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Abstract

Reinforcement Fine-Tuning (RFT) in Large Reasoning
Models like OpenAl ol learns from feedback on its answers,
which is especially useful in applications when fine-tuning
data is scarce. Recent open-source work like DeepSeek-
RI demonstrates that reinforcement learning with verifi-
able reward is possibly one key direction in reproducing
ol. While the RI-style model has demonstrated success in
language models, its application in multi-modal domains
remains under-explored. This work introduces Visual Re-
inforcement Fine-Tuning (Visual-RFT), which further ex-
tends the application areas of RFT on visual tasks. Specif-
ically, Visual-RFT first uses Large Vision-Language Mod-
els (LVLMs) to generate multiple responses containing rea-
soning tokens and final answers for each input, and then
uses our proposed visual perception verifiable reward func-
tions to update the model via the policy optimization algo-
rithm such as Group Relative Policy Optimization (GRPO).
We design different verifiable reward functions for differ-
ent perception tasks, such as the Intersection over Union
(IoU) reward for object detection. Experimental results
on fine-grained image classification, few-shot object de-
tection, reasoning grounding, as well as open-vocabulary
object detection benchmarks show the competitive perfor-
mance and advanced generalization ability of Visual-RFT
compared with Supervised Fine-tuning (SFT). For example,
Visual-RFT improves accuracy by 24.3% over the baseline
in one-shot fine-grained image classification with around
100 samples. In few-shot object detection, Visual-RFT also
exceeds the baseline by 21.0 on COCO’s 4-shot setting
and 15.4 on LVIS. Our Visual-RFT represents a paradigm
shift in fine-tuning LVLMs, offering a data-efficient, reward-
driven approach that enhances reasoning and adaptability
for domain-specific tasks.
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Figure 1. Our Visual Reinforcement Fine-Tuning (Visual-RFT)
performs better than previous Supervised Fine-Tuning (SFT) on a
variety of tasks, such as Open Vocabulary(OV)/Few-shot Detec-
tion, Reasoning Grounding, and Fine-grained Classification.

1. Introduction

Large Reasoning Models (LRMs) such as OpenAl ol [7]
represent frontier Al models designed to spend more time
“thinking” before answering, and achieving excellent rea-
soning abilities. One impressive capability of OpenAl ol
is Reinforcement Fine-Tuning (RFT) ', which efficiently
fine-tune the model with merely dozens to thousands of
samples to excel at domain-specific tasks. Although the
implementation details of ol are not publicly available, re-
cent open-source studies like DeepSeek R1 [4] reveal one
promising direction in reproducing ol is Verifiable Re-
wards [4, 14, 39]: the reward score in reinforcement learn-
ing is directly determined by pre-defined rules, rather than
predicted by the separate reward model [19, 28, 49] trained
on preference data.

A primary distinction between the RFT and Previous Su-
pervised Fine-Tuning (SFT) lies in data efficiency. Previous

Thttps://openai.com/form/rft-research-program
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D
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Question:
This is an image containing
a plant. Please identify the

box. Following "<think> thinking process </think>
<answer>(x1,y1),(x2,y2)</answer>)" format.

o% Reasoning: <think>The instruction is to find the bounding
+A\S/ box of the Pokémon that can perform Thunderbolt. 1
Thunderbolt is a move that can be used by several Pokémon. In

the image, there are several Pokémon, including Pikachu, which is
known for its Thunderbolt move. Pikachu is located in the bottom
right corner of the image.</think>
<answer>(696,300),(999,999)</answer>

species of the plant based
on the image.

N Reasoning: <think>The image appears to be

'1 <) of a wallflower, which is characterized by

| its bright yellow flowers and small, greenish-brown

I buds.The petals are often orange or red at the
base, and the flowers are often clustered together.

| The leaves are green and have a slightly wavy

I edge.</think> <answer>wallflower</answer>

Figure 2. Overview of Visual-RFT. Compared to the (a) Visual Instruction Tuning that is data-hungry, (b) our Visual Reinforcement
Fine-Tuning (Visual-RFT) is more data efficient with limited data. (c) We successfully empower Large Vision-Language Models (LVLMs)
with RFT on a series of multi-modal tasks, and present examples of the model’s reasoning process at the bottom.

SFT paradigm (see Fig. 2 (a)) directly imitates the “ground-
truth” answers provided in the high-quality, curated data,
thus relying on a large amount of training data. By contrast,
RFT evaluates the model’s responses and adjusts based on
whether they’re correct, helping it learn through trial and er-
ror. Thus, RFT is particularly useful in domains where data
is scarce [7, 26]. However, a previous common sense is that
RFT is applied merely in tasks like scientific (e.g., mathe-
matics) and code generation. That’s because math and cod-
ing exhibit clear and objective final answers or test cases,
making their rewards relatively straightforward to verify. In
this paper, we demonstrate that RFT can be applied beyond
math and code domains to visual perception tasks. Specif-
ically, we introduce Visual Reinforcement Fine-Tuning
(Visual-RFT), which successfully extends RFT to em-
power Large Vision-Language Models (LVLMs) in various
multi-modal tasks (see Fig. 1), such as few-shot classifica-
tion and open-vocabulary object detection.

To extend RFT on visual tasks, we present the implemen-
tation details of Visual-RFT in Fig. 2 (b). For each input,
Visual-RFT uses Large Vision-Language Models (LVLMs)
to generate multiple responses (trajectories) that contain
the reasoning tokens and final answers. Crucially, we de-
fine task-specific, rule-based verifiable reward functions to
guide policy optimization, such as GRPO [33], in updat-
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ing the model. For instance, we propose the Intersection
over Union (IoU) reward for the object detection task. Our
Visual-RFT contrasts with SFT, which relies on memoriz-
ing correct answers. Instead, our approach explores dif-
ferent possible solutions and learns to optimize for a de-
sired outcome defined by our verified reward function. It’s
about discovering what works best, not just mimicking pre-
defined answers. Our approach shifts the training paradigm
from data scaling in SFT to the strategic design of variable
reward functions tailored to specific multi-modal tasks. As
shown in Fig. 2 (c), the synergistic combination of verifi-
able rewards and visual perception abilities (e.g., detec-
tion, grounding, classification) allows our model to achieve
rapid and data-efficient mastery of new concepts, facilitated
by a detailed reasoning process.

We validate the effectiveness of Visual-RFT on the fol-
lowing tasks. In fine-grained image classification, the
model utilizes its advanced reasoning capabilities to ana-
lyze fine-grained categories with high precision. In the one-
shot setting with extremely limited data (e.g., around 100
samples), Visual-RFT boosts the accuracy with 24.3% over
the baseline, while SFT dropped by 4.3%. In few-shot ex-
periments, Visual-RFT also demonstrates exceptional per-
formance with minimal training data, showcasing supe-
rior few-shot learning capabilities compared to SFT. In
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Figure 3. Framework of Visual-RFT. Given the question and visual image inputs, the policy model generates multiple responses contain-
ing reasoning steps. Then the verifiable reward such as IoU reward and CLS reward is used with the policy gradient optimization algorithm

to update the policy model.

reasoning grounding, Visual-RFT excels in the LISA [13]
dataset, which heavily relies on reasoning, outperforming
specialized models like GroundedSAM [20]. Furthermore,
in open vocabulary object detection, Visual-RFT quickly
transfers recognition capabilities to new categories, includ-
ing rare categories in LVIS [5], showing strong generaliza-
tion. Specifically, the 2B model achieves nAP improve-
ments from 9.6 to 27.9 on new classes of COCO [17] and
from 2.7 to 20.7 on selected rare classes of LVIS [5]. These
diverse visual perception tasks not only highlight Visual-
RFT’s robust generalization capabilities in visual recogni-
tion but also underscore the crucial role of reinforcement
learning in enhancing visual perception and reasoning.

In summary, our key contributions are as follows:

(1) We introduce Visual Reinforcement Fine-tuning
(Visual-RFT), which extends reinforcement learning with
verifiable rewards on visual perception tasks that are effec-
tive with limited data for fine-tuning.

(2) We design different verifiable rewards for different vi-
sual tasks that enable efficient, high-quality reward compu-
tation at a negligible cost. This allows the seamless transfer
of DeepSeek R1°s style reinforcement learning to LVLMs.

(3) We conduct extensive experiments on various visual per-
ception tasks, including fine-grained image classification,
few-shot object detection, reasoning grounding, and open
vocabulary object detection. On all the settings, Visual-
RFT achieves remarkable performance improvements, sig-
nificantly surpassing the supervised fine-tuning baselines.
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2. Related Work

Large Vision Language Models (LVLMs) like GPT-
4o [25] achieves excellent visual understanding ability by
integrating both visual and textual data. This integra-
tion enhances the models’ ability to understand complex
multi-modal inputs and enables more advanced Al sys-
tems [15, 18, 40, 52] capable of processing and respond-
ing to both images and text. Generally, the training of
LVLMs involves two steps: (a) pre-training and (b) post-
training which contains supervised fine-tuning and rein-
forcement learning. Post-training is crucial in improving
the model’s response quality, instruction following, and rea-
soning abilities. While there has been significant research
on using reinforcement learning to enhance LLMs during
post-training [1, 3, 27, 30, 34, 35, 38, 44, 48, 62, 63], the
progress for LVLMs has been slower. In this paper, we pro-
pose Visual-RFT, which used GRPO-based reinforcement
algorithms and verifiable reward during the post-training
phase to enhance the model’s visual perception and reason-
ing capabilities.

Reinforcement Learning Recently, with the emergence of
reasoning models like OpenAl’s ol [7], the research fo-
cus in Large Language Models (LLMs) has increasingly
shifted towards enhancing the models’ reasoning capabil-
ities through reinforcement learning (RL) techniques. Stud-
ies have explored improving LLMs’ performance in reason-
ing tasks such as solving mathematical problems [2, 22, 33,
43, 45] and coding [6, 8, 51, 54]. A notable breakthrough
in this area is Deepseek-R1-Zero [4], which introduced a



This is an image containing a flower.
Please identify the species of the
flower based on the image

o
Y

<answer> globe-flower </answer>

1)}
m
—

<think> The image shows a yellow buttercup flower w
ith a green stem and green leaves in the background.
Buttercups are a type of flowering plant in the butte
rcup family. They are known for their bright yellow fl
owers and are commonly found in meadows and grassl
ands. </think> o

<answer> buttercup </answer> \

<
oS 0
@ t©
-85 )

Bo

A

This is an image containing a peft.
Please identify the species of the pet
based on the image

e

—
- <answer> hedgehog </answer> “@@E
SFT

<think>The dog in the image appears to be a Japanese Chin,

0,9 also known as a Japanese Spaniel. This breed is known for it

s small size, fluffy coat, and distinctive black and white colo
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<answer> Japanese Chin (or Japanese Spaniel) <answer>

Figure 4. Qualitative results of Fine-Grained Image Classification. The thinking process significantly improves the reasoning ability of

LVLMs, leading to higher image classification performance.

Table 1. Prompts used to construct the dataset. We have listed
the detection prompt and classification prompt separately.

Detection Prompt: Detect all objects belonging to the cat-
egory ’{category}’ in the image, and provide the bound-
ing boxes (between O and 1000, integer) and confidence...
The output answer format should be as follows: <think> ...
</think><answer>["Position’: [x1, y1, x2, y2], ’Confidence’:
number, ...]</answer> Please strictly follow the format.

Classification Prompt: This is an image containing a plant.
Please identify the species of the plant based on the image...
The output answer format should be as follows: <think> ...
</think> </think>species name</answer> Please strictly fol-
low the format.

new approach to achieving robust reasoning capabilities us-
ing RL merely, eliminating the supervised fine-tuning (SFT)
stage. However, current research on RL-based reasoning
has largely been confined to the language domain, with lim-
ited exploration of its application in multi-modal settings.
For LVLMs, RL has primarily been used for tasks like miti-
gating hallucinations and aligning models with human pref-
erence [21, 36, 37, 46, 47, 55, 60, 61], but there remains a
significant gap in research focusing on enhancing reasoning
and visual perception of Large Vision Language Models.
To address this gap, our work introduces a novel reinforce-
ment fine-tuning strategy Visual-RFT, applying verifiable
rewards with GRPO-based [33] RL to a broad range of vi-
sual perception tasks. Our approach aims to improve the
performance of LVLMs in processing various visual tasks,
especially when the fine-tuning data is limited.

3. Methodology

3.1. Preliminary

Reinforcement Learning with Verifiable Rewards. Re-
inforcement Learning with Verifiable Rewards (RLVR)
[4, 14, 39] is a novel training approach designed to en-
hance language models in tasks with objectively verifi-
able outcomes, such as math and coding. Unlike previous
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Reinforcement Learning from Human Feedback (RLHF)
[19, 28, 49], which relies on a trained reward model, RLVR
instead uses a direct verification function to assess correct-
ness. This approach simplifies the reward mechanism while
maintaining strong alignment with the task’s inherent cor-
rectness criteria. Given the input question ¢, the policy
model 7y generates responses o and receives the verifiable
reward. More specifically, RLVR optimizes the following
objective:

6]
2

max Eonrm(g) [FIRLVR (4, 0)]
[R(q,0) — BKL[mg(0lq) || met(o|q)]]

where s is the reference model before optimization,
R is the verifiable reward function, and /3 is the hyper-
parameters to control the KL-divergence. The verifiable re-
ward function R takes the question and output pair (g, 0) as
inputs, and checks if the ground-truth answer remains the
same as the prediction o:

R(q’ O) = {

DeepSeek R1-Zero and GRPO. The DeepSeek R1-Zero
algorithm eliminates dependence on supervised fine-tuning
(SFT) by employing reinforcement learning for training,
specifically through its Group Relative Policy Optimization
(GRPO) framework. Different from reinforcement learn-
ing algorithms such as PPO [32] that require a critic model
to evaluate policy performance, GRPO compares groups
of candidate responses directly, eliminating the need for
an additional critic model. For a given question ¢, GRPO
first generates G distinct responses {01, 09, ...,0¢} from
the current policy my,,. Then GRPO takes actions based
on these responses and denotes the obtained rewards as
{r1,72,...,7c}. By computing their mean and standard
deviation for normalization, GRPO determines the relative
quality of these responses:

1, if o = ground truth,

0. 3)

otherwise.
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her eyes. To maintain
clear vision underwater,
she should wear goggles

7 AN
Y

‘ ‘ a sitting tool for writing or using an electronic device?

Birds often need a stable surface to land on and rest.
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<think> The bird is perched on a concrete
ledge, which provides a stable surface for §
the bird to land on and rest. The ledge is
also visible in the image. </think>
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Output the bounding box in the image corresponding to
the instruction: What object in the room is mainly used as

<think> The chair in the room

over her eyes. |‘=ouo=) Y
</fhink>(350 157 (574 = is mainly used as a sitting tool .
<answer>! ,187),(574, - N £ A . :

~  Visual or writing or using an S o
S S ‘&8 RfFT  electronic device.</think> ‘L ®©

Figure 5. Qualitative results of reasoning grounding on LISA [13]. Thinking process significantly improves reasoning grounding ability

with Visual-RFT.
r; —mean({ry,...,rg})
Std({?‘l,...,Tg}) ’

where A; represents the relative quality of the i-th answer.
GRPO encourages the model to favor better answers with a
high reward value within the group.

A = “)

3.2. Visual-RFT

The framework of Visual-RFT is shown in Fig. 3. The
multi-modal input data from the user consists of images and
questions. The policy model 7y outputs a reasoning process
and generates a group of responses based on the input. Each
response is passed through a verifiable reward function to
compute the reward. After group computation of the re-
wards for each output, the quality of each response is eval-
uated and used to update the policy model. To ensure the
stability of the policy model training, Visual-RFT uses KL
divergence to limit the difference between the policy model
and the reference model. We will further discuss how to de-
sign the verifiable reward for visual tasks in Sec. 3.2.1, and
the data preparation steps in Sec. 3.2.2

3.2.1. Verifiable Reward in Visual Perception

The reward model is a key step in reinforcement learning
(RL) that aligns models with preference alignment algo-
rithms, which can be as straightforward as a verification
function that checks for exact matches between predictions
and ground-truth answers. The RL training process in the
recent DeepSeek-R1 [4] model achieves a significant im-
provement in the model’s reasoning ability through the ver-
ifiable reward design. To transfer this strategy to the vi-
sual domain, we design different rule-based verifiable re-
ward functions for various visual perception tasks.

IoU Reward in Detection Tasks. For the detection task,
the model’s output consists of bounding boxes (bbox) and
corresponding confidences. The reward function for the
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detection task should adequately consider the Intersection-
over-Union (IoU) metric, which is used to compute the
mean Average Precision (mAP) in evaluation. Therefore,
we design an IoU and confidence-based reward function
R;. First, for the model’s output box and confidence,
we sort these boxes based on their confidence, denoted as
{b1,b2,....;b,}. We then match each b; with the ground
truth bbox,{b7, b3, ..., b9, }, and calculate the IoU, while set-
ting an IoU threshold 7. Bounding boxes with an IoU be-
low this threshold 7 are considered invalid, and unmatched
bboxes have an IoU of 0. After matching, we obtain the loU
and confidence for each box from the initial set, denoted as
{iouy : c1,i0us : g, ..., 10Uy, : Cp .

We then use these IoU results and confidence to con-
struct our reward 4. Our reward R, consists of three parts,
including the IoU reward, Confidence reward, and Format
reward:

Rd = RIOU + Rconf + Rformat~ (5)

The IoU reward Rjoy is the average IoU of all the bounding
boxes in the model’s output,

touq + 10us + ... + iouy,
- .

By = (6)
The confidence reward R.o, is related to IoU. For each
bounding box, if the iou; is non-zero, indicating a success-
ful match, the confidence reward for this single box r,. as
the predicted confidence in computed as:

rci:{

This means that for successfully matched boxes, the higher
the confidence, the better. If the iou; is zero, indicating a
failed match, the lower the confidence reward r. for this
box, the better. The overall confidence reward R o, for the
model’s output is the average of the confidence rewards of

if
if

iou; # 0,
tou; = 0.

(7

— ¢



Table 2. Few-shot results on Fine-grained Classification
dataset. We evaluated four fine-grained image classification
datasets under 1-shot,4-shot and 8-shot. Baseline results are from
InPK [58] under 4-shot setting.

Models Average Flowerl02 Pets37 Aircraft Carsl196
CoOp [56] 62.7 70.7 89.4 24.9 65.7
MaPLe [9] 67.7 80.8 92.1 29.0 68.7
CoCoOp [57] 68.9 82.6 93.0 30.9 69.1
PromptSRC [10]| 72.3 91.3 93.2 32.8 71.8
Qwen2-VL-2B \ 56.0 54.8 66.4 459 56.8
+ SFT (I-shot) 51.7 56.6 54.7 65.3 30.0
+ Visual-RFT  [80.3 +24.3| 70.8 +16.0 84.1 +17.7 72.5 +26.6 93.8 +37.0
+ SFT (4-shot) 55.6 58.5 55.5 67.9 40.5
+ Visual-RFT  [81.9 +25.9( 71.4 +16.6 86.1 +19.7 74.8 +28.9 95.3 +38.5
+ SFT(8-shot) 60.3 59.6 71.4 69.2 40.9

+ Visual-RFT  [85.1 +29.1| 77.7 +22.9 90.2 +23.8 75.9 +30.0 96.5 +39.7

all the bounding boxes in that output,

Zi:l Tci . (8)
n

Rconf =

The format reward Rgorm, 1S used to force the model predic-
tion to meet the required HTML tag format of <think> and
<answer> (will detailed in Sec. 3.2.2).

CLS Reward in Classification Tasks. In classification
tasks, the reward function we use consists of two parts: ac-
curacy reward R,.. and format reward Ry,mqs. The accuracy
reward is determined by comparing the model’s output class
with the ground truth class, yielding a value of 1 for correct
classification and O for incorrect classification:

Rcls = Racc + Rformat~ (9)
3.2.2. Data Preparation

To train the Visual-RFT on various visual perception tasks,
we need to construct the multi-modal training dataset. Sim-
ilar to DeepSeek-R1, to enhance the model’s reasoning
ability and apply this ability to improve visual perception,
Visual-RFT designed a prompt format to guide the model
to output its reasoning process before providing the final
answer. The prompts used for detection and classification
tasks are shown in Tab 1.

During the training process, we use the format reward
to guide the model to output its reasoning process and the
final answer in a structured format. The reasoning process
is key to the model’s self-learning and improvement during
reinforcement fine-tuning, while the reward determined by
the answer directs the model’s optimization.

4. Experiments

4.1. Experimental Setup

Implementation Details Our method is adaptable to var-
ious visual perception tasks. We employ a few-shot learn-
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Table 3. Few-Shot results on COCO dataset of 8 categories. We
conducted 1-shot, 4-shot and 8-shot experiments on 8 categories
from the COCO dataset.

17} - o0 =
= =} D
Models mAP 2 g = 2

fire hydrant
stop sign

train
toilet

Qwen2-VL—2B‘l9.6 ‘19.0 15.8 258 184 299 232 146 98

+ SFT (I-shot)|19.5 | 183 174 23.1 182 28.0 234 173 104
+ Visual-RFT |33.6 | 234 357 39.1 238 543 425 195 30.8
A +14.0| +4.4 +19.9 +13.3 +5.4 +24.4 +19.3 +4.9 +21.0

+ SFT(4-shot) |25.2 | 254 23.6 266 215 356 30.6 184 199
+ Visual-RFT (40.6 | 30.0 40.6 45.7 350 60.9 449 246 43.1
A +21.0|+11.0 +24.8 +19.9 +16.6 +31.0 +21.7 +10.0 +33.3

+ SFT (8-shor)|30.2 | 25.8 35.1 29.4 219 445 39.0 22.6 235
+ Visual-RFT 474 | 36.2 479 504 47.7 652 57.0 304 440
A +27.8|+17.2 +32.1 +24.6 +29.3 +35.3 +33.8 +15.8 +34.2

Table 4. Few-shot results on LVIS dataset of 6 rare categories.
We conducted 10-shot experiments on 6 rare categories from the
LVIS dataset.

Models mAP buggy die kitchen-table omelet papaya stepladder
Qwen2—VL—2B\4.0 \ 29 12 134 4.7 1.5 0.0
+ SFT 100 | 7.0 7.6 34.1 4.7 6.3 0.0
+ Visual-RFT (194 | 9.1 19.6 422 204 145 10.9
A +15.4| +6.2 +18.4 +29.2 +15.7 +13.0  +10.9

Qwen2—VL—7B‘15.4 ‘ 19.7 219 14.5 18.1 185 0.0

+ SFT 27.6 | 269 219 49.7 292 252 12.7
+ Visual-RFT |33.8 | 26.2 27.8 70.6 235 212 29.3
A +18.4| +6.5 +5.9 +56.1 +5.4  +2.7 +29.3

Table 5. Reasoning Grounding Results on LISA [13]. Visual-
RFT surpasses SFT in reasoning grounding with 239 training im-
ages.

Model | mloUgeyq  mloUyy  gloUpey
OV-Seg [16] 28.4 30.5 26.1
X-Decoder [64] 28.5 29.1 24.3
GroundedSAM [20] 26.2 28.6 21.3
Qwen2-VL-2B \ 26.9 30.1 25.3
+ SFT 28.3 29.7 25.3
+ Visual-RFT 37.6 +10.7 344 +43 344491
Qwen2-VL-7B | 404 452 38.0
+ SFT 39.1 43.9 37.2
+ Visual-RFT 43.9 +35  47.1 +1.9 43.7 +5.6

ing approach, providing the model with a minimal num-
ber of samples for training. For the image classification
and object detection task, we adopt a few-shot setting to
evaluate the model’s fine-grained discriminative and recog-
nition capability, applying reinforcement learning on lim-
ited data. Then, for the LISA [13] dataset focusing on rea-
soning grounding, which demands strong reasoning abili-
ties, we train the model using Visual-RFT and assess its



Table 6. Open Vocabulary Object Detection Results on COCO
dataset. We trained on 48 base categories for 10-shot and tested
on 17 novel categories.

Models nAP bAP mAP
Qwen2-VL-2B | 9.6 5.6 6.7
+ SFT 16.7 124 13.5
+ Visual-RFT | 27.9 +18.3 20.3 +14.7 22.2 +15.5
Qwen2-VL-7B | 25.0 17.6 19.5
+ SFT 26.9 18.4 20.6
+ Visual-RFT | 32.3 +7.3 23.6 +6.0 25.9 +6.4
Open Vocabulary Detection on COCO
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45 DeViT: 46.2
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Figure 6. Open Vocabulary Results Compared with Specialized
Classification Models. We display the performance of different
models in the figure, using nAP50 as the evaluation metric.

reasoning and perception performance. Lastly, for open-
vocabulary object detection, we evaluate the model’s gen-
eralization capability by training the Qwen2-VL-2/7B [40]
using Visual-RFT on a subdivided COCO dataset contain-
ing 48 base classes. We then test it on 17 novel classes from
COCO and 13 rare classes from LVIS [5]. The model’s vi-
sual perception and reasoning abilities are assessed in an
open-vocabulary detection setting. In our detection experi-
ments, we first prompt the model to check whether the cat-
egory is present in the image, then predict bound boxes for
categories that exist in the images.

4.2. Few-Shot Classification

To demonstrate the extensive generalization ability of
Visual-RFT in the visual domain, we conduct few-shot
experiments on fine-grained image classification. We se-
lected four datasets: Flower102 [24], Pets37 [29], FGVC-
Aircraft [23], and Car196 [12], which contain dozens to
hundreds of similar categories, adding significant difficulty
to the classification task.

As shown in Tab. 2, with just one-shot of data, Visual-
RFT already delivers a significant performance boost
(+24.3%). In contrast, SFT shows a noticeable decline
(-4.3%) with the same minimal amount of data. Under
the 4-shot setting, the performance of SFT is still slightly
lower than the baseline, while the reinforcement fine-tuned
model with Visual-RFT achieves an average performance

improvement of 25.9. Under the 8-shot settings, as the
amount of data increases, SFI’s performance slightly ex-
ceeds the baseline. However, SFT still lags significantly
behind the performance of the Visual-RFT. In Fig.4, we
present some inference cases of the model after reinforce-
ment fine-tuning when handling fine-grained classification
tasks. These results not only demonstrate the strong gen-
eralization ability of Visual-RFT and its capacity to learn
from limited data but also confirm that reinforcement fine-
tuning, compared to SFT, leads to a genuine understanding
of the task and deeper learning from reasoning. We provide
additional results under more shot settings, as well as the
performance of the 7B model and results on out-of-domain
datasets in Sec. D.2 and Sec. C.

4.3. Few-Shot Object Detection

Few-shot learning has always been one of the core chal-
lenges faced by traditional visual models and large-scale
vision-language models (LVLMs). Reinforcement fine-
tuning provides a new solution to this problem by enabling
the model to quickly learn and understand with a small
amount of data. We selected eight categories from the
COCO dataset, with 1, 4 and 8 images per category, to con-
struct training sets with limited data. For the LVIS dataset,
we select 6 rare categories. Since the training images for
these rare categories are very sparse, with each category
having between 1 and 10 images, we approximated this as
a 10-shot setting. We then train the Qwen2-VL-2/7B model
for 200 steps using both reinforcement fine-tuning and SFT,
to evaluate the model’s learning ability with limited data.

As shown in Tab. 3 and Tab. 4, although both SFT and
reinforcement fine-tuning can improve the model’s recog-
nition accuracy under the few-shot setting, the model after
reinforcement fine-tuning consistently outperforms the SFT
model by a large margin, maintaining a significant lead. On
the COCO [17] categories, as the training data increases, the
SFT model reaches an average mAP of approximately 30,
while the reinforcement fine-tuned model approaches 47. In
the LVIS [5] few-shot experimental results shown in Tab. 4,
for the six more challenging rare categories in LVIS, rein-
forcement fine-tuning still outperforms SFT. The results in
Tab. 3 and Tab. 4 clearly demonstrate the exceptional perfor-
mance of reinforcement fine-tuning in the few-shot setting,
where the model achieves a significant improvement in vi-
sual perception capabilities through reinforcement learning
with only a small amount of data. We present additional
results under more shot settings and for the 7B model in
Sec. D.3, along with results on domain-specific detection
datasets in Sec. C.

4.4. Reasoning Grounding

Another crucial aspect of vision-language intelligence is
grounding the exact object according to user needs. Pre-



vious specialized detection systems lack reasoning abilities
and fail to fully understand the user’s intentions. Pioneered
by LISA [13], there have been works done to enable large
language models (LLMs) to output control tokens for other
models (such as SAM [11]) or directly predict bounding box
coordinates [31, 40] through supervised fine-tuning. In our
work, we explore the use of Visual-RFT in this task and
find that reinforcement learning (RL) leads to significant
improvements over supervised fine-tuning.

We finetune Qwen2-VL 2B/7B model [40] using Visual-
RFT and supervised fine-tuning (SFT) on the LISA training
set, which consists of 239 images with reasoning ground-
ing objects. We follow the same test setting with LISA and
compare the results of SFT and our method, both with 500
fine-tuning steps. As shown in Tab. 5, Visual-RFT signifi-
cantly improves the final results in terms of bounding box
IoU compared to SFT. Additionally, we prompt SAM [11]
with the Qwen2-VL predicted bounding box to generate
the segmentation mask (evaluated using gloU). Visual-RFT
significantly enhances grounding ability and outperforms
previous specialized detection systems. Qualitative results
are visualized in Fig. 5, where the thinking process signif-
icantly improves the ability to reason and grounding accu-
racy. Through Visual-RFT, Qwen2-VL learns to think crit-
ically and carefully examine the image to produce accurate
grounding results.

4.5. Open Vocabulary Object Detection

The advantage of Visual-RFT over SFT arises from the
former’s true deep understanding of the task, rather than
merely memorizing the data. To further demonstrate
the powerful generalization ability of reinforcement fine-
tuning, we conduct open vocabulary object detection exper-
iments. We constructed a 10-shot training set by selecting
10 images per category from the 48 base categories of the
COCO dataset. We perform Visual-RFT and SFT on the
Qwen2-VL-2/7B model [40] using this data, and test the
model on 17 new categories it has never seen before.

As shown in Tab. 6, after reinforcement fine-tuning, the
Qwen2-VL-2/7B model achieves an average nAP increase
of 18.3 and 7.3 on 17 new categories from the COCO
dataset. The Visual-RFT transfers its detection capabilities
from the COCO base categories to the new COCO cate-
gories. In Fig. 6, we compare Visual-RFT’s performance
with several other detection models [41, 42, 50, 53, 59] us-
ing nAP50 as the evaluation metric. Both Qwen2-VL-2B
and Qwen2-VL-7B models show significant improvements,
with the 7B model outperforming the specialized model
DE-ViT [53] under 10-shot setting. This demonstrates that
Visual-RFT has a significant impact on improving the per-
formance and generalization ability in visual recognition for
LVLMs. We conducted more extensive open vocabulary ex-
periments in the supplementary material, including results
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on the LVIS dataset, see Sec. D.1 for details.

4.6. Ablation Study

To further compare the performance and generalization ca-
pability of SFT and Visual-RFT, we conduct the follow-
ing ablation experiment. We use a 2-shot setting on the
Flower102 dataset, training models separately with Visual-
RFT and SFT. The models are then tested on both the Flow-
ers and Pets datasets. The results under different step set-
tings are shown in Fig. 7.

In the left chart, the accuracy of both Visual-RFT and
SFT on the Flowers increases with the number of train-
ing steps, gradually reaching saturation. Notably, Visual-
RFT demonstrates a significant advantage over SFT when
working with a small amount of data. In contrast, in the
right chart, the accuracy of SFT on the Pets dataset drops
sharply, falling well below the baseline. This decline is
due to the model being trained on the Flower dataset, high-
lighting SFT’s limited generalization ability. Meanwhile,
Visual-RFT maintains its ability to distinguish fine-grained
categories on the Pets dataset, showcasing its strong gen-
eralization performance even when the training and testing
data domains differ.

5. Conclusion

In this paper, we introduce Visual Reinforcement Fine-
tuning (Visual-RFT), the first approach to adapt the GRPO-
based reinforcement learning strategy for enhancing the vi-
sual perception and grounding ability of LVLMs. By using
a rule-based verifiable reward system, Visual-RFT reduces
the need for manual labeling and simplifies reward com-
putation, achieving significant improvements across vari-
ous visual perception tasks. Extensive experiments show
that Visual-RFT excels in fine-grained classification, open
vocabulary detection, reasoning grounding and few-shot
learning tasks. It outperforms supervised fine-tuning (SFT)
with minimal data and shows strong generalization. This
work demonstrates the potential of reinforcement learning
to enhance the capabilities of LVLMs, making them more
efficient and effective in visual perception tasks.
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