This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

UniversalBooth: Model-Agnostic Personalized Text-to-Image Generation

Songhua Liu'?, Ruonan Yu!, and Xinchao Wang!*
!National University of Singapore 2School of Artificial Intelligence, Shanghai Jiao Tong University
{songhua.liu, ruonan}@u.nus.edu, xinchao@nus.edu.sg

Personalized Image Generation

aB on the beach

SD-v1.4
Subject

Cross-Architecture

Personalized Editing

R LaVie
Source Subject  InstructPix2Pix

change the cat to a

Personalized Video Generation

s s s s EsEEEREEEEEDS
Ty Iy iy

aB jumping in the snow

Personalized 3D Generation

MVDream

‘A;\

als wearing pink glasses

Cross-Functionality
Figure 1. We propose a model-agnostic personalized text-to-image generation method termed UniversalBooth. Once trained, it can be
applied to various diffusion models with different architectures and functionalities without any additional training. “S” is a virtual token
referring to the input subject. The seen model during training is SD-v1.4, while the unseen models are Distilled SD [21], SD-XL [32],
SD-v3-Medium [ 13], InstructPix2Pix [5], LaVie [46], and MVDream [40].

Abstract

Given a source image, personalized text-to-image gen-
eration produces images preserving the identity and ap-
pearance while following the text prompts. Existing meth-
ods heavily rely on test-time optimization to achieve this
customization. Although some recent works are dedicated
to zero-shot personalization, they still require re-training
when applied to different text-to-image diffusion models.
In this paper, we instead propose a model-agnostic per-
sonalized method termed UniversalBooth. At the heart
of our approach lies a novel cross-attention mechanism,
where different blocks in the same diffusion scale share
common square transformation matrices of key and value.
In this way, the image encoder is decoupled from the diffu-
sion architecture while maintaining its effectiveness. More-
over, the cross-attention performs hierarchically: the holis-
tic attention first captures the global semantics of user in-
puts for textual combination with editing prompts, and the
fine-grained attention divides the holistic attention scores
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for various local patches to enhance appearance consis-
tency. To improve the performance when deployed on un-
seen diffusion models, we further devise an optimal trans-
port prior to the model and encourage the attention scores
allocated by cross-attention to fulfill the optimal transport
constraint. Experiments demonstrate that our personal-
ized generation model can be generalized to unseen text-to-
image diffusion models with a wide spectrum of architec-
tures and functionalities without any additional optimiza-
tion, while other methods cannot. Meanwhile, it achieves
comparable zero-shot personalization performance on seen
architectures with existing works.

1. Introduction

Although text-to-image diffusion models have advanced
significantly in recent years due to their generative capa-
bilities [11, 31, 36], they fall short in personalized im-
age generation, also known as subject-driven image gener-
ation, where generated images adhere to text prompts while
preserving specific identities and appearances from user-
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provided images. Given the broad applicability in real-
world scenarios, this customization has garnered attention
from both academia and industry.

Personalized generation typically involves establishing
correspondences between source images and textual space,
allowing diffusion models to reconstruct images and gen-
erate variations based on text prompts. Early methods
rely on test-time optimization [14] or fine-tuning the dif-
fusion model [22, 37], which are computationally expen-
sive and impractical for end users. Recent efforts aim to
reduce this burden through offline learning, such as train-
ing a visual encoder for feed-forward textual correspon-
dences [19, 24, 39, 44, 47, 52]. These methods achieve
impressive zero-shot personalized text-to-image generation:
once trained, the visual encoder can capture input concepts
from subject images in real time.

However, flexibility remains an issue when applying
these methods to various text-to-image models with unseen
structures, which is a practical problem since real-world
models can be updated or replaced frequently. Re-training
the encoder for each model can take several days on mul-
tiple GPUs [44, 47], making it highly cumbersome if not
impossible at all. Moreover, for some distilled models like
LCM [28], it is even infeasible to conduct vanilla training
directly as it requires a specific distillation objective con-
cerning its teacher.

Focusing on this drawback, we aim at a model-agnostic
approach termed UniversalBooth in this paper and expect
a trained visual encoder to be generalized to other text-to-
image backbones seamlessly. To this end, we first delve
into the design intricacies of existing personalized genera-
tion methods without test-time optimization and reveal that
the significant impediment to such generalization lies in the
strong coupling between the visual encoder and the cross-
attention layers of the diffusion UNet, which are key mod-
ules for the diffusion model to interact with input condi-
tions. Previous works largely ignore the variability in back-
bone text-to-image models. Consequently, their visual en-
coders are susceptible to overfitting the specific diffusion
model seen in training.

In this paper, we tackle this challenge by introducing a
novel cross-attention mechanism that decouples the visual
subject encoder from the diffusion architecture. Unlike con-
ventional approaches, our method utilizes a shared group
of square mapping matrices for both key and value com-
ponents across different blocks within the same diffusion
scale. This design promotes flexibility across a range of
diffusion models characterized by varying numbers of chan-
nels or blocks, all while ensuring consistent effectiveness in
generating high-quality images.

Moreover, we devise a hierarchical cross-attention strat-
egy. Specifically, the visual encoder first capsules global
semantic features of user inputs into a virtual word, which

is convenient for textual combination with editing prompts.
To enhance appearance consistency, the cross-attention
scores for this word are further divided by fine-grained at-
tention considering local patches. Overall, this hierarchical
approach ensures that the generated images not only align
with textual prompts but also maintain coherence and fi-
delity to the visual subjects.

Notably, the fine-grained cross-attention in our approach
is backed up with an optimal transport prior, which is
achieved by regulating attention scores allocated by the
cross-attention mechanism to fulfill optimal transport con-
straints. In this way, even when tested on unfamiliar novel
diffusion architectures, our customization model can be
guided by this prior knowledge acquired in training, which
further bolsters cross-model generalizability.

We conduct extensive experiments to showcase the effec-
tiveness and versatility of our approach. As shown in Fig. 1,
results indicate that once trained, the proposed Universal-
Booth can be generalized to unseen text-to-image diffusion
models with a wide spectrum of architectures and function-
alities without any additional training effort, while other
methods cannot. Meanwhile, it yields on-par zero-shot per-
sonalized generation performance with existing works on
seen diffusion backbones. Our contributions can be sum-
marized as follows:

* We investigate a novel problem, namely model-agnostic
personalized text-to-image generation. To the best of our
knowledge, this is the first work dedicated to the cross-
model generalization issue in this field.

* We tailor a novel cross-attention mechanism to address
the problem. Specifically, it adopts shared key and value
mappings among various blocks within the same scale,
works in an innovative hierarchical manner, and is in-
jected with optimal transport prior.

» Experiments suggest that UniversalBooth achieves supe-
rior cross-model personalized generation results to un-
seen diffusion models and comparable performance in the
vanilla test setting on seen models.

2. Related Works

Personalized text-to-image generation refers to producing
images according to the text prompts while preserving
the identity and appearance of users’ image inputs. One
promising solution for this application is to learn the word
embedding [14] or fine-tune the diffusion model [22, 37]
specifically for one subject in an iterative optimization fash-
ion, which exhibits limited flexibility. Recent studies have
been dedicated to addressing this limitation and focused
on an any-subject-one-model paradigm. The basic idea
is to replace the optimization process with a single feed-
forward propagation: to learn a neural network and map
the input images to the conditional space of the diffusion
model [9, 16, 18, 24,26, 29,41, 43, 44,47, 50, 52] in a one-
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Figure 2. (a) Overview of zero-shot personalized text-to-image
generation solutions (text branch omitted). (b) Our approach
learns square and shared key-value mappings in cross-attention
layers, enabling flexible cross-diffusion-model generalization dur-
ing inference without extra training.

stop manner. We provide a systematic summary of existing
works in the appendix.

These methods typically focus on the subject-wise flex-
ibility and have achieved remarkable performance simul-
taneously. Nevertheless, when the base diffusion model
changes—a common and practical scenario given the rapid
proliferation and advancement of large text-to-image dif-
fusion models [3, 4, 10, 12, 13, 20, 21, 28-30, 32, 34, 34,
36, 38, 42, 44, 48]—they typically require adapting the sub-
ject mapper to the new architecture through an optimization
process as well [35]. We thus offer a different perspective
regarding the model-wise flexibility and introduce Univer-
salBooth in this paper, the first method specifically designed
for the cross-model generalization problem in personalized
generation. Unlike existing techniques, UniversalBooth en-
ables zero-shot customized generation on unseen diffusion
models without requiring any additional training.

3. Methodology

3.1. Preliminary

Different from early approaches [14, 22, 37] that obtain tex-
tual correspondences of subject images through test-time
optimization, recent test-time fine-tuning-free personalized
image generation methods learn a neural mapping from the
visual space to the textual space so that the textual represen-
tations can be generated in a single forward propagation.
We illustrate the overall pipeline of some popular de-
signs like ELITE [47] and IP-Adapter [50] in Fig. 2(a). Typ-
ically, given a subject image x, these methods first adopt
the CLIP image encoder [33], denoted as ¢(-), for feature
extraction. As CLIP has been trained on abundant text-
image pairs to align corresponding features, it may serve
as a valuable resource for learning text-aware vision rep-
resentations. Subsequently, a learnable MLP denoted as
M is trained to convert CLIP vision features into virtual
words in the textual embedding space. Additional cross-
attention is incorporated into the cross-attention layers of
the pre-trained diffusion UNet to enhance its adaptability to

eKV  (¢) Square and Shared (N woKV
s KV Mappings Mappings

Figure 3. Preliminary results of cross-model generalization by dif-
ferent operations on cross-attention. Images in (c), (d), (e), and (f)
are generated with the prompt A photo of a S.

conditions injected by subject images, which is crucial to
the performance given the significant role of cross-attention
(CA) in subject-driven text-to-image generation, as high-
lighted in [1, 15, 22]. The CA results for the subject branch
are added to the original results:

Out «+ Out + ACA(Q, (M o ¢(x)) Wi, (M o ¢(z))W,,),

ey
where () is the query matrix mapped from features in the
diffusion backbone, Wk and WU are learnable key and value
mappings respectively, and A is a hyperparameter control-
ling the strength of subject injection.

We assume that Stable Diffusion v1.5 [36] is adopted
here. It first learns an auto-encoder (£(-), D(-)), where the
encoder £(-) maps an image  to a lower dimensional latent
space: z < &(x), and the decoder D(-) learns to decode 2
back to the image space & <— D(z) such that & is close to
the original z. Denoising is conducted in the latent space
by a UNet ey(-) for noise prediction. With a pre-trained
and frozen auto-encoder, text encoder, and UNet, the MLP
and additional cross-attention layers are optimized using the
vanilla noise prediction loss Lgimpie [17, 31, 36]:

Limple = Exyellle — €o(z,t,7(y), M o ¢(x))[3], (2)

where 7(-) represents the text encoder, y denotes the text
input, ¢ is the denoising step, and z; is the latent codes at
step t. Typically, the text y is drawn from some templates,
such as A photo of S, where S can be instantiated as
virtual words [47] or the corresponding class name [50]. In
the inference time, S can be flexibly composed with natural
languages to achieve customization.

3.2. Shared and Square KV Mapping Matrices

This paper aims at a plug-and-play customization model
that enables users to utilize a diverse range of diffusion
models with varying structures during testing. Achieving
this goal necessitates ensuring that the customization en-
coder remains independent of the architecture of the diffu-
sion UNet. However, recall the pipeline of existing tech-
niques shown in Fig. 2(a), and we find that the encoder and
the UNet are coupled in the cross-attention layers. When
using a different architecture, the number of cross-attention
layers and their dimensions do not necessarily match the
seen model. Consequently, the trained customized model
cannot be loaded into a novel diffusion model. To address
this issue, instead of fine-tuning key and value mappings
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for cross-attention, we propose to learn additional square
transformation matrices 7}, and T, for features after the im-
age MLP, such that their shapes are only relevant to the
image feature dimension, without any dependence on dif-
fusion backbones. The key and value mappings used in the
added cross-attention layers are obtained via linear transfor-
mation: Wk < T3, W}, and Wv — T, W,.

We find that such a technique kills two birds with one
stone: it not only resolves the issue of variability in the
number of channels across various models, but also reduces
the upper bound of generalized error even if their channel
dimensions are consistent. Please refer to the theoretical
analysis in the appendix, which indicates that our approach
is less sensitive to the discrepancy of feature spaces between
seen and unseen models. In Fig. 3(a), we validate this effect
by comparing the cosine similarity between the estimated
Wk and WU in unseen architectures and their optimal coun-
terparts that have been trained on these architectures and
serve as oracles. As shown in Figs. 3(c) and (d), this design
is essential for the model to produce meaningful results.

At this point, the only unresolved issue is the variability
in the number of cross-attention layers. To tackle the prob-
lem, it is crucial to discern between the invariant and variant
factors across different target diffusion models. By ensur-
ing that our method does not rely on variant factors, we can
develop a solution that remains robust and adaptable across
various diffusion models. In this paper, we capitalize on the
multi-scale functionality inherent in diffusion UNets and in-
troduce an innovative solution whereby the cross-attention
layers within different blocks but the same resolution scale
share a common set of 7}, and 7, matrices. Formally, the
cross-attention results for the j-th block of the i-th scale can
be written as:

CrossAttn(Q™, (M o ¢(z))TEW? , (M o ¢(x))TEWST),

3)
where %7 specifies the indices of scale and block. The over-
all design is illustrated in Fig. 2(b). As shown in Figs. 3(d)
and (e), this strategy further enhances the cross-model gen-
eralizability.

One might wonder whether it is feasible to retain T}
and T, as identity matrices and solely focus on learning the
MLP part, yielding the simplest design. However, compar-
ing Figs. 3(e) and (f), the method results in inferior iden-
tity preservation, underscoring the significance of adapting
the textual condition space to the subject condition space.
Please refer to the appendix for more explorations.

3.3. Hierarchical Cross-Attention

To address the trade-off between appearance preservation
and text prompt adherence, we devise a novel hierarchical
cross-attention mechanism in this paper, where the holistic
attention first captures the global semantics of subject im-
ages, and then the attention scores to the global semantics
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Figure 4. The proposed personalized text-to-image generation
method is driven by holistic and fine-grained mappings. We de-
vise a hierarchical cross-attention mechanism for the interaction
between the two branches, which yields satisfactory text adher-
ence and appearance preservation concurrently. An optimal trans-
port constraint is applied here as prior knowledge guiding cross-
model generalization.
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are divided according to the fine-grained attention. Similar
to ELITE [47], we subsequently trained two mapping net-
works M}, and My to extract holistic and fine-grained fea-
tures in the textual space for holistic and fine-grained cross-
attention, respectively.

Holistic Mapping: The designs of the holistic map-
ping network M}, mainly follow the previous work BLIP-
Diffusion [24], which extracts n virtual words in the to-
ken embedding space of the CLIP text encoder via a Q-
Former [25], taking as input features from a frozen pre-
trained image encoder. Denoting these virtual words as S,
the Q-Former is optimized to minimize a loss function L,
consisting of Lgimpie in Eq. 2 based on the text prompts
like A photo of S and an L1 regularization term for S.
Since the primary goal of holistic mapping is to extract vir-
tual words that are compatible with real prompts, we omit
T}, and T}, in Eq. 3, and instead directly use the native key-
value parameters to process the textual conditions.

Fine-Grained Mapping: The designs of the fine-
grained mapping network A; mainly follow the pre-
vious work ELITE [47], where features of n layers
in the CLIP image encoder are separately mapped to
n virtual words in the token embedding space of the
CLIP text encoder by n learnable sub-mappers with two
Linear-LayerNorm-LeakyReLU blocks. Following
ELITE [47], we also apply subject masks here to filter out
irrelevant backgrounds.

Different from previous techniques that require adjust-
ing the hyperparameter A in Eq. 1 to balance the holistic
and fine-grained attention, we propose a hierarchical ap-
proach. Denoting the query, key, and value after the pro-
jection of W,, Wy, and W, in a holistic cross-attention
layer as Q € R**¢ and K},,V,, € R»*¢, respectively,
where s is the number of query tokens, i.e., the spatial di-
mensionality of current latent codes, [; is the number of
textual tokens, and c is the feature dimensionality of this
layer, and assuming that the primary word is located at
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Unseen Architecture

Method LCM Base Diffusion

Seen Architecture

Small Diffusion Tiny Diffusion

C-T C-1 D-1 C-T C-1 D-1

C-T C-1 D-1 C-T C-1 D-1 C-T C-1 D-1

BLIP-Diffusion [24] 282 589 201 275 680 201

266 652 360 281 565 181 300 771 .583

IP-Adapter [50] 291 679 449 281 596 210 269 538 133 268 536 .142 295 796  .629
ELITE [47] 288 665 441 219 535 050 229 559 093 226 562 121 255 762 .652
Ours 307 694 532 303 710 500 302 .687 482 300 .675 479 302 772 .667

Table 1. Quantitative comparisons with state-of-the-art zero-shot text-to-image personalization methods and ablation studies. Best perfor-

mance is marked in bold.

the p-th token, we first compute the holistic attention map

&
Ap, with Aj, < Softmax( Q\I/{E’L ), and extract the attention

map corresponding to the primary word, i.e., the p-th col-
umn of A, denoted as A;¥ € R**!. Then, denoting the
post-projection key and value in the corresponding fine-
grained cross-attention layer as Ky, V; € RIS, respec-
tively, where [ is the number of fine-grained tokens, we
further divide the column A;” into I; columns weighted

-
by the fine-grained attention map Ay Softmax(Qf/(Ef ),
i.e., replace the column A" by I columns A" « Ay, with
* representing element-wise multiplication allowing broad-
cast. Accordingly, the p-th row in V}, is substituted by the [
rows in Vy. Denoting the updated attention map and value
as A’ and V', respectively, the output of such hierarchical
cross-attention is given by Out < A’V’, which is adopted
to replace the original computational rule in Eq. 1 for all
cross-attention layers. We offer an illustrative presentation
of the workflow in Fig. 4.

3.4. Optimal Transport Prior

Without knowledge of unseen models, subject-driven mod-
els face challenges in achieving cross-model generalization.
To mitigate this issue, we seek to imbue fine-grained atten-
tion with generic knowledge, guiding the cross-model cus-
tomization process with priors to enhance performance. In
this paper, we explore an optimal transport prior that en-
courages an even migration of visual patterns from subject
images to customized results and penalizes one-to-many
mappings [27]. Assume that Q € R**¢ and K; € Rls*¢
are two discrete distributions. The total mass in K is de-
fined as the total attention score to the primary word in the
holistic attention, i.e., y  A;”. Since we expect the mass in
K to be evenly transported into (), the mass of each point in

K should be =" f . We add the regularization of balanced

total attention scores in each point of K to Eq. 2. The loss
function for the fine-grained mapping can be written as:

N
L1 = Lompte + 57 2 Y A7 -
j=1

where N denotes the total number of columns in all the fine-
grained attention maps, and « is a hyperparameter control-
ling the strength of this regularization.

12, @

A
ly

4. Experiments

4.1. Implementation Details

We build UniversalBooth on the open-source implemen-
tation of ELITE [47]. The architecture of the diffusion
model in training is StableDiffusion v1.4 [36]. The test
set of the Openlmages dataset [23], containing 120K im-
ages, is adopted to train the holistic mapping, while 47K
of them with annotations of object masks are used to train
the fine-grained mapping. The hyper-parameter « in Eq. 4
is set as 0.01 empirically. We train the holistic and fine-
grained mappings on 4 RTX 6000 Ada GPUs for 40, 000
and 80, 000 iterations, respectively. Other setups, includ-
ing the diffusion sampler and the scale of classifier-free
guidance, follow the default configurations if not mentioned
specifically.

The evaluation dataset is also consistent with ELITE [47]
that adopts 2, 500 test cases formed by a pairwise combi-
nation of 20 subject images, 25 text templates, and 5 ran-
dom seeds. Following the convention of personalized text-
to-image generation [22, 37, 47], we evaluate our method
on 3 metrics, including CLIP-TI (C-I) and DINO-I (D-I)
for image consistency and CLIP-T (C-T) for text consis-
tency. CLIP-TI and DINO-I measure the cosine similarity
between features of generated and source subject images in
the CLIP image encoder [33] and the ViTS/16 DINO [6].
CLIP-T measures the cosine similarity between features
of generated images in the CLIP image encoder and text
prompts in the CLIP text encoder, where object class names
of the subject images are used in the text templates.

4.2. Cross-Architecture Generalization

As our target in this paper is a model-agnostic personal-
ized text-to-image generation method, we mainly evaluated
the proposed UniversalBooth on diffusion models with un-
seen architectures in training. Specifically, we consider both
cases of large-to-small and small-to-large cross-model gen-
eralization. For small architectures, we adopt two diffu-
sion models distilled from Stable Diffusion in [21] for ex-
periments, denoted as Small Diffusion and Tiny Diffusion.
For large architectures, we consider two popular structures,
i.e., StableDiffusion-XL [32] (SD-XL) and StableDiffusion-
3-Medium [13] (SD-3). Although both seen and unseen
involve CLIP for textual embedding, for SD-XL and SD-
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Figure 5. Results of large-to-small cross-architecture generalization comparing with state-of-the-art methods.

3, since the conditional spaces are constructed using multi-
ple text encoders, they do not strictly satisfy the consistent
condition space assumption required by the fine-grained en-
coder. Therefore, we use only the holistic encoder for them.

To demonstrate the unique superiority of our method
in cross-architecture generalization, we compare Universal-
Booth with three open-source and state-of-the-art person-
alized generation methods, including BLIP-Diffusion [24],

IP-Adapter [50], and ELITE [47]. These methods over-
look the variability of diffusion models in the inference time
and couple the subject encoder module with the diffusion
UNet. For instance, BLIP-Diffusion requires fine-tuning
both the whole diffusion UNet and the image-to-BLIP map-
ping module. IP-Adapter and ELITE fine-tune the cross-
attention layers in the original diffusion backbones, which
makes the subject encoders overfit to the seen diffusion ar-
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1X-dsS

€-ds

Subject Ours ELITE Subject

Architecture  Method CLIP-T CLIP-I DINO-I
ELITE 317 .650 .336
SD-XL Ours 294 766  .580
SD-3-Medium ELITE 316 .691 446

Ours 319 750 581

Table 2. Quantitative comparisons with the baseline method
ELITE [47] on small-to-large cross-architecture generalization.
Best performance is marked in bold.

chitecture in training. To adapt them for cross-architecture
generation, we only load the matched cross-attention layers
in inference time and drop the extra layers.

As a result, as shown in Fig. 5, without specific consid-
eration of cross-model generalization, existing methods fail
to produce plausible personalized text-to-image generation
results. For BLIP-Diffusion, since it utilizes BLIP [25] as a
pre-trained vision-language prior, the produced results can
often convey aligned semantics. However, the colors and
textures cannot match those in the original subject images.
Even worse, when the architectural gap between the unseen
and seen diffusion models is large, e.g., Tiny Diffusion, the
content layouts tend to be out of control. For IP-Adapter
and ELITE, suffering from misalignments of feature spaces
in this setting, they are prone to messy and meaningless tex-
tures. Compared with them, our method successfully ad-
dresses these and exhibits better robustness to the architec-
tural variations. Quantitatively, as reported in Tab. 1(left),
our method outperforms existing ones in cross-architecture
generalization by a large margin.

For small-to-large generalization with SD-XL. and SD-
3, the qualitative and quantitative comparisons against the
ELITE baseline [47] are shown in Fig. 6 and Tab. 2, respec-
tively. Although ELITE can capture the overall semantics
of subject images and textual prompts, the results largely
overlook the detailed appearances. In contrast, our method
exhibits superior cross-model generalization.

4.3. Comparisons on Seen Architectures

We also compare our method with existing ones on the seen
architectures. As shown in Tab. 1(right), UniversalBooth

Ours ELITE
Figure 6. Results of small-to-large cross-architecture generalization. The seen architecture is StableDiffusion v1.4, while the unseen
architectures are StableDiffusion-XL and StableDiffusion 3 Medium, respectively.
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Figure 7. Results of personalized generation on seen architectures.

overall achieves comparable quantitative metrics with state-
of-the-art methods. Specifically, it yields higher CLIP-T
and DINO-TI but slightly lower CLIP-I. We speculate that
it is because the hierarchical cross-attention mechanism in
this paper improves the trade-off between text alignment
and the preservation of detailed local patterns, which may
favor low-level metrics like DINO-TI based on features of
self-supervised learning compared with the high-level met-
ric CLIP-T. Also, according to the ablation studies, the
sharing of key and value mappings in cross-attention layers
of the same scale inevitably sacrifices performance on seen
architectures to some extent. In addition, compared with
works like BLIP-Diffusion and IP-Adapter, the consump-
tion of computational resources, including data, GPU cards,
and training time, is significantly lower for our method, as
demonstrated in the appendix. These are factors that Uni-
versalBooth has not achieved significantly superior perfor-
mance to the state-of-the-art methods on seen architectures.

Nevertheless, as shown in Fig. 7, our method indeed has
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Figure 9. The optimal transport prior L,; helps cross-model gen-
eralization by regulating the layout of the generated subject.

significant advantages in many cases. Specifically, meth-
ods like BLIP-Diffusion and IP-Adapter tend to preserve
the major semantics while ignoring the local patterns, which
leads to inferior appearance preservation, e.g., the cat, the
bag, and the cat statue in the 1st, 4th, and 5th columns,
respectively. ELITE struggles to deal with colors in text
prompts by confusing colors of subjects and backgrounds,
e.g., the dog in the 3rd column, and the bag in the 4th col-
umn. In comparison, our method handles these cases better.

4.4. Ablation Studies

In this part, we demonstrate the effectiveness of the pro-
posed three components, including shared and square key
and value mapping matrices, hierarchical cross-attention,
and optimal transport prior, through ablation studies. Quan-
titatively, the impact of each component on the performance
is shown in Tab. 3.

Shared and Square Key and Value Mapping Matri-
ces: As demonstrated in Fig. 3, by decoupling the subject
encoder from the number of channels and blocks in diffu-
sion backbones, shared and square key and value mappings
help align the subject feature space and the condition space
shared by different diffusion models and play crucial roles
in achieving cross-architecture generalization. We provide
more supportive examples in the appendix.

Hierarchical Cross-Attention: Previous methods like
IP-Adapter and ELITE achieve the trade-off between text
prompt adherence and appearance preservation by adjusting
the weight of the subject condition, which is not robust in
practice. As shown in Fig. 8, in different cases, the optimal
choice of this hyperparameter can also be different. Com-
pared with these methods, the hierarchical cross-attention
proposed in this paper can balance the two worlds better
without deliberate adjustment.

Unseen Architecture
Small Diffusion Tiny Diffusion

CT CI DI CT CI DI CT CI DI
w/o KV 302 .664 .424 .300 .653 422 301 .756 .650
w/o Shared KV 283 .650 .365 .232 .556 .163 .300 .785 .683

w/o HieraAttn .289 .614 .291 .288 .613 .305 .297 .768 .629
w/o Lot 292 .644 377 284 .613 291 .302 .760 .584

Ours 302 .687 .482 .300 .675 .479 .302 .772 .667

. Seen Architecture
Setting

Table 3. Ablation studies for various technical designs introduced
in this paper. HieraAttn denotes the hierarchical attention. Best

performance is marked in bold.
InstructPix2Pix: change the cat to a

Figure 10. The design of shared and square key and vahKJ\eM ”r”ﬁgép-
pings enables UniversalBooth to be generalized to models with
various functionalities like text-driven editing.

Optimal Transport Prior: The optimal transport prior
is useful to regulate the semantic layout of the generated re-
sults by penalizing one-to-many mappings. We illustrate
this effect in Fig. 9. Quantitative measurements on the
test cases also validate that adding the regularization L, in

training would lead to lower L,; in cross-model inference.

4.5. Further Extension

Interestingly, we find that the proposed UniversalBooth
is also compatible with other text-to-image models with
different functionalities, like InstructPix2Pix [5] for text-
driven image editing, thanks to the universal subject space
resulting from the shared and square key and value mapping
matrices. As shown in Fig. 10, the model would migrate in-
correct or insufficient subject patterns if square mappings or
shared mappings are removed.

5. Conclusions

In this paper, we present UniversalBooth, a model-agnostic
framework for personalized text-to-image generation. Ded-
icated to the problem of cross-diffusion generalization, we
mainly introduce three novel designs: (1) cross-attention
with shared and square key and value mappings, which
achieves cross-architecture zero-shot inference in function-
ality, (2) hierarchical cross-attention, which alleviates the
trade-off between text adherence and appearance preserva-
tion, and (3) an optimal transport prior injected into the
fine-grained attention, which guides the behavior of un-
seen models with generic knowledge and further improves
the cross-model generalization performance. Experiments
demonstrate that UniversalBooth is the first versatile model
for personalized text-to-image generation that can be gen-
eralized to unseen diffusion backbones seamlessly without
any additional training effort. It also achieves superior zero-
shot personalization performance on seen architectures.
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