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Abstract

Adversarial robustness distillation (ARD) aims to transfer
both performance and robustness from teacher model to
lightweight student model, enabling resilient performance
on resource-constrained scenarios. Though existing ARD
approaches enhance student model’s robustness, the in-
evitable by-product leads to the degraded performance on
clean examples. We summarize the causes of this prob-
lem inherent in existing methods with dual-teacher frame-
work as: (D The divergent optimization objectives of dual-
teacher models, i.e., the clean and robust teachers, im-
pede effective knowledge transfer to the student model, and
@) The iteratively generated adversarial examples during
training lead to performance deterioration of the robust
teacher model. To address these challenges, we propose
a novel Cyclic Iterative ARD (CIARD) method with two
key innovations: () A multi-teacher framework with con-
trastive push-loss alignment to resolve conflicts in dual-
teacher optimization objectives, and ) Continuous ad-
versarial retraining to maintain dynamic teacher robust-
ness against performance degradation from the varying ad-
versarial examples. Extensive experiments on CIFAR-10,
CIFAR-100, and Tiny-ImageNet demonstrate that CIARD
achieves remarkable performance with an average 3.53%
improvement in adversarial defense rates across various at-
tack scenarios and a 5.87% increase in clean sample accu-
racy, establishing a new benchmark for balancing model
robustness and generalization. Our code is available at
https://github.com/eminentgu/CIARD.

1. Introduction

In the era of edge computing and real-time applica-
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Figure 1. Comparison of single-teacher, dual-teacher and CIARD
(ours) distillation frameworks.

tions, the deployment of efficient and robust models on
devices with limited resources presents a significant chal-
lenge. Knowledge distillation (KD) [12, 20, 35, 42] has be-
come a popular method for compressing large teacher mod-
els into smaller, more efficient student models with minimal
accuracy loss. However, adversarial attacks [3, 19, 22, 23,
25, 28] pose a significant threat to the deployment of these
student models, particularly in edge environments. There-
fore, enhancing the robustness of lightweight student mod-
els against adversarial attacks is crucial for their application
in real-world scenarios such as autonomous driving, image
classification, and speech recognition [7, 11, 31].

To address these security concerns, adversarial training
(AT) [13, 15-17, 21] has emerged as a promising defense
approach. AT enhances model robustness [2, 6, 30, 34]
by incorporating both clean and adversarial examples dur-
ing the training process. However, when applied to knowl-
edge distillation, AT presents two significant challenges in-
cluding: (D) Increasing computational burden for generating
adversarial attacks contradicts the model compression effi-



ciency, and (@) The robustness-accuracy trade-off problem
that models typically sacrifice clean performance for better
robustness.

Recently, adversarial robustness distillation (ARD) [8,
14, 36, 38, 44, 45] has emerged as a promising solution.
In the context of ARD, the dual-teacher architecture [39]
offers powerful solution to the two aforementioned chal-
lenges by simultaneously improving both clean sample ac-
curacy and adversarial robustness when guiding the student
models. However, two critical challenges remain in the cur-
rent dual-teacher ARD frameworks including: () Conflict-
ing Optimization Objectives: In conventional dual-teacher
distillation frameworks, the two teachers serve distinct pur-
poses where one teacher focuses on clean sample accuracy
while the other emphasizes adversarial robustness. This di-
chotomy often leads to suboptimal knowledge transfer as
the student model struggles to reconcile these competing
objectives. As shown in Table 1, current methods, such as
B-MTARD [41], improve robustness (T 0.95%) at the cost
of a decrease in clean accuracy (| 0.17%). This cost be-
tween clean accuracy and robust accuracy clearly validates
the issue, and ) Degradation of Adversarial Teacher Per-
Jormance: Through empirical observations (Fig. 3), we find
that as the student model evolves during training, the gener-
ated adversarial examples increasingly compromise the per-
formance of the robust teacher model. This degradation sig-
nificantly impacts the quality of knowledge transfer and the
overall robustness of the student model.

To address these limitations of prior dual-teacher ARD-
methods [39, 41], we propose a novel cyclic iterative dual-
teacher distillation framework, namely Cyclic Iterative Ad-
versarial Robustness Distillation (CIARD), as shown in Fig-
ure 1. The CIARD framework resolves the distinct train-
ing optimization objectives issue by introducing contrastive
push loss alignment. The contrastive push loss effectively
decouples clean knowledge from robust knowledge and en-
sure that student model specializes in learning robust fea-
tures without interference from clean teacher. Practically,
the push loss works by deliberately creating a divergence
between the student and clean teacher. By pushing away
from the clean teacher’s incorrect predictions, the student
effectively absorbs the robust teacher’s specialized knowl-
edge.

After achieving the goal of precisely guide the stu-
dent’s learning trajectory, we further incorporate an Iter-
ative Teacher Training (ITT) strategy to avoid the perfor-
mance degradation of the teacher model caused by the iter-
atively generated adversarial examples during training. In
detail, ITT first freezes both teacher models’ parameters at
the early training stage to let student have a basic knowl-
edge. Afterwards, ITT iteratively updates the robustness
teacher with our proposed continuous adversarial retrain-
ing to maintain dynamic teacher robustness against perfor-
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Table 1. Performance comparison of MobileNet-V2 under FGSM
in two knowledge distillation frameworks on CIFAR-10. Best per-
formance metrics are highlighted in bold.

Type ‘ Defense ‘ FGSM [9]
\ | Clean (%) Robust (%)
. ARD [8] 83.43 57.03
Single-Teacher | \po1 ha0] 8250 5847+
MTARD [39] | 89.26 57.84
Dual-Teacher | B-MTARD [41]|89.09 ]  58.79 1
CIARD (Ours) | 89.51 1  59.10 1

mance degradation from the varying adversarial examples.
Extensive experiments across multiple datasets demon-
strate that CIARD significantly outperforms existing ARD
methods, achieving substantial improvements in both adver-
sarial robustness and clean sample accuracy. Overall, our
contributions are summarized as follows: (I) We propose
CIARD, a cyclic iterative dual-teacher distillation frame-
work that incorporates a contrastive push loss alignment and
an Iterative Teacher Training strategy to effectively guide
student model training while maintaining teacher model ro-
bustness. (II) We introduce a novel optimization strategy,
namely Contrastive Push Loss, that resolves conflicting ob-
jectives among dual-teacher models, facilitating enhanced
knowledge transfer while dynamically adjusting the train-
ing process to achieve an optimal balance between robust-
ness and accuracy. (III) We introduce the Iterative Teacher
Training strategy to dynamically enhance the knowledge
supplementation of the adversarial teacher based on the
evaluation of the student model. This approach equips
the robust teacher a strong capability in both robust and
clean knowledge, effectively boosting the student’s perfor-
mance. (I'V) Extensive experiments across multiple datasets
demonstrate that CIARD significantly outperforms existing
ARD methods, achieving substantial improvements in both
adversarial robustness and clean sample accuracy.

2. Preliminary & Background

Knowledge Distillation (KD). KD is a widely used method
for compressing deep neural networks, aiming to transfer
knowledge from a large teacher model to a smaller student
model. Given a teacher model 7(-) and an in-distribution
example x ~ D (from the same distribution as the teacher’s
training data), the traditional KD optimization objective is
to obtain student model parameters 6 that minimize the
Kullback-Leibler (KL) divergence loss Lk, () between the
softmax logits of the teacher and student outputs. The loss
function is defined as follows:

arg Helisn (aCE(S(z),y)) + (BT*KL (S™ (x), T™(z))). (1)

Hard Label Loss

Soft Label Loss

As seen from the distillation Eq. 1, the loss function typ-
ically consists of two components: one is the cross-entropy
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Figure 2. The framework of Cyclic Iterative Adversarial Robustness Distillation (CIARD). Our dual-teacher distillation framework features
a continuously updated robust teacher model and a push loss mechanism to guide knowledge transfer, enabling effective balance between

adversarial robustness and accuracy in the student model.

loss between the student model and the true label, and the
other is the KL divergence between the student model and
the teacher model’s soft labels. However, traditional KD
focuses solely on the student model’s accuracy on clean ex-
amples, without considering its robustness.

Adversarial Training (AT). AT remains one of the most
effective methods for defending against adversarial attacks.
Its core principle involves training models with both ad-
versarial and clean examples, enabling defense capabilities
through exposure to hostile inputs. The key to adversar-
ial training lies in generating perturbations through inner
maximization. Extensive research has focused on enhanc-
ing the robustness of deep neural networks through AT, by
proposing various strategies. For example, Zi et al. [45] em-
ploy robust soft labels to improve student model robustness,
Zhang et al. [38] introduce TRADES to balance robustness
and performance on clean examples, and Wang et al. [32]
address misclassified examples through MART. Main fac-
tors contributing to robustness include larger models, more
data, and the use of KL divergence for the inner maximiza-
tion. Wu et al.’s [33] study confirm this perspective, demon-
strating that AT significantly improves robustness in large
models, though the improvements were less substantial for
smaller models.

Adversarial Robustness Distillation (ARD). KD does not
provide the student model with sufficient robustness, while
AT demands a large model capacity. Intuitively, researchers
have extensively explored ARD, which enhances student
model robustness by combining KD and AT. Revisiting ex-
isting ARD methods [24, 43], Robust Soft Label Adversar-
ial Distillation improves robustness by using robust soft la-
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bels in inner optimization, highlighting their importance in
AT. While most methods focus on prediction output, recent
research has explored matching feature layers [27, 29] and
input gradients [5] to generate more robust student mod-
els. In this paper, we conduct an in-depth analysis of main-
stream research achievements related to ARD. RSLAD [45]
improves model robustness by introducing robust soft la-
bels, although its accuracy on clean examples still lags be-
hind traditional training. Multi-Teacher Adversarial Robust
Distillation (MTARD) [39] leverages a dual-teacher frame-
work and adaptive normalized loss function to achieve a
better trade-off between student model’s robustness and ac-
curacy, yet there remains room for optimization to achieve
more stable performance balance. Inspired by these stud-
ies, we propose a more effective ARD method to enhance
the robustness of student models.

3. Methodology
3.1. An Adversarial Training Perspective on KD

As shown in Figure 1, the traditional KD process focuses
on enabling the student model to inherit the teacher model’s
accuracy without addressing adversarial robustness. How-
ever, traditional KD only allows the student model to in-
herit the accuracy of natural examples, while its robustness
against adversarial examples is significantly lower than that
of the teacher model. Thus ARD redefines the distillation
objective from an adversarial perspective, as follows:

Ep (o) [acmw(m), Y+ B Lis (57 (). T7@) |, @

Clean Example

Adversarial Example



where x* denotes the search result of the inner optimization,
which can be expressed in the following form:

" =z +arg max Lop(S(z+9),y),
l15]lp<e

3)
this constraint (||d]|, < €) ensures that the perturbation &
is within a specified bound e under the L,-norm. The L,-
norm measures the magnitude of the perturbation, and e is
the maximum allowable perturbation size.

With advancements in ARD research, Zhao et al. [39]
design a dynamic training method that can balance the in-
fluence of adversarial and non-adversarial teacher models
on student models. MTARD extends prior work by incor-
porating multi-teacher adversarial robustness distillation to
guide the adversarial training of lightweight models. The
basic min-max optimization framework of MTARD is de-
fined in the following form:

argng;n alir(S(x), Tnat(x)) + BLkL (S (z7) , Taaw(z™)) |,

Nature Example

Adversarial Example

(C))

where z* is an adversarial example generated from the
clean example = as shown below:

x* = argmaxCE (S (z + 6;05) , ),
5eQ

®)

it’s worth noting that « and 3 in the above formulas are
weighting factors that sum to 1.

3.2. Framework Overview

In this section, we give framework details of our pro-
posed CIARD, which simultaneously enhances the robust-
ness of student models while preserving their high accuracy
on clean examples. As in Figure 2, CIARD achieves high
clean accuracy and adversarial robustness by coordinating
knowledge transfer between dual teacher models. Given
a batch of clean examples © € Dyy,q;n, these inputs first
pass through the clean teacher model ¢ to generate soft-
ened class probabilities ¢(z), serving as reference targets
for maintaining natural pattern recognition capabilities. Si-
multaneously, each clean sample undergoes adversarial per-
turbation through a Projected Gradient Descent (PGD) [23]
attack that jointly considers both the student model s and
the clean teacher model ¢:

x* = PGD(z, s,t) = argmax [KL(s(z + §)|[t(z + J))] . (6)
6]l oo <€

This collaborative attack generation strategy produces
adversarial examples z* that challenge both the learning
student and the vulnerable clean teacher, ensuring exposure
to evolving attack patterns throughout the training process.
At the same time, for each input pair (x, x*), the clean
teacher processes both the benign examples and adversar-
ial examples simultaneously, generating the corresponding
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probability distributions ¢(z) and ¢(2*). Meanwhile, the ro-
bust teacher (¢) analyzes the adversarial examples at a fixed
temperature, producing smoothed outputs ¢'(x*), to main-
tain its pre-trained defensive decision boundary. The stu-
dent model processes both types of data through separate
forward passes simultaneously, generating s(z) for benign
inputs and s(z*) for adversarial examples, thereby estab-
lishing a dual behavioral baseline for knowledge distilla-
tion. In summary, CIARD’s innovation is ultimately man-
ifested in a triple-objective loss function that dynamically
balances competing learning goals. The concise knowledge
transfer component («KL(s(x),t(x))) with adaptive tem-
perature initially promotes broad class relationship learn-
ing, before gradually sharpening to emphasize discrimina-
tive features. Complementarily, the robust knowledge align-
ment term (SKL(s(z*),t'(z*)) transplants certified defense
mechanisms by enforcing distributional consistency be-
tween the student’s adversarial responses and the robust
teacher’s calibrated outputs.

3.3. Robust Specialization: Contrastive Push Loss

The core challenge in adversarial robustness distillation
lies in effectively decoupling clean knowledge from ro-
bust knowledge, ensuring that student model can special-
ize in learning robust features without interference from
clean teachers. To address this challenge, we propose
“Contrastive Push Loss”, a novel component designed to
enhance the student model’s ability to specialize in robust-
ness knowledge. Formally, given an adversarial sample z*
generated through Eq. 6, let s(z*) and ¢(z*) denote the out-
put probability distributions of the student and clean teacher
respectively. Based on Eq. 4, for a given input sample x
and its adversarial counterpart z*, the loss function is for-
mulated as:

Lstudent = a« KL(s(2), t(x)) +B8KL(s(z*), ' (x*))
Clean Knowledge
— APush(s(z*), (")),

Robust Specialization

Robust Knowledge

)

where s, t, and t’ represent the student model, clean teacher,
and robust teacher respectively.

Unlike conventional distillation that minimizes this di-
vergence, our formulation explicitly maximizes it through
negative weighting in the global loss function (see Eq. 7).
This creates a repulsive force that drives the student’s ad-
versarial predictions away from the clean teacher’s vulner-
able patterns while preserving alignment with the robust
teacher’s guidance through Lgopyst-

As shown in Algorithm 1, our proposed push loss works
by deliberately creating a divergence between the student
model and the clean teacher. This mechanism allows the
student to focus exclusively on robust features when pro-
cessing adversarial examples, minimizing the influence of



potentially misleading robustness knowledge from clean
teacher. By pushing away from the clean teacher’s incor-
rect predictions, the student can more effectively absorb the
robust teacher’s specialized knowledge. Meanwhile, the de-
coupling process also enhances the clean teacher’s robust-
ness against adversarial data generated by the student model
during training. As a result, the remaining unpushed data
retains more accurate robust knowledge, which in turn fur-
ther strengthens the robust training process. This approach
creates a specialized learning environment where the stu-
dent model can focus on developing robust features without
the confusion introduced by clean but non-robust knowl-
edge. By strategically diverging from the clean teacher in
cases where robustness is critical, the student achieves bet-
ter specialization in handling adversarial examples while
maintaining performance on clean data.

3.4. Iterative Teacher Training

The cyclic iterative mechanism in CIARD fundamen-
tally re-imagines the teacher-student relationship through
the bidirectional flow of knowledge. Unlike traditional dis-
tillation methods where teachers stay unchanged, our ap-
proach creates a two-way learning process where both the
student model improves and the teacher model develops at
the same time. As shown in Figure 2, this mechanism oper-
ates in the following way:

£adv,teache’r — CE(t/(ZE*), y)a (8)

where ¢’ represents the robust teacher model, x* denotes
the adversarial examples obtained by Eq. 6, and y is the
ground truth label. By optimizing this loss function, the ro-
bust teacher model continuously adapts to evolving adver-
sarial attack patterns, maintaining high performance levels
throughout the training process. This dynamic adaptation
mechanism ensures consistent quality of knowledge trans-
fer and prevents the degradation of the robust teacher’s per-
formance that is commonly observed in traditional fixed-
teacher approaches.

In our 300-round model training process, we keep the ad-
versarial teacher model fixed for the first 50 rounds, allow-
ing the student model to maximize its learning of the teacher
model’s robustness. After 50 rounds, as the student model
continues training, the generated adversarial examples can
cause the teacher model’s performance to decline. There-
fore, we incorporate the robust teacher model into the train-
ing to maintain its performance at a high level. By optimiz-
ing this loss function, the robust teacher model continuously
adapts to evolving adversarial examples, maintaining high
performance levels throughout the training process. This
dynamic adaptation mechanism ensures consistent quality
of knowledge transfer and prevents the degradation of the
robust teacher’s performance that is commonly observed in
traditional fixed-teacher approaches.
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Algorithm 1: Push Loss Computation

Input: z; € RB*C _ Teacher logits for a batch of
size B and C classes; z; € RB*C _ Student
logits for the same batch; y € R” — Ground
truth labels; Temperature 7' (default: 4).
Output: L,
1 Procedure:
2 //* Clean Teacher Robustness Evaluation *//
3y + argmax(z¢,dim = 1) ; /! Tpredict
s J{i| 9" £yD}; // Error indices
5 //# Clean Teacher Knowledge Filtering *//

z, — {z\" |ie g} // select Tiogits

zl {ZS) |ieJ}; // Select Siogits
//* Robustness Decoupling & Push Loss *//

Ps < softmax (%), // S-Distribution

=)

~

=)

N

z,
T
1 Lo < Dx(Ps || Pr); // KL divergence
12 Return Ly,

10 f>t<—softmax( ); // T-Distribution

3.5. Overall Training Objectives

To sum up, based on the dual-teacher framework for
optimizing the student model, our proposed push loss
and iterative teacher training effectively enhance the stu-
dent model’s robustness against adversarial examples while
maintaining high performance of the adversarial teacher
model throughout the training process, overcoming the per-
formance degradation issues commonly observed in tradi-
tional fixed-teacher approaches.

Specifically, for a given dataset z, we first obtain its
corresponding adversarial examples x* generated through
PGD that jointly consider both the student model s and the
clean teacher model ¢. We then input both clean examples
and adversarial examples into the clean teacher model ¢, ro-
bust teacher model ¢/, and student model s to obtain the
corresponding probability distributions t(x), t(z*), t'(z*),
s(z), and s(z*), which serve as the foundation for com-
puting the triple-objective loss function, and optimize stu-
dent model parameters according to the following objective
function:

€))

arg mgin Lstudenh

where «, 3, and X\ balance clean knowledge transfer, ro-
bust knowledge acquisition, and robust specialization, re-
spectively. The detailed algorithm description of CIARD
can be found in the supplementary files.



Table 2. Performance of Different Teacher Models (ResNet [RN] and WideResNet [WRN]) on CIFAR-10 and CIFAR-100 Datasets.

Dataset ‘ Teacher Model ‘ Type ‘ Clean Acc ‘ FGSM [9] ‘ PGDsar [23] ‘ PGDrrapes [38] ‘ CWe [4]
CIFAR-10 RN-56 Clean | 93.18% 19.18% 0 0 0
WRN-34-10 Robust 84.92% 60.87 % 56.86 % 55.30% 53.84%
CIFAR-100 | VRN-22:6 Clean | 72.55% 25.19% 0 0 5
] WRN-70-16 | Robust | 63.56% 43.69% 32.24% 30.95% 28.93%

Table 3. White-box Adversarial Robustness of ResNet-18 on
CIFAR-10 and CIFAR-100 Datasets. Detailed results from our
experiments are presented in the supplementary files. The best re-
sults are bolded, and the second best results are underlined.

Table 4. White-box Adversarial Robustness of MobileNet-V2 on
CIFAR-10 and CIFAR-100 Datasets. Detailed results from our
experiments are presented in the supplementary files. The best
results are bolded, and the second best results are underlined.

CIFAR-10(%) CIFAR-100(%)

CIFAR-10(%) CIFAR-100(%)

Attack  Defense Attack  Defense
Clean Robust W-R Clean Robust W-R Clean Robust W-R Clean Robust W-R
SAT 84.20 55.59 69.90 56.16 25.88 41.02 SAT 83.87 55.89 69.88 59.19 30.88 45.04
TRADES 83.00 58.35 70.68 57.75 31.36 44.56 TRADES 77.95 53.75 65.85 55.41 30.28 42.85
ARD 84.11 58.40 71.26 60.11 33.61 46.86 ARD 83.43 57.03 70.23 60.45 32.77 46.61
RSLAD 83.99 60.41 72.20 58.25 34.73 46.49 RSLAD 83.20 59.47 71.34 59.01 33.88 46.45
FGSM SCORE 84.43 59.84 72.14 56.40 32.94 44.67 FGSM SCORE 82.32 58.43 70.38 49.38 29.28 39.33
Fair-ARD 83.41 58.91 71.16 57.81 34.39 46.10 Fair-ARD 82.65 56.37 69.51 59.18 34.07 46.63
ABSLD 83.21 60.22 71.72 56.77 34.94 45.86 ABSLD 82.50 58.47 70.49 56.67 33.85 45.26
MTARD 87.36 61.20 74.28 64.30 31.49 47.90 MTARD 89.26 57.84 73.55 67.01 32.42 49.72
B-MTARD 88.20 61.42 74.81 65.08 34.21 49.65 B-MTARD 89.09 58.79 73.94 66.13 34.36 50.25
CIARD (Ours) 88.87 61.88 75.38 65.73 34.47 50.10 CIARD (Ours) 89.51 59.10 74.31 66.72 33.56 50.14
SAT 84.20 45.85 65.08 56.16 21.18 38.67 SAT 83.87 46.84 65.36 59.19 25.64 42.42
TRADES 83.00 52.35 67.68 57.75 28.05 42.90 TRADES 77.95 49.06 63.51 55.41 23.33 39.37
ARD 84.11 50.93 67.52 60.11 29.40 44.76 ARD 83.43 49.50 66.47 60.45 28.69 44.57
RSLAD 83.99 53.94 68.97 58.25 31.19 44.72 RSLAD 83.20 53.25 68.23 59.01 30.19 44.60
PGDs 41 SCORE 84.43 53.72 69.08 56.40 30.27 43.34 PGDsur SCORE 82.32 53.42 67.87 49.38 27.03 38.21
Fair-ARD 83.41 52.00 67.71 57.81 30.64 44.23 Fair-ARD 82.65 50.50 66.58 59.18 30.15 44.67
ABSLD 83.21 54.63 68.92 56.77 32.41 44.59 ABSLD 82.50 52.98 67.74 56.67 31.28 43.98
MTARD 87.36 50.83 69.05 64.30 24.95 44.63 MTARD 89.26 44.16 66.71 67.01 25.14 46.08
B-MTARD 88.20 51.68 69.94 65.08 28.50 46.79 B-MTARD 89.09 47.56 68.33 66.13 28.47 47.30
CIARD (Ours) 88.87 51.70 70.29 65.73 28.05 46.89 CIARD (Ours) 89.51 47.67 68.59 66.72 27.02 46.87

4. Experiments

4.1. Experimental Setup

Datasets & Models. We use the CIFAR-10 [18] and
CIFAR-100 datasets, following Zhao et al. [39], to eval-
uate the experimental results of CIARD and other ARD
methods. For model architecture, the student model uses
ResNet-18 [11] and MobileNet-V2 [26]. The teacher mod-
els are categorized into a clean teacher and an adversarial
teacher. The clean teacher uses ResNet-56 for CIFAR-10
and WideResNet-22-6 [37] for CIFAR-100. The adversarial
teacher uses WideResNet-34-10 trained with TRADES [38]
for CIFAR-10 and WideResNet-70-16 provided by Gowal
et al [10], for CIFAR-100. The performance of these pre-
trained teacher models is summarized in Table 2.

Implementation Details. Student models are trained for
300 epochs using an SGD optimizer (momentum 0.9,
weight decay 2e-4), with a learning rate following a cosine
decay schedule from 0.1 to 1e-5. The adversarial teacher is
frozen for the first 50 epochs and then iteratively updated
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using SGD with a low learning rate of le-5. For robust
training, adversarial examples are generated via a 10-step
PGD attack with a step size of 2/255 and an L, bound of
e = 8/255. The push loss temperature is set to 4. All ex-
periments use a batch size of 64 and standard data augmen-
tation (random cropping and horizontal flipping). Train-
ing was conducted in PyTorch on two NVIDIA RTX 4090
GPUs.

Evaluation Metrics. To evaluate model performance, we
measure natural accuracy on clean test examples and ro-
bust accuracy on adversarial test examples. The evaluation
protocol encompasses multiple attack methods: FGSM [9],
PGDsar [23], PGD1rapEs [38], CWo [4], and Square At-
tack [1], all configured with a maximum perturbation limit
of ¢ = 8/255. Both PGDSAT and PGDTRADES are imple-
mented with 20 steps and a step size of 2/255, while CW o,
employs 30 steps. For the query-based attack, we set the
number of queries for the Square Attack to 100.



Table 5. Black-box Adversarial Robustness of ResNet-18 on
CIFAR-10 and CIFAR-100 Datasets Under Various Attack Meth-
ods. Performance is measured using Weighted Robustness (W-
R) and accuracy metrics. Additional experimental details are pro-
vided in the supplementary materials.

Table 6. Black-box Adversarial Robustness of MobileNet-V2 on
CIFAR-10 and CIFAR-100 Datasets Under Various Attack Meth-
ods. Performance is measured using Weighted Robustness (W-
R) and accuracy metrics. Additional experimental details are pro-
vided in the supplementary materials.

CIFAR-10(%) CIFAR-100(%)

CIFAR-10(%) CIFAR-100(%)

Attack Defense Attack Defense
Clean Robust W-R Clean Robust W-R Clean Robust W-R Clean Robust W-R
SAT 84.20 64.74 74.52 56.16 38.10 47.13 SAT 83.87 64.66 74.27 59.19 40.70 49.95
TRADES 83.00 63.61 73.31 57.75 38.20 47.98 TRADES 77.95 61.04 69.50 55.41 37.76 46.59
ARD 84.11 63.50 73.81 60.11 39.53 49.82 ARD 83.43 63.28 73.36 60.45 39.15 49.80
PGDtrapes RSLAD 83.99 63.96 73.98 58.25 39.93 49.09 PGDtrapes RSLAD 83.20 64.33 73.77 59.01 40.32 49.67
MTARD 87.36 65.26 76.31 64.30 41.46 52.88 MTARD 89.26 66.30 77.78 67.01 43.23 55.12
B-MTARD 88.20 65.29 76.75 65.08 42.11 53.60 B-MTARD 89.09 66.47 77.78 66.13 42.67 54.40
CIARD (Ours) 88.87 66.28 77.58 65.73 42.29 54.01 CIARD (Ours) 89.51 66.66 78.09 66.72 42.70 54.71
SAT 84.20 63.84 74.02 56.16 39.42 47.79 SAT 83.87 64.24 74.06 59.19 40.97 50.08
TRADES 83.00 62.83 72.92 57.75 38.63 48.19 TRADES 77.95 60.66 69.31 55.41 38.02 46.72
ARD 84.11 62.86 73.49 60.11 38.85 49.48 ARD 83.43 62.83 73.13 60.45 38.53 49.49
CWo RSLAD 83.99 63.05 73.52 58.25 39.67 48.96 CWeo RSLAD 83.20 63.45 73.33 59.01 39.92 49.47
MTARD 87.36 64.58 75.97 64.30 41.18 52.74 MTARD 89.26 65.68 77.47 67.01 42.92 54.97
B-MTARD 88.20 64.64 76.42 65.08 41.35 53.22 B-MTARD 89.09 65.96 77.53 66.13 42.04 54.09
CIARD (Ours) 88.87 64.79 76.83 65.73 41.44 53.59 CIARD (Ours) 89.51 66.12 77.82 66.72 42.85 54.79
SAT 84.20 72.48 78.34 56.16 40.05 48.11 SAT 83.87 73.01 78.44 59.19 44.51 51.85
TRADES 83.00 72.49 77.75 57.75 42.51 50.13 TRADES 77.95 67.43 62.69 55.41 40.71 48.06
ARD 84.11 74.60 79.36 60.11 47.20 53.66 ARD 83.43 73.26 78.35 60.45 46.95 53.70
SA[1] RSLAD 83.99 72.47 78.23 58.25 45.32 51.79 SA[1] RSLAD 83.20 73.07 78.14 59.01 45.66 52.34
MTARD 87.36 78.58 82.97 64.30 48.13 56.22 MTARD 89.26 79.13 84.20 67.01 50.64 58.83
B-MTARD 88.20 79.82 84.01 65.08 49.40 57.24 B-MTARD 89.09 79.61 84.35 66.13 50.83 58.48
CIARD (Ours) 88.87 80.03 84.45 65.73 49.76 57.75 CIARD (Ours) 89.51 80.01 84.76 66.72 50.85 58.79

4.2. Effectiveness of CIARD

Adversarial attacks can be categorized into two types
based on the threat model: white-box and black-box attacks.
In a white-box setting, the attacker has complete access to
the deep learning model, including its architecture and pa-
rameters. In contrast, a black-box setup only allows the at-
tacker to access the model’s output. Due to the length of the
article, more detailed experimental results can be found in
the supplementary files.

White-box Robustness of Student Models. To evalu-
ate robustness against white-box attacks, we test the student
models ResNet-18 and MobileNet-V2 on CIFAR-10 and
CIFAR-100 using four attack methods: FGSM, PGDgar,
PGDtrapEs, and CW,. As shown in Tables 3 and 4, the
precision of CIARD W-Robust on CIFAR-10 and CIFAR-
100 outperforms other ARD methods in most cases. For
ResNet-18, the model weight robustness is improved by up
to 0.57% and 0.45% based on the CIFAR-10 and CIFAR-
100 datasets. Furthermore, the cyclic iteration mechanism
in CIARD improves the accuracy of the student model’s
classification, reaching 88.87% and 65.73% in CIFAR-10
and CIFAR-100, respectively. For MobileNet-V2, the re-
sults are similar, particularly under FGSM attack. Tests
based on the CIFAR-10 dataset show an improvement in
weighted robustness of 0.37% and 0.26% compared to the
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best benchmark method.

Black-box Robustness of Student Models. We also per-
form black-box evaluations, incorporating both transfer-
based and query-based [1] methods, to assess the student
model’s robustness in environments more akin to real-world
scenarios. The parameter configurations for the student and
teacher models are consistent with those used in the white-
box evaluations.

Using CIFAR-10 and CIFAR-100, we evaluate the de-
fensive capabilities of CIARD and other methods against
black-box attacks on ResNet-18 and MobileNet-V2, fo-
cusing on both transfer-based and query-based attacks.
For transfer-based attacks, we use adversarial teachers
(WideResNet-34-10 and WideResNet-70-16) to generate
adversarial examples for PGDrrapgs and CW, attacks.
For query-based attacks, we employe Square Attack (SA).
We select the best checkpoints for the baseline model and
MTARD based on weighted robustness accuracy. Tables 5
and 6 indicate that CIARD generally exhibits stronger
resilience against the three types of black-box attacks.
Notably, against PGDtrapgs attacks, the student model
achieve weighted robustness accuracy in CIFAR-10 that
was 0.83% and 0.41% higher than the second-best methods,
respectively. In summary, the experimental results clearly
demonstrate the superior performance of CIARD in defend-
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Figure 3. Training curves of ResNet-18 on CIFAR-10 over 300
epochs. Up: Robust accuracy comparison of MTARD/CIARD.
Down: Classification accuracy comparison of MTARD/CIARD.

ing against both white-box and black-box attacks. Based on
experimental results, ARD, RSLAD, MTARD, and CIARD
outperform SAT and TRADES, demonstrating that ARD
methods are more effective in enhancing lightweight model
performance compared to traditional approaches.

4.3. Ablation Studies

Quantitative Analysis of CIARD. To better understand the
contribution of each component in our proposed method, we
conduct ablation studies on both Iterative Teacher Training
(ITT) and Push loss. Table 7 presents the performance com-
parison on PGD adversarial accuracy (PGDrrapgs), clean
accuracy (Clean,.), and weighted accuracy (W-acc).

The effects of ITT. From the results, we observe that incor-
porating ITT improves both clean accuracy and adversar-
ial robustness compared to the baseline model (without ITT
and Push loss). Specifically, ITT alone increases clean ac-
curacy by 0.87% and adversarial robustness by 0.19%. This
improvement demonstrates the effectiveness of our implicit
teacher training strategy in enhancing model generalization.
The effects of contrastive push loss. We further incorpo-
rate the push loss into our framework, we achieve the best
performance across all metrics. The full model achieves
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Table 7. ResNet-18 Results on CIFAR-10. Push Loss refers to
Contrastive Push Loss in 3.3, while ITT represents the Iterative
Teacher Training in 3.4.

Method PGDtRrADES Cleanyc, W-ace
w/o ITT w/o Push loss 53.84 87.76 70.80
w/ ITT w/o Push loss 54.03 88.63 71.30
w/ ITT w/ Push loss 54.54 88.86 71.70

54.54% on PGDtraDEs, 88.86% on Clean,.., and 71.70%
on W-acc, showing consistent improvements over both the
baseline and the model with only ITT. The Push loss con-
tributes an additional 0.51% gain in adversarial robustness
and 0.23% in clean accuracy. The effectiveness of our con-
trastive push loss can be attributed to its decoupling design,
which helps separate the decision boundaries between clean
and adversarial examples. As shown in our prior analy-
sis, this decoupling mechanism allows the clean teacher to
maintain higher robustness throughout the training process.
Meanwhile, the robust teacher’s capability continuously im-
proves as training progresses, benefiting from the knowl-
edge transfer facilitated by the push loss.

Qualitative Analysis of CIARD. In addition to the above
experimental results, line chart 3 also validates our design
choices and confirms that ITT and Push loss are both key
components of our framework, each contributing to over-
all performance in terms of robustness and accuracy. De-
spite the clean teacher being frozen to preserve its high
clean accuracy, its robust accuracy has significantly im-
proved during training, demonstrating the effectiveness of
our decoupling mechanism with push loss, as mentioned in
3.3. Moreover, both the robust and clean accuracy of our ro-
bust teacher have improved and remained consistently high,
further validating the contribution of our Iterative Teacher
Training method.

5. Conclusion

In this paper, we propose the Cyclic Iterative Adversar-
ial Robustness Distillation (CIARD) method to address the
conflict between the teacher optimization objective and per-
formance degradation in adversarial robustness distillation.
Our framework introduces: (I) a contrastive push-pull align-
ment mechanism to resolve the objective conflict by regu-
lating the distance between the student adversarial response
and the teacher clean features; and (2) dynamic adversar-
ial retraining to preserve the teacher robustness via parame-
ter freezing and adaptive knowledge adjustment. Extensive
experiments on CIFAR-10/100 and Tiny-ImageNet demon-
strate the effectiveness of CIARD. The method sets a new
benchmark for compact adversarial models and is planned
to be extended to various attack scenarios and resource-
constrained deployment in the future.
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