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Abstract

Procedural videos are critical for learning new tasks.
Temporal action segmentation (TAS), which classifies the
action in every video frame, has become essential for un-
derstanding procedural videos. Existing TAS models, how-
ever, learn a fixed-set of tasks at training and unable to
adapt to novel tasks at test time. Thus, we introduce
the new problem of Multi-Modal Few-shot Temporal Ac-
tion Segmentation (MMF-TAS) to learn open-set models
that can generalize to novel procedural tasks with mini-
mal visual/textual examples. We propose the first MMF-
TAS framework, by designing a Prototype Graph Network
(PGNet). In PGNet, a Prototype Building Block summa-
rizes action information from support videos of the novel
tasks via an Action Relation Graph, and encodes this infor-
mation into action prototypes via a Dynamic Graph Trans-
former. Next, a Matching Block compares action prototypes
with query videos to infer framewise action labels. To ex-
ploit the advantages of both visual and textual modalities,
we compute separate action prototypes for each modality
and combine the two modalities through prediction fusion
to avoid overfitting on one modality. By extensive exper-
iments on procedural datasets, we show our method suc-
cessfully adapts to novel tasks during inference and sig-
nificantly outperforms baselines. Our code is available at
https://github.com/ZijiaLewisLu/ICCV2025-MMF-TAS.

1. Introduction
Procedural videos have become increasingly important for
learning new skills (e.g., parsing instructional videos) and
understanding users’ goal-oriented activities (e.g., inferring
executed steps of a task). As a result, temporal action seg-
mentation (TAS), which segments long procedural videos
into non-overlapping action/step segments, has gained in-
creasing attention [3, 36, 40, 53, 54, 58], with various ap-
plications, such as content retrieval and AI task assistants
[4, 26, 27, 53, 73, 76].

Current TAS methods for procedural videos face a criti-
cal limitation: models are learned for a closed set of pro-
cedural tasks with hundreds of training videos, and can-
not adapt to novel tasks without retraining. Given the vast
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Figure 1. Our MMF-TAS framework. We propose a Prototype Graph
Network (PGNet) that segments query videos of novel tasks by summa-
rizing action information from support videos and matching it with query
videos. We learn separate visual and textual PGNets. In each PGNet, Pro-
totype Building Block computes action prototypes from the corresponding
modality to summarize action information. Matching Block compares ac-
tion prototypes with query videos to predict action labels and combine
modalities via prediction fusion.

number of procedural tasks and the high cost of annotating
long videos, we need an open-set approach that can adapt to
novel tasks using a few annotated videos.

Multi-Modal Few-shot Temporal Action Segmentation
(MMF-TAS). Inspired by humans’ ability to learn new
tasks from a few examples, we study the new problem of
MMF-TAS. In this setting, models receive a few support
videos of novel tasks at test time and leverage the infor-
mation of both visual (action demonstration) and textual
(action names) modalities to segment query videos. Stan-
dard few-shot setting assumes having both support videos
and their framewise labels, which can be limiting given the
long durations of procedural videos. On the other hand, the
Multi-Modal Few-shot setting, which we study in the paper,
allows handling more general and realistic settings, such as
when only action classes are known but support videos are
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unavailable (zero-shot setting) and when support videos are
available but with partial or no labels (unlabeled or weakly-
labeled few-shot setting).

Addressing MMF-TAS faces unique challenges. First,
adapting to novel tasks requires understanding the multiple
actions and their dependencies within tasks. However, prior
few-shot video methods [19, 25, 43, 46, 67] learn to general-
ize to novel actions using single-action videos/clips and do
not consider action dependencies. Recent Video-Language
Models (VLMs) [18, 34, 77, 78] demonstrate open-world
video understanding with the potential for identifying ac-
tions of novel tasks. Yet, constrained by their computa-
tion burden, they primarily excel in short-video recogni-
tion/captioning and are unable to capture long temporal ac-
tion dependencies, which is critical for successful TAS.

Second, MMF-TAS requires combining the information
in both visual and textual features. However, we found di-
rect fusion of the features, commonly employed by prior
MMF image or video methods [19, 44, 68], makes mod-
els over-rely on textual features and underutilize visual fea-
tures, causing inferior performance. This can be observed in
Figure 2: when fusing features, test accuracy on novel tasks
is similar to that of using only textual features, yet worse
than using only visual features (more details in Remark 1).

Paper Contributions. We introduce the MMF-TAS prob-
lem and address the aforementioned challenges with our
proposed Prototype Graph Network (PGNet). PGNet can
adapt to novel tasks using a summarize-and-match strategy:
It first summarizes the information of actions in support
videos with a Prototype Building Block, then matches this
information with query videos to effectively infer frame-
wise action labels with a Matching Block (see Figure 1).

The Prototype Building Block summarizes action infor-
mation by computing representative features for each action
(action prototypes) using either the visual demonstrations
in support videos or the textual semantic of action names.
We design an Action Relation Graph that can capture differ-
ent aspects of action information (e.g., action pattern, dis-
tinctions, and dependencies). Our Dynamic Graph Trans-
former then computes action prototypes from the graph
while learning specialized parameters tailored for different
action information.

The Matching Block compares the similarity between
action prototypes and query videos to infer and iteratively
refine framewise action labels. To address the issue that
fusing two modalities via features causes over-reliance
on textual modality, Matching Block combines modalities
through prediction fusion. This leverages the idea that pre-
dictions contain rich information about inputs and can trans-
fer knowledge across models [15, 16]. Specifically, we
build separate visual and textual prototypes in Prototype
Building Block, and use predictions from one modality to
guide the other in Matching Block.

26

28

30

32

34

F1
@

50
 o

n 
Ba

se
 T

as
ks

Visual-only Text-only Feature-Fuse Ours

10

12

14

16

18

F1
@

50
 o

n 
N

ov
el

 T
as

ks

Figure 2. Effectiveness of Visual and Textual Modality on base and
novel tasks. Visual features (orange) generalize better on novel tasks while
textual features (green) are better on base tasks seen at training. When
models learn to fuse features (blue), it over-relies on features suitable for
training data (textual features) and underutilizes the other features (visual
features). Hence, its result on novel tasks is worse than using only visual
features. Our framework (red) harvests the advantages of both modalities.

Finally, we conduct extensive experiments on procedural
datasets. We show that PGNet not only significantly out-
performs baselines in the standard few-shot setting, but also
allows flexible test scenarios to further reduce annotation
costs, such as zero-shot and unlabeled/weakly-labeled few-
shot settings.

2. Related Works
Multi-Modal Few-Shot Learning. Few-Shot (FS) learn-
ing aims to generalize to novel classes using a few labeled
support examples. It has been studied in the image domain
[20, 59, 62, 65, 66] and single-action video understand-
ing [19, 25, 43, 46, 67]. Early FS video methods [46, 74]
address Action Recognition that classifies the actions of
trimmed video clips and finds frame alignments among sup-
port and query videos. Recently, [19, 25, 67, 71] study FS
Action Localization that locates single-action in untrimmed
videos by separating action relevant and irrelevant frames.
However, the assumption of single-action videos leads those
works to treat actions as isolated instances, ignoring the cru-
cial action relations. Moreover, standard few-shot setting
uses only visual modality, overlooking the readily avail-
able textual semantics in action names. Recent approaches
[19, 35, 44] explore Multi-Modal FS to incorporate both
visual and textual modalities, yet similarly focus on im-
age and single-action video understanding. In real-world
cases, however, videos are long and contain multiple actions
with inherent causal relationships. Applying single-action
FS methods to such videos cannot exploit the temporal de-
pendencies among actions and obtain poor results. Thus,
we propose MMF-TAS that leverages both visual/textual
modalities to classify actions while also taking into account
the relations of actions.

Temporal Action Segmentation. Temporal Action Seg-
mentation (TAS) has been studied in unsupervised [2, 7, 8,
12, 23, 55, 79], weakly-supervised [11, 28–30, 33, 37, 38,
48, 50–52] and full-supervised [1, 3, 4, 13, 14, 17, 22, 24,
26, 27, 31, 36, 39–42, 45, 53, 54, 56–58, 60, 61, 69, 73, 75]
settings. MSTCN [9] and subsequent works [32, 58] uses a
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multi-stage refinement mechanism for accurate predictions.
DiffAct [36] extends this mechanism to a diffusion process.
FACT [40] establishes new SOTA via parallel action and
frame-level temporal modeling. However, these methods
focus on classifying a fixed set of known tasks/actions with
hundreds of training videos. To handle new tasks, they re-
quire collecting new datasets of tasks. To reduce annotation
cost, we propose the first MMF-TAS framework that adapts
to novel tasks with a few support videos. We introduce pro-
totype graph network to learn action prototypes that encode
actions and their dependencies of novel tasks, and compare
them with query videos to predict action labels.

3. Proposed MMF-TAS Framework
3.1. Problem Definition
Multi-Modal Few-shot Temporal Action Segmentation
(MMF-TAS) aims to segment query videos from novel tasks
by comparing them to the support videos of the tasks. We
follow the standard K-way V -shot setting, which assumes
we are extending models to K tasks, where each task has V
labeled support videos, and query videos belong to one of
the K tasks. Hence, the model inputs are a query video V
and support videos {(V̂k,v, Ŷk,v)}K,V

k=1,v=1, where V̂k,v and
Ŷk,v are the v-th support video of task k and its frame-
wise action labels, respectively. Models predict the task and
framewise action labels of the query video.

3.2. Framework Overview
Conventional TAS models segment videos by learning and
memorizing the fixed set of actions given at training, thus
cannot adapt to novel tasks or actions. To address MMF-
TAS, we propose a Prototype Graph Network (PGNet) that
follows a summarize-and-match strategy. Instead of learn-
ing any specific action, it aims to learn the ability to summa-
rize the information of actions in support videos and match
it with query videos to infer their action labels. Hence, we
do not require models to memorize particular actions and
can segment videos of novel tasks.

Our framework is shown in Figure 1. To leverage multi-
modalities, we employ a video and a textual encoder to ob-
tain frame features F for query video, and F̂k,v for the v-th
support video in task k. For action a in task k, we obtain the
textual feature Êk,a. Our Prototype Building Block (PBB)
in PGNet computes action prototypes from support videos
(using either visual or textual modality). Each prototype
summarizes the information for one action class in the tasks,

Rv = PBBv({F̂k,v, Ŷk,v},F); (1)

Rt = PBBt({Êk,a},F); (2)

where Rv , Rt denote the action prototypes obtained from
visual or textual features. Query video feature F is included

to produce tailored prototypes for query video and enhance
subsequent matching [25].

With the prototypes, our Matching Block (MB) can ef-
fectively compare the similarity between the query video
and action prototypes and infer action labels accordingly,

Y v = MBv(Rv,F), Y t = MBt(Rt,F), (3)

where Y v , Y t are the framewise action labels of the query
video from visual or textual modalities.

To enable learning of the summarization and matching
ability, we mimic the test setting at training time – the model
input at training time is also a group of query and support
videos, sampled from a set of base tasks available at train-
ing. At test time, we evaluate on novel as well as base tasks.
There is no overlap between base and novel tasks.
Remark 1 Notably, while existing multi-modal few-shot
methods [19, 44, 68] typically fuse visual and textual fea-
tures to create prototypes, we deliberately use separate Rv

and Rt. We show that the two modalities have inconsistent
performance on base and novel tasks. In Figure 2, we com-
pare the effect of using only Rv or Rt in Matching Block, or
fusing them: i) Rv performs better on novel tasks than Rt,
as Rv and query video both belong to the visual modality
and Rt is from a different modality. ii) Rt performs bet-
ter on base tasks than Rv , because it is computed from ac-
tion names that are fixed across inputs, thus easy to learn
at training. Rv is computed from support videos and varies
across inputs. iii) When fusing their features, as model is
trained on base tasks, it learns to over-rely on Rt and un-
derutilize Rv . Hence, its accuracy on novel task is close to
that of using only Rt, and worse than using only Rv .

Thus, we separate visual and textual prototypes, and fuse
the predictions of two modalities in Matching Block, which
combines their complementary information and allows pe-
nalizing over-reliance on one modality. The separation also
enables flexible test scenarios that achieve lower annotation
costs than the standard few-shot setting, including zero-shot
and unlabeled/weakly-labeled few-shot (see Section 3.6).

3.3. Prototype Building Block
The goal of the Prototype Building Block is to compute ac-
tion prototypes that summarize the information of action
instances in support videos. For example, it should com-
pare the action instances of one action class to capture its
action pattern, or find the instances of the same video to
capture action temporal dependencies. Therefore, it is cru-
cial for models to understand these varied relations among
action instances and aggregate different aspects of action
information. Processing this information also requires dif-
ferent modeling capacity (e.g., measuring similarity among
action instances vs comparing their temporal locations).

We introduce the Action Relation Graph that represents
action instances and action prototypes as nodes and encodes
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Figure 3. Illustration of Action Relation Graph (only a subset of edges
are drawn for readability). Task, action and instance nodes learn task infor-
mation, action prototypes and features of support action instances respec-
tively, while relational edges encode their relations based on their node
types and tasks, videos, action classes.

their relations as edges. With the graph, our Dynamic Graph
Transformer learns specialized parameters for each relation
to capture different action information. In the following, we
first introduce the model details for visual modality, then the
adjustment for textual modality.

3.3.1. Action Relation Graph

Nodes. As shown in Figure 3, to summarize the informa-
tion of action instances into action prototypes, the graph
contains Instance nodes that are created for each action in-
stance in support videos to encode its frame features, and
Action nodes, created for each unique action in a task to
learn the associated prototype. To also summarize task in-
formation and infer the task label of query video, we create
a Task node for each task.

To initialize the three types of nodes, we learn one em-
bedding vector for each node type (ρT ,ρA,ρI). Task and
action nodes are directly initialized by their embeddings.
Instance nodes are initialized by their frame features. Let
F̂k,v,i denote the subset of F̂k,v that contains the features
of the i-th action instance in V̂k,v . The corresponding in-
stance node is initialized as

temporal-pooling(F̂k,v,i) + ρI + ρP
i , (4)

where ρP
i is an absolute positional encoding to denote the

action’s ordering in the video.

Relational Edges. Edges capture the relations of the nodes
they connect, such as if nodes belong to the same action,
video, task or node type. Thus, they help identify action
patterns, distinctions and dependencies and summarize in-
formation into task and action nodes. We propose the re-
lational edge type: we build a densely-connected graph to
preserve critical relations while assign edges with different
types based on the relations they denote.

As illustrated in Figure 3, we define the Task edge type
that connects a task node to action nodes in that task and to
other task nodes, to learn task procedures and distinctions.

Action edge connects action/instance nodes of the same ac-
tion and same task to capture the motion pattern of each ac-
tion. Prototype edge connects all action nodes of a task to
learn the action distinctions. Video edge connects instance
nodes of the same video to capture action ordering, hence
the action dependencies critical for TAS. To have more in-
formative connections, we also include two context edge
types: Context edge 1 connects instance nodes to the task
node; Context edge 2 connects instance nodes belonging to
the same task but of different videos and action classes.

3.4. Dynamic Graph Transformer.
We aim to leverage the relational edges to capture different
action information. Processing different edge types requires
varied modal capacities, e.g., identifying action similarity
with action edges and action distinctions with prototype
edges. Thus, we propose a Dynamic Graph Transformer
that learns specialized parameters for each edge type. As
shown in Figure 4 (left), each transformer layer consists of
dynamic graph attention (DGA), cross-attention, and fully
connected layers,

N′ = DGA(N), (5)
N′′ = fully-connected(cross-attention(N′;F)), (6)

where N are the features of all nodes. DGA updates the
nodes by computing self-attention among them. It repre-
sents the edge types as different adjacency matrices and
learns specialized attention heads for them by constraining
their attention maps with the matrices. Cross-attention re-
fines nodes with query video features F to produce tailored
prototypes.
DGA. Specifically, Let Mj ∈ {0, 1}H×H denote the adja-
cency matrix of edge type e. H is the number of nodes. In
DGA, we compute the attention ∆ of an attention head as

∆ = (WQN)(WKN) + µ(
∑

jαjMj); (7)

where the first term is the attention logit and WQ/K is
the query/key projection weight. The second term is the
attention mask, where αj is the learnable dynamic edge
weight to direct the focus of this head to certain edge types,∑

j αj = 1. As αj and WQ/K are learned together at train-
ing, it allows the head to specialize on different edge types.
It also removes the need to stipulate the number of attention
heads per each edge type. The model can use α to assign
heads to different edge types based on its need. Lastly, µ is
a learned scaling factor to match M with the magnitude of
the attention logit.

We use multiple transformer layers, and take the features
of action nodes from the last layer as the visual action pro-
totypes, Rv . To obtain textual prototype Rt, we build a
similar prototype learning block except 1) Action Relation
Graph contains no instance node, 2) action nodes are initial-
ized with the textual feature of the actions, Êk,a + ρA.
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3.5. Matching Block
Matching block infers action labels of the query video by
comparing its frame features F with the action prototypes
R (of either visual or textual modality). Since this block
has the same structure for the two modalities, we drop the
superscript (t, v) for simplicity.

As shown in Figure 4 (right), we use Single-Head Cross-
Attention (SHCA) to compute the attention between F and
R. Therefore, the attention map reflects the similarity be-
tween F and R, hence can serve as the action label predic-
tion. We also extend SHCA to take a reference attention
map as input that improves predictions and enables the pre-
diction fusion to combine modalities, as we introduce next.

Following the multi-stage refinement technique in [40],
we alternate between using F (or R) as attention query in
SHCA and R (or F) as key and value. This process pro-
duces predictions and refines features based on the predic-
tions. We also include temporal convolutions and trans-
formers to further enhance features. We use the attention
of the last layer as the final prediction.

SHCA. We define the l-th SHCA layer as

Ol,∆l = SHCAl(Ql;Kl;∆l−1), (8)

where Ql is the attention query and Kl is the key and
value. ∆l is the attention map. Importantly, we also use
the attention map from the previous layer ∆l−1 as refer-
ence – we first compute the initial attention map ∆̂l =
(WQQl)(W

KKl), then apply a function ψ to fuse atten-
tions ∆l = ψ(∆̂l,∆l−1). Lastly, we use ∆l to obtain
output feature Ol. Here, we define ψ as weighted sum,

∆l = ∆̂l + τl∆l−1, (9)

where τl ∈ [0, 1] is a learnable influence factor to control
the impact of ∆l−1. This creates skip connections between
the attentions and allows retaining useful information from
earlier layers while integrating new matching results.

As the first SHCA layer has no previous layer, we set
its reference attention ∆0 as the initial attention ∆̂1 from
the other modality (i.e., in visual modality, ∆v

0 = ∆̂t
1 and

Zero-Shot Few-Shot
(no-label)

Few-Shot
(weak-label)

Few-Shot
(full-label)

Textual Action Names ✓ ✓ ✓ ✓
Support Videos ✗ ✓ ✓ ✓
Support Video Labels ✗ ✗ partial ✓

Table 1. Model Inputs of Different Test Settings.

vice versa). This enables the prediction fusion where the
prediction of one modality guides that of the other modal-
ity, as model predictions can effectively transfer knowledge
across models [15, 16, 47]. The improved prediction also
enhances the output feature of SHCA, consequently benefit-
ing all subsequent layers. Meanwhile, we impose a penalty
loss on τ1 to prevent over-reliance on the other modality.

3.6. Training and Inference
Training. We devise four losses to supervise the PGNet of
both visual and textual modality: 1) To infer the task of the
query video, we compute task prediction Ptask by applying
a linear classifier to the task nodes, as they are computed
with access to both query and support videos features. We
impose cross-entropy loss on Ptask. 2) To learn action la-
bels, we treat the attention maps {∆l}3l=1 as prediction log-
its and apply cross-entropy loss on them. 3) We also apply
on them the smoothing loss from prior TAS method [9] to
ensure temporally smooth predictions. 4) We impose an L2
loss on τ1 to prevent over-reliance on the other modality.

Inference. At test time, we use ∆3 of visual modality to
predict for novel tasks and that of textual modality for base
tasks1. Specifically, we first use Ptask of the corresponding
modality to estimate the task of query video, then mask out
the entries in ∆3 that correspond to similarity with action
prototypes of the other tasks. Action labels are predicted by
applying argmax on the masked attention map.

Generalized Inference. While PGNet is trained with stan-
dard few-shot setting, it can handle more difficult, data-
sparse scenarios at inference time. As shown in Table 1,
it includes: 1) Zero-shot setting: only knowing the actions
in tasks but no support videos. Thanks to the separation of
visual and textual PGNets, we can use textual PGNet to ob-
tain prediction with only action names. (In its first SHCA,
we set ∆0 = 0 as there is no prediction from visual modal-
ity.) 2) Few-shot (no-label): having support videos but no
action labels. We predict action labels of the support videos
with textual PGNet as in zero-shot setting. Then we use the
support videos and predicted labels to run our model as in
the standard few-shot setting. 3) Few-shot (weak-label):
support videos are labeled with only one frame per action
instance in a video2. We predict action labels for support
videos in zero-shot setting, use method from [5] to refine

1This can be easily inferred by comparing the actions and their ordering
in support videos with training data.

2It corresponds to annotate just 2% and 3% of the frames in CrossTask
and COIN, respectively, and significantly reduces annotation cost.
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predictions with the given sparse action labels and then run
our model in the standard few-shot setting.

4. Experiments
Datasets. We evaluate on two procedural video datasets,
CrossTask [79] and COIN [63]. Compared to other TAS
datasets [10, 21, 27], both datasets contain a large num-
ber of procedural tasks, suitable for few-shot evaluation.
CrossTask has 18 procedural tasks, 2750 videos and 106
actions. We choose 12 tasks as base tasks and 6 as novel
tasks. COIN has more diverse tasks than CrossTask, with
180 tasks, 10177 videos and 750 actions. We choose 120
tasks as base and 60 as novel. For both datasets, we classify
frames not relevant to any action into a background class.

Metrics. Following prior TAS works [3, 9, 32, 40, 58, 70],
we compute segmental Edit distance score (Edit), segmental
F1 score (F1) at three overlapping thresholds 10%, 25%,
50%, denoted by F1@{10, 25, 50} and framewise accuracy
(Acc). We follow conventional methods [9, 40] to exclude
background frames in evaluation.

Implementation. We use 4 graph transformer layers in vi-
sual PGNet and 2 layers in textual PGNet. Each dynamic
graph attention has 9 attention heads. For Matching Block,
temporal transformer has 3 self-attention layers and tem-
poral convolution has 8 layers [9]. We use video and text
encoders from [77]. We provide more details in the supple-
mentary materials.

4.1. Comparison with the State-of-the-Art
In Table 2, we extensively evaluate our models on
CrossTask and COIN datasets with four different set-
tings – Zero-Shot (3way-3shot), and Multi-Modal Few-Shot
(3way-3shot and 5way-3shot). For each setting, we report
results on novel tasks.
Competitors. We consider two sets of methods as our base-
lines – VLM and Few-Shot methods. VLM include recent
contrastive VLMs, ProcedureVRL [77] and LanguageBind
[78], and generative VLM, Chat-UniVi [18]. We finetune
contrastive VLMs on base tasks of our datasets. As gen-
erative VLM is not designed for classification task, we do
not finetune it but build a pipeline that first uses it to de-
scribe video clips, then uses a sentence embedding model
[49] to compute the similarity between clip captions and
action class names to obtain predictions. We use them as
zero-shot baselines. Next, Few-Shot baselines include Lin-
earProbe that first uses temporal convolution [32] to im-
prove query/support video features, then linear layers to
align the query video features with the video/text features
of support videos, and MUPPET [44] that addresses MMF
Action Localization and is adapted to MMF-TAS by us.

Zero-Shot. In the top-section of Table 2, we compare
with recent VLMs for zero-shot setting. We outperform
all VLMs, showing PGNet can generalize to novel tasks by

only knowing the names of their actions. Action names can
be obtained from knowledge bases (e.g., WikiHow) without
the need of video collection and annotation. VLMs have
high computation cost and need to split long procedural
videos into clips and process each clip separately, thus miss
the temporal action dependencies. It also causes the over-
segmentation issue, where models predict many short erro-
neous segments. This results in an inflated Acc and low Edit
and F1 scores [9], especially for LanguageBind on COIN.
PGNet shows higher accuracy on CrossTask than on COIN,
as novel tasks in COIN are more diverse and less similar
to the base tasks. It represents a difficult scenario where
textual common knowledge is insufficient to describe novel
tasks and visual demonstrations are required.
Few-Shot. In the second to fourth sections of Table 2, we
test models on three multi-modal few-shot settings, each
having more novel tasks to adapt to. Our PGNet signifi-
cantly outperforms all baselines, surpassing in F1@50 by
8.8% to 9.3% on CrossTask and 6.9% to 7.6% on COIN. As
the number of novel tasks increases, our improvement over
baselines enlarges, underscoring that PGNet can understand
and distinguish complex task procedures. LinearProbe has
low performance due to its inability to capture the rela-
tions among action instances in support videos. It also has
the over-segmentation issue as VLMs. MUPPET employs
advanced temporal modeling and localization techniques.
However, it models each action individually and ignores
action dependencies. Thus, it often predicts wrong action
ordering, as indicated by its low Edit scores. It also fuses
visual/textual modalities via features, therefore over-relies
on textual features, as discussed in Remark 1. Our PGNet
successfully leverages the advantages of both modalities.
Generalized Few-Shot. We also show extensive results for
unlabeled, weakly-labeled and standard (fully-labeled) few-
shot settings. The unlabeled setting only requires support
videos, which can be collected online via automatic scripts.
The weakly-labeled setting only needs one labeled frame
per action instance and has a substantially lower annota-
tion cost. On CrossTask, PGNet performs competitively in
unlabeled and weakly-labeled settings, comparable to the
fully-labeled setting. On COIN, simply providing support
videos without label improves F1@50 by 1.6% from zero-
shot setting to unlabeled few-shot settting. Providing weak
labels further boosts F1@50 by 3.6%, largely bridging the
gap with fully-labeled setting. This shows our PGNet is a
versatile framework – one model is applicable under var-
ious data collection budgets. It also shows the necessity
of visual modality in adapting to rare or unfamiliar tasks,
where action names fall short of fully describing the task.
Cross-Dataset Adaptation. We further challenge models
by training on base tasks of COIN and testing on novel tasks
of CrossTask in Table 3. Interestingly, we found PGNet
trained on COIN benefits from the larger and more diverse
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CrossTask COIN
Edit F1@10 F1@25 F1@50 Acc Edit F1@10 F1@25 F1@50 Acc

Zero-Shot 3way-3shot
ProceduralVRL[77] 13.7 13.0 9.5 5.8 30.8 12.6 14.0 10.8 5.3 34.7
LanguageBind[78] 11.4 10.4 7.8 4.3 20.1 12.1 11.3 8.9 4.9 35.6
Chat-UniVi[18] 9.5 7.9 6.2 3.8 9.2 9.4 6.9 5.4 2.3 6.3

PGNet (zero-shot) 36.1 32.2 26.4 15.4 36.4 31.8 24.0 17.4 8.6 36.6
+22.4 +19.2 +16.9 +9.6 +5.6 +19.2 +10.0 +6.6 +3.3 +1.0

Few-Shot 3way-3shot
Linear Probe 15.4 14.8 11.0 6.0 31.4 12.6 18.5 14.2 7.5 34.6
MUPPET[44] 18.1 19.5 15.8 9.5 13.1 13.1 19.9 15.4 8.1 15.9

PGNet (no-label) 35.8 33.4 27.5 16.9 35.9 37.2 27.8 19.9 10.2 29.6
PGNet (weak-label) 36.5 35.4 29.1 17.3 37.6 46.1 35.3 26.1 13.8 42.4
PGNet (full-label) 37.7 36.6 30.1 18.3 39.3 46.6 36.7 27.6 15.0 43.8

+19.6 +17.1 +14.3 +8.8 +7.9 +33.5 +16.8 +12.2 +6.9 +9.2

Few-Shot 5way-3shot
Linear Probe 13.4 12.7 9.8 5.4 27.2 13.0 15.6 11.5 6.3 33.1
MUPPET [44] 15.8 17.3 13.7 8.6 12.5 11.5 19.2 14.5 7.6 14.2

PGNet (no-label) 33.2 31.9 26.6 16.4 33.4 34.4 27.4 19.9 9.8 29.6
PGNet (weak-label) 34.2 33.3 28.2 17.4 35.8 44.6 34.9 26.1 13.1 41.9
PGNet (full-label) 34.7 33.7 28.2 17.5 35.7 45.4 36.2 27.5 14.3 43.3

+18.9 +16.4 +14.5 +8.9 +8.5 +32.4 +17.0 +13.0 +6.7 +10.2

Table 2. Performance on CrossTask and COIN datasets. We test with three settings. In each setting, we show in blue the PGNet’s improvement on
novel tasks over the best baseline.

Train Test Edit F1@10 F1@25 F1@50 Acc

Linear Probe 3.2 2.5 1.9 1.0 9.7
MUPPET [44] COIN CrossTask 19.4 10.9 9.2 5.2 17.2

PGNet 41.5 33.9 25.1 12.4 33.9

PGNet CrossTask CrossTask 34.7 33.7 28.2 17.5 35.7

Table 3. Cross-dataset Adaptation with few-shot 5way-3shot setting.

training set. It better captures the procedures of novel tasks
than PGNet trained on CrossTask, achieving higher Edit.
Its lower F1@50 indicates less accurate action boundaries,
which is mainly caused by annotation difference between
the two datasets. Actions in CrossTask are typically labeled
with tighter action boundaries than in COIN, which also
creates more background frames (70% vs 50%) – a trait cre-
ated by annotations rather than task procedures. The PGNet
trained on COIN still yields better action localization, re-
flected by its higher F1@10, underscoring our method can
scale to larger training data and learn better generalization.

In this section, we test our key model designs on COIN
dataset with few-shot 3way-3shot setting. For better read-
ability, we only show the results for novel tasks.

Effect of Action Relation Graph. In Table 4, we first test
removing the types of relational edges (row 1), such that
all edges are treated uniformly. It reduces F1@50 by 6.1%
as the model cannot identify the relations among action in-
stances to capture corresponding action information. Then,
we test using a sparse Action Relation Graph instead of
the proposed dense one (row 2), by building a hierarchi-

Edit F1@10 F1@25 F1@50 Acc

1
ARG

no-edge-type 31.0 23.3 17.3 8.9 23.6
2 sparse-graph 34.1 26.4 19.7 10.3 29.0
3 no-task-node 29.2 22.7 16.6 8.6 26.5

4
DGT

fixed-α 44.5 33.6 24.9 12.1 39.7
5 same-α 42.9 30.9 22.9 11.9 37.7

6 PGNet 46.6 36.7 27.6 15.0 43.8

Table 4. Ablation for Prototype Building Block to study the designs for
Action Relation Graph (ARG) and Dynamic Graph Transformer (DGT).

cal graph with only task, action and video edges. It drops
F1@50 by 4.7%, as the sparse graph limits the message-
passing among nodes and can miss edges of critial node re-
lations. Manually designing the edges for sparse graphs is
also restrictive and not scalable. Lastly, we remove task
nodes (row 3) and only learn on action-level information. It
reduces F1@50 by 6.4%, as it loses the task-level informa-
tion and cannot infer task labels.

Effect of Dynamic Graph Transformer. In row 3 of Ta-
ble 4, we use a preset dynamic edge weight α to assign a
fixed number of attention heads per edge type. It is equiva-
lent to methods [64, 72] that learn separate layers for each
edge type and overlook that some edges may demand more
complex reasoning ability than others. It decreases F1@50
by 2.9%. Next, we use shared edge weight α for all atten-
tion heads (row 4), equivalent to methods [6] that convert
edge types into edge weights and learn one set of parame-
ters. It reduces F1@50 by 3.6% as all attention heads focus
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Task Action Prototype Video Context 1 Context 2

Task

Action

Prototype

Video

Context 1

Context 2

1 -0.34 -0.22 0.31 -0.22 -0.39

-0.34 1 -0.38 -0.36 -0.19 -0.26

-0.22 -0.38 1 -0.19 -0.15 0.21

0.31 -0.36 -0.19 1 -0.38 -0.17

-0.22 -0.19 -0.15 -0.38 1 -0.1

-0.39 -0.26 0.21 -0.17 -0.1 1
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5. Correlation between Dynamic Edge Weights α.

Edit F1@10 F1@25 F1@50 Acc

1
PF

no-fusion 41.7 33.4 24.7 12.7 36.5
2 late-fusion 42.1 34.3 25.8 13.5 37.0
3 no-penalty 39.1 29.7 22.0 11.1 34.4

4
MSR

1st-stage 35.9 27.8 20.9 11.4 42.9
5 2nd-stage 42.5 33.8 25.4 13.9 43.7

6 PGNet 46.6 36.7 27.6 15.0 43.8

Table 5. Ablation for Matching Block to study the designs for Prediction
Fusion (PF) and Multi-Stage Refinement (MSR).

on similar edges and cannot specialize to different ones.

4.2. Ablation Study

Effect of Matching Block. We study our Matching Block
in Table 5. Recall that in prediction fusion, we use pre-
dictions of one modality to guide the other. We first test
disabling prediction fusion (row 1). Without it, the model
cannot leverage the information from both modalities, low-
ering F1@50 by 2.3%. Next, we perform prediction fusion
in the last SHCA layer instead of the first layer (row 2).
This prevents using the predictions of two modalities to re-
fine features in the early layers, dropping F1@50 by 1.5%.
Lastly, we test removing the L2 loss on the influence fac-
tor τ1 (row 3). It cannot prevent models from over-relying
on textual predictions, reducing F1@50 by 3.9%. Next, we
also study the effect of multi-stage refinement. We measure
the prediction accuracy at each stage, i.e., predicting with
attention maps from the first, second and third SHCA (row
4-6). F1@50 increases steadily at each stage, rising from
11.4% to 15.0% from the first to the third stage. We found
adding more stages yields diminishing improvement.

4.3. Qualitative Results
In Figure 5, we visualize the correlation of dynamic edge
weights α among different edge types. α controls the focus
of attention heads to edge types. Thus, the negative corre-
lations among most edge types indicate each head special-
izes to one edge type instead of attending to multiple types.
The positive correlations then show models share attention
heads for edge types that encode similar information. Task
edge and video edge has a positive correlation, as task edge

Groundtruth

PGNet (crosstask)

PGNet (coin)

Groundtruth

PGNet (crosstask)

PGNet (coin)

Figure 6. Visualization of Model Predictions on CrossTask.

captures task information and video edge captures tempo-
ral action dependencies, i.e., task procedure. Similarly for
prototype edge and context edge, both edges connect action
instances of different action classes, hence reflects action
distinctions. It validates the model understands the relation
represented by each edge type, hence can leverage them to
summarize useful action information.

In Figure 6, we visualize the predictions of our PGNets
on CrossTask videos. PGNet (crosstask) and PGNet (coin)
denote models trained on CrossTask and COIN, respec-
tively. The top video shows a case where PGNet (coin) pre-
dicts better action locations and orderings overall. Yet it is
less accurate on action boundaries, since actions in COIN
are typically annotated with looser action boundaries. The
bottom video represents a challenging case that has many
short and repeated actions. Both models still identify and
locate most actions successfully, showing the reliability of
our PGNet framework.

5. Conclusions
We introduced the new Multi-Modal Few-shot Tempo-
ral Action Segmentation (MMF-TAS) problem to adapt to
novel tasks with minimal annotation cost and proposed the
first MMF-TAS framework. Our Prototype Graph Network
(PGNet) contains a Prototype Building Block to summa-
rize critical action information using action prototypes, and
a Matching Block to infer accurate action labels and fuse
visual and textual modalities. By extensive experiments on
COIN and CrossTask datasets, we showed our model gener-
alizes well to novel tasks under various zero-shot and few-
shot settings and substantially outperforms the prior works.
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