While it remains nontrivial to accurately plan the opti-
mal action sequence for scene configuration rearrangement,
multiple trials offer a viable path. The trial module lever-
ages the scene observation and information accumulated
from unsuccessful attempts to guide agent in refining its in-
teraction strategy.

Specifically, to determine the type of change and the
restoration strategy associated with each protruding cluster
ωm
i , we first prioritize all potential operations in the trial

space, leveraging the results of scene change matching and
current observations. The score function is defined as:

S(a, ωp
i ) = λ1ϕmatch(ω

p
i ,Ω

m, a) + λ2ϕcontext(ω
p
i , o, a)

Here, ϕmatch(ω
p
i ,Ω

m, a) is a function based on diff-cloud
matching and determines whether the object is newly in-
troduced or originally existing. If ωp

i matches one moved
cluster in Ωm, ϕmatch returns 0 for “Throwout” or 1 for
other actions, and it reverses the output if there’s no match.
The term ϕcontext(ω

p
i , o, a) evaluates the applicability of ac-

tion a based on the current observation, such as the object’s
shape, position, and environmental constraints. To calculate
ϕcontext, we project cluster ωp

i onto the current RGB obser-
vation and obtain bounding box and its local visual feature
with RoI pooling on global feature map. Then ϕcontext pre-
dict a score based on the visual feature through a two layer
MLP. To train this network, we collect a static dataset in var-
ious scenes containing the data of features and labels, where
agent is randomly spawned around objects and attempts to
interact with different actions and labels are annotated ac-
cording to success or failure of these actions. λ1 and λ2 are
weighting factors balancing the contributions of geometric
matching and contextual reasoning.

The scores derived from static scene information provide
valuable references for inferring restoration strategy, but are
also prone to misjudgments, making the feedback from the
assessment module crucial. Therefore, after the execution
of the highest-scoring operation a∗, we evaluate its effec-
tiveness by assessment module. If the operation success-
fully resolves the scene change associated with the protrud-
ing cluster ωp

i , it is marked as restored, and the process ad-
vances to the subsequent item. In cases where the operation
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fails, we iterate to the next highest-scoring option, continu-
ing the trial process until a viable solution is identified or the
cluster is deemed unsolvable. This integration of static scor-
ing and dynamic trial allows the agent to effectively handle
the various object changes in rearrangement setting.

5. Experiments
5.1. Experiment Setup
Dataset We evaluate our model on the official AI2THOR
Rearrangement Challenge based on RoomR dataset [21,
35]. Due to bugs related to “open/close” action in the 2022
rearrangement challenge, we adopt the latest official dataset
prior to submission for verification in this paper, where the
bug is fixed to prevent exploitation for tricks. This dataset
consists of 80 rooms with 4000 tasks for training, and 20
rooms with 1000 tasks separately for validation and test. In
each task of RoomR dataset, the states of 1 to 5 objects are
transformed, with changes in position or openness.

RoomR dataset only focusing on movement changes of
pickable small objects and appearance changes of openable
objects within one single room, whose action space and in-
ference space are both limited to a subset of real-world rear-
rangement task settings. In order to better characterize the
spatial complexity that fits the indoor environment in real-
ity, we build a more practical and challenging dataset called
Versatile Indoor Rearrangement (VIR) for the two-stage re-
arrangement task on the ProcTHOR simulator [7].

In our VIR dataset, object changes fall into three pat-
terns: movement, appearance and existence, which cover
the common morphological changes in daily life. For move-
ment pattern, we consider the position variation of both
small pickable objects and unpickable objects that cannot
be grasped in hand and can only be pushed. For appear-
ance pattern, we adopt the same settings as RoomR dateset,
focusing on object openness. For the existence pattern, we
introduce a new pickable object in unshuffle stage and ex-
pect the agent to identify and remove the redundant item.
We randomly select 9000 scenes from ProcTHOR simulator
and divide them into 6000 general settings (involving only
pickable and openable object changes), 1500 movement set-
tings (adding position change for one unpickable object),
and 1500 existence settings (introducing a new object from
general setting). For each scene, we randomly generate one
rearrangement task. We split 7000, 1000, 1000 scenes for
training, validation and test separately in VIR dataset, while
retaining the same ratio of various settings in each split.

To characterize the complexity and difficulty of one rear-
rangement task, we define a scenario based task complexity:

Complexityscene =
∑

obj∈scene

Cobj ∗ Sscene

where Cobj represents the state change of an object and

Sscene represents the area measurements of the scene. For
objects whose state has changed, we define the state change
of an object through three patterns proposed in preceding
context:

Cobj =


Vobj ∗ |Dwalk −Dun| Movement
Vobj ∗ sin |Owalk −Oun| Appearance
Vobj ∗max(Lscene,Wscene) Existence

where Vobj represents the volume of an object, and Dwalk,
Dun, Owalk, Oun respectively represent 3D position co-
ordinates of pickable or moveable objects and openness of
openable objects in walkthrough and unshuffle stage. Par-
ticularly, if an object is eliminate from walkthrough stage,
its displacement distance is maximum size of the scene. Fig.
3 illustrates the comparison of task complexity distribution
between our VIR dataset and RoomR dataset in the form of
scatter plot. It can be seen that our VIR dataset expands the
problem space and encompasses a diverse range of both task
complexity and scene area, while RoomR dataset mainly
covering a subset of ours in fields of low task complexity
and small scene area.

Figure 3. Comparison of task complexity distribution between
VIR and RoomR datasets.

Evaluation metrics. Following Weihs[35], we employ
four metrics to evaluate the agent’s performance from dif-
ferent perspectives. Success metric measures the propor-
tion of tasks for which the agent has restored all objects to
their goal states. This metric is the most strict and unfor-
giving. We consider an object-level metric, Fixed Strict,
which measures the proportion of objects successfully rear-
ranged per task and is equal to 0 if there exists any newly
misplaced objects. Misplaced metric equals the number
of misplaced objects at the end of the episode divided by
the number of misplaced objects at the start of the episode.
Note that this metric can be larger than 1 if the agent, during
the unshuffle stage, misplaces more objects than were orig-
inally misplaced at the start. The above metrics are quite
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Table 1. Comparison on AI2THOR Rearrangement Challenge

Validation Test

Method Suc (%) ↑ FS (%) ↑ Mis ↓ E ↓ Suc (%) ↑ FS (%) ↑ Mis ↓ E ↓
TIDEE[29] 1.4 10.8 0.952 0.950 1.0 7.1 1.006 1.008
MaSS[31] 2.5 12.3 0.931 0.920 2.1 9.5 1.015 1.018
CAVR[24] 9.1 26.8 0.749 0.761 8.9 24.2 0.797 0.800

Ours 20.9 44.1 0.575 0.572 18.5 40.6 0.633 0.639

“Suc”: Success; “FS”: Fixed Strict; “Mis”: Misplaced; “E”: Energy Remaining.

Table 2. Comparison on our VIR dataset

Validation Test

Method Suc (%) ↑ FS (%) ↑ Mis ↓ E ↓ Suc (%) ↑ FS (%) ↑ Mis ↓ E ↓
TIDEE[29] 0.4 6.8 0.976 0.954 0.3 6.5 0.986 0.983
MaSS[31] 0.8 9.1 0.964 0.976 0.5 7.9 1.028 1.026
CAVR[24] 4.3 15.9 0.885 0.872 4.5 16.5 0.846 0.863

Ours 12.1 28.2 0.734 0.744 11.3 27.1 0.752 0.772

“Suc”: Success; “FS”: Fixed Strict; “Mis”: Misplaced; “E”: Energy Remaining.

strict and do not give any partial credit even if the agent re-
stores objects to a state that is very close to the goal state.
% Energy Remaining metric is defined as the amount of
energy remaining after the unshuffle stage divided by the
total energy at the start of unshuffle stage, where the energy
represents the difference between two state of an object and
is defined by an energy function D : S × S ⇒ [0, 1].

5.2. Implementation Details
5.3. Comparisons with Related Works
We compared our model with three modular methods on
the 2023 AI2THOR Rearrangement Challenge and our VIR
dataset based on ProcTHOR simulator. The experimental
results are reported in Table 1 and Table 2. We briefly intro-
duce these three baselines as follows:

Mass: This model uses a search-based policy to rapidly
find objects and builds voxel-based semantic map of the en-
vironment, which is leveraged to identify the movement of
objects. After the inference of all rearrangement goals, this
model transports them to their goal state in succession.

TIDEE: This method maintains the 2D occupancy map
for exploration and navigation, and keeps track of objects
and their labels over time. After the exploration of two
stages, it infers the spatial relationship changes for all ob-
jects to identify the moved ones that need to be rearranged.

CAVR: This model is also designed for object move-
ment, which leverages the observation distance map to
explore the environment efficiently and performs scene
change detection and scene change matching using point
cloud, avoiding the reliance of category inference.

As shown in Table 1, the proposed model gains the best
performance on all metrics. Specifically, our model signif-
icantly improves the scene-level success rate by 9.6% and
the proportion of successfully restored objects by 16.2%.
These highlights the capability of our model to handle the
various object changes and restore the scene configuration
entirely. In terms of error reduction, our method reduces
the misplaced metric to 0.633, outperforming all baselines
and demonstrating robust accuracy in correctly restoring
objects without introducing new misplacement. The de-
crease in energy remaining indicates that TOR model can
restore the scene configuration closer to goal state even
when the task is not fully completed. As illustrated in Table
2, our method exhibits substantial advantages as object state
changes become increasingly complex and diverse, achiev-
ing more than a twofold improvement in room-level suc-
cess rates. This performance highlights the superiority of
the trial-oriented interaction strategy in addressing such in-
tricate tasks.

5.4. Ablations

We evaluate several variants of our model to study the fol-
lowing questions. First, we conduct ablation studies on
RoomR test set to investigate the impact of two mechanisms
(dynamic trial and static scoring) of trial module in Table.3.
When both mechanisms are removed, the model is equiv-
alent to the existing CAVR[24] method, which only ad-
dresses movement changes in the scene. In the variant with
only dynamic trial (i.e., without static scoring), all potential
operations in the trial space are randomly ordered and exe-
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Table 3. Ablation Study

DT SS Suc (%) FS (%) E Mis TT

- - 8.9 24.2 0.797 0.800 1.00
- ✓ 11.3 31.5 0.737 0.742 1.00
✓ - 17.1 40.0 0.642 0.660 2.16

✓ ✓ 18.5 40.6 0.633 0.639 1.33
“✓” indicates corresponding mechanism is used while “–”
indicates it is disabled; “DT”:Dynamic Trial; “SS”: Static
Scoring; “Suc”: Success; “FS”: Fixed Strict; “E”: Energy
Remain; “Mis”: Misplaced; “TT”: Average Trial Times.

cuted sequentially until a successful restoration is achieved.
Conversely, in the variant with only static scoring, the agent
simply executes the highest-scoring operation, with no sub-
sequent attempts even if the action fails. The experiment
suggests that the dynamic trial mechanism contributes most
in our method and the static scoring is mainly responsible
for improving execution efficiency.

Additionally, we conduct experiments on the validation
set of RoomR to determine hyper-parameters, including
diff-cloud granularity and reduction threshold of assess-
ment module. As shown in Fig.4, we set diff-cloud granu-
larity from 0.1mm to 1cm and reduction threshold from 10
to 200, and calculate the average metrics of 1000 tasks with
error bars based on 68% confidence interval. The results il-
luminate that our method achieves optimal performance and
balanced computational efficiency with diff-cloud granular-
ity of 0.01m and reduction threshold of 50, which is applied
in other experiments in this paper.

Figure 4. Parameter ablations of diff-cloud granularity and re-
duction threshold. Error bars represent a 68% confidence interval
over 1000 tasks in validation set of RoomR.

5.5. Reasons For Task Failures
We explore and categorize the task failure reasons of dif-
ferent methods in Fig.5, which benefits the analysis of each
approach’s strengths and limitations while guiding subse-
quent improvement. There are four reasons that cover all
possible situations: 1) The agent successfully identifies all
objects exhibiting changes in the scene, yet fails to restore
all objects to their goal states. 2) The agent fails to detect

Figure 5. Comparison of failure reasons distribution. Each of
the five colors represent the proportion of tasks that are solved or
fail due to one of four reasons.

all changed objects. 3) The agent fails to complete the task
within the allotted time. 4) The agent alters the state of ob-
jects not requiring rearrangement. The experiment suggests
that compared to voxel map used by MaSS and semantic
scene graph employed by TIDEE, diff-cloud representation
significantly enhances the accuracy of scene change detec-
tion. Additionally, through the trial-oriented method, we
improve the agent’s ability to rearrange disagreement and
reduce newly misplaced objects. And the main failure of
our method is undetected changes, suggesting we can ac-
quire large gains from improving the coverage and fidelity
of diff-cloud building.

6. Conclusion
In this paper, we propose a trial-oriented model (TOR) for
visual rearrangement task, which addresses the consider-
able complexity of diverse object changes, encompassing
movement, appearance and existence. We construct a mod-
ular framework consisting of scene change detection, inter-
action assessment and trial module, which allows the agent
to refine its operations from both visual observation and
feedback of previous interaction assessment, thereby en-
hancing task performance. We compared our model with
three previous modular methods on RoomR dataset and a
more practical VIR dataset collected by us. The experiment
results demonstrate the effectiveness of our model.
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