
MuGS: Multi-Baseline Generalizable Gaussian Splatting Reconstruction

Yaopeng Lou Liao Shen Tianqi Liu Jiaqi Li
Zihao Huang Huiqiang Sun Zhiguo Cao†

School of AIA, Huazhong University of Science and Technology

Abstract

We present Multi-Baseline Gaussian Splatting (MuGS), a
generalized feed-forward approach for novel view synthe-
sis that effectively handles diverse baseline settings, includ-
ing sparse input views with both small and large baselines.
Specifically, we integrate features from Multi-View Stereo
(MVS) and Monocular Depth Estimation (MDE) to enhance
feature representations for generalizable reconstruction.
Next, We propose a projection-and-sampling mechanism for
deep depth fusion, which constructs a fine probability vol-
ume to guide the regression of the feature map. Further-
more, We introduce a reference-view loss to improve geom-
etry and optimization efficiency. We leverage 3D Gaussian
representations to accelerate training and inference time
while enhancing rendering quality. MuGS achieves state-
of-the-art performance across multiple baseline settings
and diverse scenarios ranging from simple objects (DTU)
to complex indoor and outdoor scenes (RealEstate10K). We
also demonstrate promising zero-shot performance on the
LLFF and Mip-NeRF 360 datasets. Code is available at
https://github.com/EuclidLou/MuGS.

1. Introduction

Novel view synthesis (NVS) represents a fundamental and
practical challenge in computer vision and graphics. Neu-
ral Radiance Fields (NeRF) [25], which encode scenes
as implicit radiance fields, have demonstrated remarkable
success. However, NeRF is computationally expensive,
as it requires querying dense points for rendering. Re-
cently, 3D Gaussian Splatting (3D-GS) [19] has emerged
as an efficient alternative, leveraging anisotropic 3D Gaus-
sians to represent scenes explicitly. This approach facili-
tates real-time, high-quality rendering through a differen-
tiable tile-based rasterizer. Despite these advances, 3D-
GS requires per-scene optimization, which remains time-
consuming, limiting its practical applicability.

To tackle this issue, several generalizable methods [3, 6,
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12 14 16 24 26
18

26

28

30

(13.91,19.31)

(15.99,26.04)

(24.2,28.76)

(22.58,28.21)

(23.34,27.15)

(24.82,29.34)

P
S

N
R

 (
S

m
al

l-
B

as
el

in
e)

PSNR (Large-Baseline)

 PixelNeRF
 IBRNet
 MuRF
 MVSGaussian
 MVSplat
 MuGS(Ours)

0.450 0.495 0.81 0.90

0.774

0.792

0.924

0.966

(0.46,0.789)

(0.484,0.907)

(0.865,0.961)(0.752,0.963)

(0.797,0.935)

(0.873,0.969)

S
S

IM
 (

S
m

al
l-

B
as

el
in

e)

SSIM (Large-Baseline)

 PixelNeRF
 IBRNet
 MuRF
 MVSGaussian
 MVSplat
 MuGS(Ours)

(a) MuGS achieves the best performance in both large- and small-baseline.
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(b) MuGS can generalize across different baselines.
Figure 1. MuGS supports multiple baseline settings. MuGS is
the first Gaussian-based method designed for different baselines.
Our method outperforms the previous state-of-the-art methods.

7, 24, 32, 38] achieve notable advancements in rendering
high-quality novel views from unseen scenes. These meth-
ods accomplish this by introducing explicit geometry con-
straints and leveraging data-driven approaches rather than
overfitting to a specific scene. Based on input view overlap,
these methods can be categorized into two classes: small-
baseline tasks, which handle images with large overlap, and
large-baseline tasks, which operate on images having small
overlap. However, existing methods tend to specialize in
small-baseline or large-baseline settings, struggling to gen-
eralize across different baselines.

A key challenge in practical scenarios is that the base-
line of input views are either small or large, which limits the
generalization of baseline-specific methods. To address this
issue, we propose the first 3D Gaussian splatting method de-
signed for rendering novel views from sparse inputs across
varying baselines, as shown in Fig. 1.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Generalizable Gaussian models typically extract feature
volumes and depth probability volumes using multi-view
stereo (MVS) techniques [15, 47], then regress depth and
other Gaussian parameters. Accurate depth estimation is
essential for retrieving reliable information, yet challenges
arise with baseline mismatches. Small-baseline models
tested on large-baseline datasets suffer from depth errors
due to occlusions and insufficient overlap, leading to dis-
tortions. Conversely, large-baseline models evaluated on
small-baseline datasets struggle with the lack of matching
cues, resulting in inaccurate depth estimation. This inaccu-
racy causes inconsistent Gaussian placements and blurred
rendered images.

Our insight is that accurate depth guidance can ad-
dress common challenges in both large-baseline and small-
baseline methods, while unifying them into a more general-
ized model. However, achieving precise depth under sparse,
multi-baseline inputs is challenging due to three key ob-
stacles: First, the preferred depth estimation strategy dif-
fers from the baseline. For instance, in a two-view setup,
the smallest baseline corresponds to a binocular scenario,
where the two views can be treated as adjacent video frames
and processed with matching-based MVS techniques. The
largest baseline, on the other hand, may imply no overlap
between the two views, meaning depth information must
rely on monocular depth methods. Resolving both types of
problems within a single model is challenging. Second, un-
like typical MVS tasks, we deal with sparse inputs where
calculating the feature similarity is often infeasible. This
limitation arises because at least two valid feature samples
are required for variance at each candidate point. However,
sparse inputs may lack sufficient overlap or be affected by
occlusions, rendering the process ineffective. Third, for
effective generalization, the model needs to store compre-
hensive prior knowledge to support inference across diverse
baselines. Training on a dataset with a specific baseline
while preserving multi-baseline adaptability is a nontrivial
challenge, requiring careful optimization to prevent overfit-
ting to a particular baseline configuration.

To address the challenges above, we propose the follow-
ing solutions. First, we introduce a pre-trained monocular
depth model [43] to assist MVS, as the former offers more
robust and smooth depth features for sparse inputs, whereas
the latter typically exhibits large errors in challenging ar-
eas, despite performing well in regions with sufficient con-
text. Second, for each depth candidate in MVS, we com-
pute both projected depth and sampled depth, which rep-
resent the spatial position and the expected depth of each
point, respectively. A 3D U-net is then employed to cal-
culate the consistency between the two depths. Third, the
consistency information mentioned above is then used as a
query in a lightweight attention network, refining the depth
probability volume. By prioritizing depth candidates near

the surface, the MLP network better utilizes features and
colors sampled from each source view, ultimately reducing
artifacts and improving rendering quality. Additionally, we
propose a reference-view loss for contextual supervision to
learn geometric correspondence more effectively.

Our contributions can be summarized as follows:
• We propose MuGS, the first multi-baseline generalizable

Gaussian based method that integrates the features of
multi-view stereo and monocular models.

• We introduce the projection-sampling depth consistency
network to guide the fine-grained probability volume and
enhance robustness for challenging sparse inputs.

• We propose a reference-view loss for contextual supervi-
sion to improve rendering quality.

• We demonstrate that our method outperforms existing ap-
proaches across different baseline datasets and achieves
superior performance on zero-shot datasets.

2. Related Work
Multi-Baseline. The idea of “multi-baseline” originates
from multi-baseline stereo depth estimation [14, 26, 44, 45],
in which several stereo pairs with different baselines are em-
ployed to overcome matching ambiguities and enhance ac-
curacy. Recently, MuRF [39] has made significant progress
in extending the multi-baseline problem to the NVS task
by leveraging a pre-trained multi-view feature encoder to
construct target view frustum volume, along with an effi-
cient CNN decoder. This approach can handle both large-
and small-baseline problems, even with very sparse inputs.
However, as this method relies solely on MVS principles
to obtain a density volume, it faces challenges when there
is insufficient overlap or occlusion in the views. In such
cases, the density along the ray tends to disperse instead
of concentrating around the true surface. Moreover, due
to the NeRF-like volume rendering approach, noise feature
sampled from incorrect depths also contributes to the final
output, resulting in blurriness and artifacts. In contrast, our
work addresses these challenges from a more fundamen-
tal perspective, specifically depth precision. By doing so,
we propose a unified solution that effectively handles the
shared challenges encountered by both large-baseline and
small-baseline methods.
Multi-View Stereo (MVS) aims to recover 3D geometry
from multiple views. Traditional MVS methods [12, 13,
29, 30] rely on handcrafted features and similarity met-
rics, limiting performance, while MVSNet [47] first intro-
duces an end-to-end pipeline that constructs a cost volume
to aggregate 2D data in a 3D geometry-aware manner. Fol-
lowing this cost volume-based pipeline, subsequent works
make improvements from various aspects, e.g. higher mem-
ory efficiency with coarse-to-fine architectures [8, 15, 41]
or recurrent plane sweeping [41, 48], optimized cost aggre-
gation [34, 37], enhanced feature representations [10, 23],
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and improved decoding strategy [27, 49]. As the cost vol-
ume encodes the consistency of multi-view features and
naturally performs correspondence matching, many feed-
forward Gaussian methods [6, 7, 24] follow this spirit to
learn better geometry. However, they inherently suffer from
the limitation of feature matching in challenging situations
like insufficient overlap or occlusion.
Monocular Depth Estimation (MDE). Recently, there has
been notable advancement in depth estimation from a sin-
gle image [2, 18, 28, 42, 51], with current methods deliv-
ering impressively accurate edge-aligned results across a
wide range of real-world data. However, monocular depth
techniques still face challenges with scale ambiguities and
are unable to generate depth predictions that are consistent
across multiple views, which are essential for tasks like 3D
reconstruction [50] and video depth estimation [35]. In this
paper, we propose the concepts of projected depth and sam-
pled depth to integrate depth information from both the cost
volume and monocular depth. By leveraging the robustness
of a pre-trained monocular depth model [43], our approach
mitigates the limitations of feature matching-based meth-
ods. The very recent work DepthSplat [40] attempts to
combine MVS and MDE, focusing on the mutual enhance-
ment of depth estimation and large-baseline view synthe-
sis through a feature-level concatenation. In contrast, our
work deeply explores and models the relationship between
the two depth cues across different view baselines, enabling
view synthesis under varying baselines.

3. Preliminary
Adjusted Multi-View Stereo Pipeline adapts the tradi-
tional MVS approach for novel view synthesis (NVS). The
process starts by defining multiple fronto-parallel planes in
the target view. Then, the feature maps extracted from N
input views are warped onto these planes using a differen-
tiable homography, expressed as:

Hi(z) = KtRtC(z)R−1
i K−1

i , (1)

where [Kt, Rt] and [Ki, Ri] are the camera intrinsics and
rotations for the target view and the source view Ii. With
I the identity matrix, z the depth candidate, n the principal
axis of the target view camera and [tt, ti] the camera trans-
lations for the target view and the source view Ii, we can
obtain the correction term C(z) by:

C(z) = I− (R−1
t tt −R−1

i ti)n
TRt

z
. (2)

With warped multi-view features {fi}Ni=1, we can obtain
the cost volume by calculating learnable pair-wise similar-
ity [53]. It can be expressed as:

Sim =
∑
j<k

wjk ∗ cos(fj , fk), j, k ∈ {1, 2, ..., N}, (3)

where wjk are learned weights.
For novel view synthesis, it is essential not only to fo-

cus on depth but also to recover textures and colors. Thus,
the cost volume is augmented by introducing multi-view
features which are aggregated through a pooling network
[22]. The augmented cost volume is regularized by CNNs
to produce the target view frustum volume, from which we
obtain the depth probability volume Vp and other render-
ing parameters via MLPs. Unlike previous studies [24, 39],
which directly use the depth probability volume for render-
ing, our approach improves both depth and texture recovery,
enhancing the final rendering quality.
3D Gaussian Splatting uses anisotropic 3D Gaussians to
explicitly represent a 3D scene. Each Gaussian is defined
by:

G(X) = exp[−1

2
(X − µ)TΣ−1(X − µ)], (4)

where Σ and µ denotes 3D covariance matrix and mean.
The covariance matrix Σ is usually decomposed into a scal-
ing matrix S and a rotation matrix R by Σ = RSSTRT ,
which allows for effective optimization since Σ holds phys-
ical meaning only when it is positive semidefinite.

To render a view from 3D Gaussians, the first step is
to splat Gaussians from 3D space to a 2D plane, yielding
2D Gaussians, which covariance matrix is calculated by
Σ′ = JWΣWTJT . The J is the Jacobian matrix which
represents the affine approximation of the projective trans-
formation, and the W is the view transformation matrix.
Next, the color of each pixel can be rendered by alpha-
blending:

C =
∑

j
cjαj

∏j−1

k=1
(1− αk), (5)

where the color cj at depth-wise position j is defined by
spherical harmonics (SH) coefficients and the density αj

equals to the multiplication of 2D Gaussians and a learnable
point-wise opacity.

4. Methodology
4.1. Overview
Given a set of input views {Ii}Ni=1, our objective is to render
target views through a feed-forward, generalized process
without per-scene optimization. The overview of our pro-
posed framework is depicted in Fig. 2. Our method consists
of two primary branches: the MVS branch and the MDE
branch. In the MVS branch, a multi-view feature encoder is
applied to the input views, constructing the target view frus-
tum volume to regress a coarse depth probability volume.
Meanwhile, the MDE branch generates monocular feature
maps and predicts monocular depth maps for input views.
Subsequently, using a projection-and-sampling approach,
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Figure 2. Overview. Given input images {Ii}Ni=1, we first extract multi-view image features from both the monocular encoder and MVS’s
cross-view encoder. The MVS features are used to regress a target view depth probability volume, while monocular features are decoded
into source view depth maps {Di}Ni=1. By projecting the points of the depth probability volume to and sampling from the depth map Di, we
obtain dpi and dsi , which are then fed into a U-net to query for a refined probability volume Vp

fine. Besides, both features are concatenated
to construct the feature volume. Next, we calculate the expected value of depth and feature using Vp

fine, which produces the target depth
and feature map. These are used to predict Gaussian parameters. Finally, the target view image and source reference views are rendered,
which contribute to the total loss together.

monocular depth information from multiple views is inte-
grated with the depth probability volume, refining the pre-
dicted target view depth. On the other hand, MVS features
are enhances by monocular features to obtain the feature
volume, which is then retrieved for the feature map by the
refined probability volume, enabling the MLPs to regress
Gaussian parameters while reducing noise. This pipeline
is executed hierarchically, generating depth maps and ren-
dered views in a coarse-to-fine manner.

4.2. MDE-based Depth Refining
Fusion Strategy. The most straightforward approach to
fusing monocular depth estimation (MDE) and multi-view
stereo (MVS) depth would be to merge both target view
aligned monocular depth map and target view MVS depth
probability volume together through a neural network [21,
46]. However, this method proves inadequate for our novel
view synthesis task, as it faces a fundamental limitation:
while MVS can estimate the depth map for the target view,
the corresponding monocular depth map is inherently un-
available since the target view itself is what we aim to gen-
erate. Therefore, we propose a fusion strategy based on pro-
jection and sampling manner. Specifically, after obtaining
the depth probability volume, we first estimate the monoc-
ular depth map for each input view, i.e., {Di}Ni=1. We then
calculate projected and sampled depth information. Given
the camera intrinsic Ki, rotation Ri and translation ti of the
input view Ii, each depth candidate point P on the fronto-
parallel plane can be projected to input view Ii by:

Pi ∗ dpi = Ki(RiP + ti), (6)

where we can simultaneously obtain both the the projected
depth dpi , which is the distance from the point to the cam-

era plane, and the projection coordinates Pi in the camera
coordinate system. The sampled depth dsi is obtained by
performing grid sampling on the monocular depth map Di

according to the projection coordinates Pi.
For candidate points near the object’s surface, the pro-

jected depth and sampled depth exhibit a high degree of
consistency, as both represent the same spatial location. In
contrast, for candidates far from the object surface, the two
depths become inconsistent. This property enables us to
infer the authenticity of a candidate point based on the con-
sistency between the two depths. To leverage this insight,
we subsequently employ a four-layer 3D U-Net U for each
view i to regress consistency cue Vc

i from the volume com-
posed of dpi and dsi . Additionally, to mitigate the inherent
scale ambiguity in monocular depth estimation, we intro-
duce the depth ratio dsi/d

p
i as a third input channel. This

normalization helps reduce discrepancies caused by vary-
ing depth scales across different views.

Vc
i = U(dpi , d

s
i , d

s
i/d

p
i ). (7)

Each consistency cue Vc
i indicates the consistency between

the MVS’s target view depth probability volume and the
MDE’s source view depth map Di. This operation is ex-
ecuted on every input view, yielding the set of the consis-
tency cues {Vc

i}
N
i=1.

Probability Refinement. With the multi-view consistency
cues {Vc

i}
N
i=1, we first aggregate them based on the visibil-

ity, which can be expressed as:

Vc =
∑N

i=1
wiVc

i , (8)

where wi are learnable weights and the outcome Vc serves
as the overall consistency cue. This aggregation allows the
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model to focus on those informative cues and discard the
noisy ones caused by occlusion.

To refine the depth probability volume, we not only
consider the consistency between projected and sampled
depths, but also take into account the original MVS estima-
tion results, since the latter cab be credible if sufficient con-
text is given. Therefore, we use a lightweight attention net-
work to integrate consistency cues with MVS results, which
helps the network to balance the information. Specifically,
we take consistency cue Vc as the query, the depth prob-
ability volume Vp as both the key and value, to conduct a
depth-wise attention. The output result has the dimension
of depth probability and is added with the residual of the
original volume, which can be expressed as:

Vp
fine = Attention(Vc,Vp,Vp) + Vp (9)

4.3. Gaussian Parameter Prediction
Feature Enhancement. The import of a monocular model
provides not only depth information but also well-encoded
features, which carry informative inductive bias. To this
end, we leverage the power of the monocular features to
assist the prediction of Gaussian parameters. Specifically,
both the monocular feature maps and the MVS feature maps
are warped to the target view fronto-parallel planes accord-
ing to Eq. (1) and concatenated. Subsequently, utilizing a
pooling network [22], the features from different views are
aggregated to construct the feature volume Vf .
Gaussian Construction. With the refined depth probability
volume, we can first compute the expected values of depths,
yielding the target view depth map. The depths are then
used to unproject each pixel to obtain the positions µ of the
3D Gaussians. Next, we regress from feature volume Vf to
obtain the remaining parameters for each Gaussian, namely
the color c, opacity α, scale s, and rotation r. Unlike NeRF-
based methods that require the whole volume to be pro-
cessed and prone to vaporific noise in the result, our method
is constructed on a 2D feature map and focuses more on
features describing the actual object’s surface. Specifically,
we compute the expectation of the feature volume along the
depth channel using the refined depth probability, and the
resulting features Ef are used as the input to the MLP ϕ to
calculate:

c = Sigmoid(ϕc(Ef )), α = Sigmoid(ϕα(Ef )),

s = Softplus(ϕs(Ef )), r = Norm(ϕr(Ef )).
(10)

With the set {µ, s, r, α, c}, pixel-aligned Gaussians are rep-
resented and alpha-blending can be performed to obtain the
color of each pixel.

4.4. Multi-View Gaussian Splatting
Due to the characteristic of target view pixel-aligned Gaus-
sians, using only target view RGB supervision during train-
ing limits the ability to reflect the spatial information of the

Gaussians in the results, ultimately hindering the achieve-
ment of accurate geometry. The explicit Gaussian repre-
sentation allows us to quickly render not only the novel
view but also source views without additionally construct-
ing source view volumes. Therefore, we incorporate super-
vision from the source views to improve spatial accuracy.
Specifically, after obtaining the parameter set {µ, s, r, α, c},
we input the camera parameters of both the source and tar-
get views, i.e. {[Ki, Ri]}Ni=1 and [Kt, Rt] into the Gaussian
rasterizer to generate multiple rendered views in sequence
for optimization rapidly.

4.5. Training Objective
Hierarchical Training. Our model is trained level-by-level
in a coarse-to-fine manner. Specifically, the depth probabil-
ity volume constructed by the previous level is transformed
into a probability distribution function (PDF), which is then
utilized to sample a smaller number of more accurate depth
candidates for the subsequent level. This approach facili-
tates a more precise and memory-efficient training and ren-
dering process.
Training Loss. Our model is trained solely under the su-
pervision of RGB images. Different from the existing feed-
forward 3D-GS methods [3, 6, 24], we introduce a novel
approach by integrating reference views into the overall su-
pervision as the reference loss Lsrc. The inclusion of ad-
ditional contextual views not only enhances geometric cues
but also enriches texture information, thereby accelerating
optimization and improving rendering quality. Specifically,
for each layer k, the loss function Lk

total comprises both the
target view loss and the source view loss. The former in-
cludes L1 loss, SSIM loss [36], and perceptual loss [54],
while the latter consists of L1 loss computed for each indi-
vidual source view, as demonstrated in Sec. 4.4. The overall
loss can be computed by:

Lk
total = Ltarget

1 +LSSIM+LLPIPS+
∑N

i=1
Lsrc
1 i. (11)

5. Experiments
5.1. Settings
Datasets. To evaluate the cross-baseline performance of
our method, we select two widely used datasets for train-
ing and testing: the object-centric dataset DTU [16], which
can provide small-baseline inputs and the RealEstate10K
[55] which can serve as the large-baseline dataset. To fur-
ther evaluate the generalizable performance, we select the
forward-facing dataset LLFF [25] and the large-baseline
Mip-NeRF 360 dataset [1] to conduct zero-shot evaluation.
Baselines. We compare our method against several gener-
alizable NeRF-based methods [4, 11, 17, 22, 31, 33, 52]
as well as two typical 3D-GS methods MVSplat [6] and
MVSGaussian [24] which are designed for large-baseline
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Table 1. DTU small-baseline.

Method
3-view 2-view Inference Time (s)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ Encode↓ Render↓

PixelNeRF [52] 19.31 0.789 0.382 - - - 0.005 5.294
IBRNet [33] 26.04 0.907 0.191 - - - 0.016 4.592
MVSNeRF [4] 26.63 0.931 0.168 24.03 0.914 0.192 0.042 2.363
ENeRF [22] 27.61 0.957 0.089 25.48 0.942 0.107 0.019 0.032
MuRF [39] 28.76 0.961 0.077 27.02 0.949 0.088 0.142 1.122

PixelSplat [3] - - - 14.01 0.662 0.389 0.102 2.3E-3
MVSplat [6] 27.15 0.935 0.121 25.02 0.915 0.126 0.040 3.9E-3
MVSGaussian [24] 28.21 0.963 0.076 25.78 0.947 0.095 0.021 2.4E-3
Ours 29.34 0.969 0.075 27.56 0.958 0.084 0.153 2.1E-3

Table 2. RealEstate10K large-baseline.
Method PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [52] 13.91 0.46 0.591
SRF [9] 15.40 0.486 0.604
GeoNeRF [17] 16.65 0.511 0.541
IBRNet [33] 15.99 0.484 0.532
GPNR [31] 18.55 0.748 0.459
AttnRend [11] 21.38 0.839 0.262
MuRF [39] 24.20 0.865 0.170

MVSGaussian [24] 22.58 0.752 0.206
MVSplat [6] 23.34 0.797 0.188
MuGS(Ours) 24.82 0.873 0.153

Inputs OursMuRFMVSGaussian

Figure 3. 2-view small-baseline results on the DTU [16] dataset.
Our method renders higher quality with fewer errors than other
small-baseline methods.

inputs and small-baseline inputs, respectively. Besides, we
compare our method with MuRF [39], the state-of-the-art
NeRF-based multi-baseline method.
Implementation Details. Our implementation is mainly
based on PyTorch and the 3D-GS rendering implemented
in CUDA. We sample 64 isometric depth candidates for the
coarse model and 16 for the fine model. All models are
trained on 2 Nvidia A6000 GPUs with the Adam [20] opti-
mizer. For the pre-trained monocular model, we use Depth
Anything V2 [43].

5.2. Results
Small-Baseline on DTU. The DTU dataset [16] is a small-
baseline dataset since the input images are object-centric
and provide significant overlap between views. We follow
the setting of MuRF [39], which takes the nearest 3 views
around the target view to serve as source views. Addition-
ally, we evaluate the 2-view scenario, which is more chal-
lenging since there is more occlusion and less context. We
achieve more than 0.5dB PSNR improvement compared to
the previous best methods in both 2-view and 3-view set-
tings. Besides, our method provides higher inference speed
compared to MuRF thanks to the Gaussian representation.

As shown in Fig. 3, this setting presents a significant
challenge due to the large occlusion between the buildings
and the limited availability of only two input views. Since
the texture in the occluded regions is visible in only one of
the input views, methods such as MVSGaussian [24], which
heavily rely on MVS pipeline, struggle to predict accurate
depth. This results in blurry rendered output images. While
MuRF [39] achieves better quality than MVSGaussian, it

Ground Truth MVSplat MuRF Ours

Figure 4. 2-view large-baseline results on the RealEstate10K
dataset. The images rendered by our method exhibit superior ge-
ometric accuracy and reduced distortion.

still exhibits geometric inaccuracies, as the marked area is
misplaced in Fig. 3. In contrast, our method demonstrates
superior performance in both rendering quality and geomet-
ric accuracy, which we attribute this performance to our fu-
sion strategy and multi-view training supervision.
Large-Baseline on RealEstate10K. In this dataset [55], we
follow the setting of AttnRend [11] and MuRF [39], where
the 2 input views are selected from a video with a distance
of 128 frames, and the target view to synthesis is an inter-
mediate frame. This large-baseline setting provides rela-
tively small overlap, which is challenging for methods like
MVSGaussian [24], which relies heavily on multi-view fea-
ture matching, and monocular cues can be useful to infer-
ence geometry. As shown in Tab. 2, our method achieves
more than 1dB PSNR improvement compared to the pre-
vious best large-baseline 3D-GS method MVSplat as well
as more than 0.5dB PSNR improvement compared to the
previous state-of-the-art multi-baseline method MuRF. The
visual comparison in Fig. 4 indicates that our method pro-
duces clearer rendering results than MVSplat [6] and MuRF
[39]. Meanwhile, the images generated by our method show
both geometrical precision and reduced distortion.
Depth Accuracy on DTU. To evaluate the quality of recon-
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Table 3. Depth evaluation results from 3-view inputs on DTU.

Method
Reference view Novel view

Abs err↓ Acc(2)↑ Acc(10)↑ Abs err↓ Acc(2)↑ Acc(10)↑

MVSNet [47] 3.60 0.603 0.955 - - -
PixelNeRF [52] 49.0 0.037 0.176 47.8 0.039 0.187
IBRNet [33] 338 0.000 0.913 324 0.000 0.866
MVSNeRF [4] 4.60 0.746 0.913 7.00 0.717 0.866
ENeRF [22] 3.80 0.837 0.939 4.60 0.792 0.917
MuRF [39] - - - 12.73 0.583 0.906
MVSGaussian [24] 3.11 0.866 0.956 3.66 0.838 0.945
MuGS(Ours) 3.23 0.872 0.963 3.52 0.853 0.952

Table 4. Zero-shot performance on DTU and Mip-NeRF 360 dataset.

Method
DTU Mip-NeRF 360 Dataset

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

AttnRend [11] 11.35 0.567 0.651 14.00 0.474 0.712
MVSplat [6] 13.94 0.473 0.385 - - -
MVSGaussian [24] 19.26 0.716 0.284 21.19 0.752 0.322
MuRF [39] 22.19 0.894 0.211 23.98 0.800 0.293
MuGS(Ours) 22.43 0.916 0.202 24.25 0.845 0.256

Table 5. Zero-shot performance on LLFF after trained in DTU.

Method Settings PSNR↑ SSIM↑ LPIPS↓

PixelNeRF [52]

3-view

11.24 0.486 0.671
IBRNet [33] 21.79 0.786 0.279
MVSNeRF [4] 21.93 0.795 0.252
ENeRF [22] 23.63 0.843 0.182
MatchNeRF [5] 22.43 0.805 0.244
MuRF [39] 23.67 0.860 0.206
MVSGaussian [24] 24.07 0.857 0.164
MuGS(Ours) 24.21 0.872 0.165

MVSNeRF [4]

2-view

20.22 0.763 0.287
ENeRF [22] 22.78 0.821 0.191
MatchNeRF [5] 20.59 0.775 0.276
MuRF [39] 22.82 0.846 0.208
MVSGaussian [24] 23.11 0.834 0.175
MuGS(Ours) 23.33 0.855 0.169

OursMuRFTarget View MVSGaussian

Figure 5. 2-view depth prediction on DTU. Our method yields
better detailed geometric information on novel views.

structed geometry, we select the DTU dataset as it provides
the ground truth of depth. We use quantitative metrics, in-
cluding the average absolute error “Abs err” [47] and the
percentage of pixels with an error less than X mm, denoted
as “Acc(X)” [24]. As shown in Tab. 3, our method recovers
depth with higher accuracy than the previous best method
MVSGaussian [24] in novel view while achieving close ac-
curacy in the reference view. Compared to MuRF [39],
which prioritizes rendering quality at the expense of geome-
try accuracy, our method effectively balances both aspects.
Moreover, due to the volume rendering approach and im-
plicit representation, MuRF cannot estimate the depth map
for reference view since its volume is constructed on the tar-
get view, while our 3D-GS-based method can directly gen-
erate high-quality reference depth maps. The visual results
of the 2-view setting are shown in Fig. 5. MVSGaussian
fails to recover accurate depth due to insufficient context,
while our method achieves better details than MuRF.
Generalization Performance. We also compare the gen-
eralization ability of the model trained on large-baseline or
small-baseline datasets. In Tab. 5, we evaluate zero-shot
performance on the LLFF dataset [25]. All models are
trained on the DTU dataset. Our method achieves better
scores in PSNR and SSIM, and close scores in LPIPS, com-
pared with the small-baseline method MVSGaussian in a 3-
view setting. Regarding the 2-view setting, our method out-

Ground Truth MuRF Ours

Figure 6. Generalization performance. The 1st and 2nd rows are
from LLFF dataset with 3 input views, and the 3rd row is from the
Mip-NeRF 360 Dataset with 2 input views. Fewer artifacts and
blurry areas in our results than MuRF.

performs others in all metrics, showing robustness in han-
dling limited contextual information.

For models trained on RealEstate10K dataset [55], we
evaluate them in both DTU [16] and Mip-NeRF 360 dataset
[1], which is challenging since large-baseline training
dataset provides limited supervision for the MVS pipeline
due to insufficient overlap between views. The further chal-
lenge is that the small-baseline test dataset demands the
model to recover precise geometry to obtain high-quality
rendering results, which is inherently difficult for large-
baseline methods like AttnRend [11] and MVSplat [6]. As
shown in Tab. 4, multi-baseline methods, including MuRF
[39] and ours, outperform the specific-baseline methods by
a large margin on both datasets, while our method demon-
strates even better results compared with MuRF. The vi-
sual results shown in Fig. 6 further indicate that our method
yields sharper outputs with fewer artifacts than MuRF.
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Input 1 w/o feature enhancement Full modelw/o depth refinementInput 2

Figure 7. Ablation of fusion strategy. The 1st row is from small-baseline dataset DTU, and the 2nd row is from large-baseline dataset
RealEstate10K. Our proposed fusion strategy works well with the area with occlusion or out of overlap.

Table 6. Ablation study on each component of our method.

Module
DTU (Small-Baseline) RealEstate10K (Large-Baseline)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o feature enhancement 27.35 0.955 0.087 24.62 0.870 0.159
w/o depth refinement 27.28 0.954 0.087 24.56 0.869 0.161
w/o reference loss 27.52 0.957 0.085 24.67 0.871 0.156
Full model 27.56 0.958 0.084 24.82 0.873 0.153

5.3. Ablation and Analysis

As shown in Table 6 and Fig. 7, we conduct ablation ex-
periments under both large-baseline and small-baseline set-
tings to assess the effectiveness of our designs. The mod-
els are evaluated after training separately on DTU [16] and
RealEstate10K [55].
Depth Refinement. Our method integrates the source view
aligned MDE depth maps into the depth probability volume
constructed by the MVS pipeline. To assess the contribution
of this depth refinement process, we remove the project-
and-sample step along with the subsequent 3D U-net, using
the coarse probability volume directly for predicting the tar-
get depth map and feature map. As shown in Tab. 6, omit-
ting depth refinement leads to a performance decline, which
proves that the refined depth prediction indeed improves the
final results. The visual comparison in Fig. 7 further indi-
cates that our depth refinement is helpful to retrieve better
geometry, particularly in occluded or low-overlap regions.
Feature Enhancement. We further explore the difference
between the features enhanced by pre-trained monocular
features or not. The quantitative results in Tab. 6 demon-
strate that performance drops when only features encoded
by the MVS encoder are used for rendering. This suggests
that useful inductive bias introduced by monocular features
is important for rendering quality. This can be verified in
Fig. 7, as inaccurate color and texture artifacts emerge when
the feature enhancement process is removed.
Training Loss. Our model is trained with an additional
reference loss. To evaluate its effectiveness, we separately
conduct the training with and without the reference loss un-
der identical settings. As shown in Tab. 6, removing the
reference loss leads to a decline in final performance, par-
ticularly in large-baseline scenarios. Moreover, the visual

Iter 64 Iter 128 Iter 256 Iter 512

11.81 dB

14.43 dB

17.13 dB

17.64 dB

20.49 dB

21.03 dB

21.86 dB

24.38 dB

w/o reference loss

Full model
Figure 8. Ablation of reference Loss. This loss not only elevates
the rendering quality, but also boosts the optimization process.

comparison in Fig. 8 indicates that the reference loss effi-
ciently accelerates the optimization process, yielding more
than 2dB PSNR improvement at specific iterations.

6. Conclusion
We present MuGS, a feed-forward, generalized 3D Gaus-
sian Spatting approach for novel view synthesis that effec-
tively generalizes across diverse baseline settings. Specif-
ically, we leverage both Multi-View Stereo (MVS) and
Monocular Depth Estimation (MDE) to infer depth and en-
hance the MVS feature with the powerful pre-trained MDE
feature. To take advantage of the precision of MVS and the
robustness of MDE, we propose a projection-and-sampling
mechanism for depth fusion and refine the depth probabil-
ity volume. To further introduce induction bias for better
generalization, we introduce a novel loss function proposed
to assist in better geometry and rendering quality. Experi-
ments shows MuGS achieves better multi-baseline general-
ization as well as better zero-shot performance, proving the
effectiveness of our method.
Limitations. As our method relies on MVS and MDE for
depth estimation, it inherits limitations from both, such as
decreased depth accuracy in areas with weak textures or
specular reflections, resulting in degraded view quality.
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