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Figure 1. Our method efficiently generates superpoints from serialized point clouds by optimizing boundaries through reallocating points
from each segment to the most appropriate surrounding segments (shown in green and red).

Abstract
Point cloud oversegmentation, as a fundamental prepro-
cessing step for 3D understanding, is a challenging task
due to its spatial proximity and semantic similarity require-
ments. Most existing works struggle to efficiently group se-
mantically consistent points into superpoints while main-
taining spatial proximity. In this paper, we propose a novel
serialization based point cloud oversegmentation method,
which leverages serialization to avoid complex spatial
queries, directly accessing neighboring points through se-
quence locality for similarity matching and superpoint clus-
tering. Specifically, we first serialize point clouds into a
Hilbert curve and spatially-continuously partition them into
initial segments. Then, to guarantee the internal semantic
consistency of superpoints, we design an adaptive update
algorithm that clusters superpoints by matching feature
similarities between neighboring segments and refines seg-
ment features via Cross-Attention. Experiments on large-
scale indoor and outdoor datasets demonstrate state-of-the-
art performance in point cloud oversegmentation. More-
over, it is also adaptable to semantic segmentation and
achieves promising performance. The code is available at
https://github.com/CHL-glitch/SPCNet.

1. Introduction
Point cloud oversegmentation partitions point clouds into
multiple spatially and semantically homogeneous regions,

termed superpoints, which adaptively represent a set of
points. Due to their representativeness, superpoint-based
methods can significantly reduce computational complexity
and improve semantic consistency. Therefore, it is becom-
ing increasingly important in the field of point cloud pro-
cessing and has attracted considerable attention from many
researchers.

Early point cloud oversegmentation approaches primar-
ily combined hand-crafted features with clustering or graph
partitioning to generate superpoints. Papon et al. [26] in-
troduced VCCS, which employed Fast Point Feature His-
tograms, selected seed points via octree structures, and per-
formed K-means clustering. Lin et al. [22] reformulated the
task as a subset selection problem while still using FPFH
descriptors. Guinard et al. [12] simplified the process into a
graph cut problem by extracting geometric features before
applying a greedy algorithm. Similarly, Landrieu et al. [19]
partitioned superpoints by solving an energy minimization
problem with graph-based simplicity penalties. However,
handcrafted features have limited representation, and the
non-differentiable superpoint assignments prevent end-to-
end training.

Recent point cloud oversegmentation methods generate
superpoints using deep networks. Landrieu et al. [18] first
used deep networks to extract point embeddings instead
of handcrafted features, but their framework is not end-to-
end. SPNet [15] proposed an end-to-end superpoint net-
work that achieved clustering by iteratively constructing a
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point-superpoint association map. However, their Farthest
Point Sampling (FPS) based k-nearest neighbor (KNN) as-
sociation map faced efficiency bottlenecks, and the unlim-
ited range of original points being clustered resulted in ir-
regular superpoint boundaries and even introduced noise.
SuperLiDAR [16] combined Breadth-First Search (BFS)
grouping with local discriminative loss to generate compact
superpoints, and while it achieved O(V + E) complexity
on sparse LiDAR data, it may approach O(V 2) in dense
scenarios, limiting scalability. Those point-based methods
design complex algorithms to cluster superpoints and/or in-
efficiently balance semantic consistency and spatial prox-
imity, resulting in high computational burden.

To address this issue, we propose an efficient serializa-
tion based point cloud oversegmentation method. Inspired
by PTv3 [38], we adopt a serialization approach instead
of traditional point-based methods to avoid high compu-
tational complexity spatial queries such as FPS and KNN,
as shown in Fig. 1. We find that one of the representative
serialization strategies, the Hilbert curve [14], which has
excellent locality-preserving properties, is crucial for spa-
tial proximity in oversegmentation tasks. Thus, we apply
the Hilbert curve to serialize point clouds and initialize su-
perpoints. To achieve internal semantic consistency for the
superpoints, we design an adaptive superpoint update algo-
rithm that clusters semantically similar points within pre-
partitioned segments to update superpoints. Specifically,
we use cosine similarity to evaluate the semantic similar-
ity between points and nearby segments, which serves as
the metric for associating points and superpoints to reallo-
cate points, then apply Cross-Attention to update superpoint
features. By combining these two steps and iterating them,
the algorithm can obtain superpoints with both spatial prox-
imity and semantic consistency.

Furthermore, to optimize superpoint feature representa-
tions, we employ a stacked Graph Transformer [42] and
Graph Convolutional Network [42] to capture the global
context between superpoints. Similar to prior work, SPC-
Net is designed as an end-to-end oversegmentation network
and can also be integrated with downstream tasks such as
semantic segmentation. To fully evaluate SPCNet, we con-
duct experiments on four large-scale datasets: S3DIS [1],
ScanNet [9], nuScenes [3], and SemanticKITTI [2]. Ex-
perimental results demonstrate that SPCNet achieves state-
of-the-art performance in all core oversegmentation metrics
(BR, BP, and F1) across all datasets. The contributions of
this paper are as follows:

• To our best knowledge, SPCNet is the first serialization
based network for point cloud oversegmentation.

• We introduce a serialization strategy to initialize super-
points, which can efficiently produce superpoints with
spontaneous spatial proximity.

• We propose an adaptive superpoint update algorithm to

strengthen internal semantic consistency of superpoints.
• Our method achieves remarkable performance in point

cloud oversegmentation across multiple datasets. It can
be integrated with semantic segmentation networks and
shows promising performance.

2. Related Work

2.1. Deep Learning in Point Cloud
Deep learning approaches for 3D point cloud primarily fol-
low three paradigms: projection-based, voxel-based, and
point-based methods. Projection-based methods project un-
ordered points onto 2D planes for CNN processing [6, 20,
21, 32], sacrificing 3D geometry for computational effi-
ciency. Voxel-based methods discretize space into grids
for 3D convolution [25, 31], improved by sparse convo-
lution techniques [8, 10, 35] to mitigate memory costs,
though kernel size limitations remain a constraint. Point-
based methods [24, 27, 28, 33, 43] process raw point
clouds directly and have evolved toward transformer archi-
tectures [13, 29, 37, 40, 44]. These methods offer powerful
representation capabilities while struggling with scalabil-
ity. The recently proposed SPT [29] leverages hierarchical
superpoints and sparse self-attention to efficiently process
large-scale scenes, achieving superior semantic segmenta-
tion with reduced model size and computational cost com-
pared to traditional approaches.

2.2. Point Cloud Oversegmentation
Existing point cloud oversegmentation methods can be
broadly categorized into optimization-based methods and
deep learning-based approaches. Early methods such as
Papon et al. [26] proposed the VCCS method, which used
FPFH as input features, selected seed points using an octree,
and performed point cloud superpoint segmentation using
the K-means clustering algorithm. Lin et al. [22] viewed
the superpoint segmentation problem as a subset selection
problem and employed subset selection methods to generate
superpoints, still using FPFH as point cloud feature descrip-
tors. Guinard et al. [12] simplified the superpoint segmen-
tation problem into a graph cut problem, extracting features
such as local linearity, flatness, divergence, and normal vec-
tors from the point cloud, and applied a greedy graph cut
algorithm to generate superpoints. Xiao et al. [39] defined
the superpoint segmentation problem as an energy mini-
mization problem and proposed a merging-exchange opti-
mization framework to generate supervoxels. These meth-
ods often require complex and computationally expensive
preprocessing steps, and their performance is limited by the
insufficient expressiveness of handcrafted features. Recent
deep learning methods overcome these limitations.

Supervised Superpoint (SSP) method [18] pioneered
deep network-based point cloud embedding, although it
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Figure 2. The architecture includes three stages. First, point embeddings are extracted using a U-Net backbone with sparse convolutions
in shallow layers and a Mamba bottleneck enhanced by Conditional Position Encoding (CPE). Second, the point cloud is serialized via a
Hilbert curve to initialize segments for superpoint aggregation, with granularity at each level controlled by the hyperparameter m. Finally,
points are reassigned across segments to group semantically similar points into coherent superpoints, completing the clustering process.

still depended on optimization techniques from [12]. SP-
Net [15] further advanced the field by introducing learnable
point-to-superpoint associations using FPS for center selec-
tion, enabling joint optimization in both coordinate and fea-
ture spaces. Furthermore, SuperLiDAR [16] improved effi-
ciency by combining a BFS-based grouping algorithm with
a local discriminative loss to generate compact superpoints.
However, this method results in high computational com-
plexity in spatial query operations during superpoint gener-
ation, especially for dense point cloud oversegmentation.

2.3. Serialization-based Method
Recent works [5, 23, 34, 38] have introduced serialization-
based approaches that differ from traditional point cloud
processing by transforming unstructured point clouds into
ordered sequences to preserve spatial proximity. For exam-
ple, OctFormer [34] uses octree-based ordering similar to
z-ordering, offering scalability but limited by octree con-
straints. FlatFormer [23] employs window-based sorting to
group point pillars, though its scalability in receptive field is
limited, making it suitable for pillar-based 3D object detec-
tion. Building on these methods, PTv3 [38] extends atten-
tion scales by replacing KNN-based query with serialized
neighborhoods, enhancing efficiency and scalability.

3. Method
Our oversegmentation network comprises three key steps:
point embedding extraction (Sec. 3.1), hierarchical seg-
ment initialization (Sec. 3.2), and adaptive superpoint up-
date (Sec. 3.3). The overall process is shown in Fig. 2.

3.1. Backbone
Optimization-based oversegmentation methods are con-
strained by the quality of handcrafted features, while learn-
ing based approaches similarly encounter limitations in
deep feature representation.
Sparse 3D U-Net. Let the input point cloud be P ∈
RN×(C+3), where each of the N points is represented by
its features (e.g. normal vectors, RGB) and spatial coordi-
nates (x, y, z). Following [10], we first voxelize P using
the operator V , and then process the discretized data with a
U-Net architecture based on sparse convolutions (SpConv).
In the shallow part of the U-Net [30], SpConv layers capture
fine-grained local geometric information. These operations
produce feature representations that maintain high spatial
resolution and extract detailed geometric structures crucial
for accurate object boundary delineation.
Bottleneck Reinforcement. Pure SpConv restricts over-
segmentation effectiveness due to their inherently limited
receptive field. We enhance our U-Net backbone by inte-
grating Mamba [11, 45] at the bottleneck of the U-Net, as
shown in Fig. 2 (a). After the shallow SpConv layers have
abstracted local features, the Mamba module is applied to
perform global context interaction. Mamba, with its linear-
complexity global modeling capability, compensates for the
local inductive bias of convolution and promotes semantic
consistency across superpoints.

3.2. Hierarchical Segment Initialization
Methodology Justification. To efficiently partition point
clouds into multiple segments, we propose a serialization-
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based partitioning method that utilizes the spatial locality
preservation property of the Hilbert curve [38, 41] to divide
the same point cloud into hierarchical structures of differ-
ent granularities. Specifically, the Hilbert curve maps ad-
jacent point clusters in 3D Euclidean space to contiguous
positions in a 1D sequence, thereby simplifying the spatial
proximity-based 3D partitioning task into an iterative parti-
tioning of a 1D sequence. This transformation enables us to
efficiently divide point clouds into compact segments in 3D
space, significantly enhancing partitioning efficiency. This
enables (1) efficient 1D clustering that avoids expensive 3D
queries and clustering; and (2) a simplified oversegmenta-
tion process that decouples spatial locality from semantic
similarity by performing only semantic comparisons within
already spatially adjacent segments to complete clustering.

Partitioning Strategy. Due to the variable receptive field
of differently sized superpoints, smaller superpoints pre-
serve more detailed local geometric information, whereas
larger superpoints capture more comprehensive global se-
mantic context. Therefore, we propose to construct a hi-
erarchical partitioning structure to fully utilize multi-scale
information. Given an input point cloud P and its corre-
sponding features F = {fi}Ni=1, where fi ∈ Rd is gener-
ated by our backbone, we construct a hierarchical partition-
ing structure H = {Lk}Kk=1. Each layer Lk contains the
complete serialized point cloud and is recursively quater-
nary partitioned into a set of segments Lk = {Sk

i }
Mk−1
i=0 ,

where Sk
i represents the i-th segment, as shown in Fig. 2

(b). Specifically, the 3D point cloud is first serialized into a
1D sequence via Hilbert space-filling curve mapping [38],
denoted as Pseq ∈ RN×d. The sequence is then padded to
Ppad ∈ RNpad×d where Npad = ⌈N/MK⌉ ·MK , ensuring
divisibility by the finest segment count MK . The serialized
point cloud Ppad is recursively partitioned using 1D qua-
ternary splitting, such that at each layer Lk, it is uniformly
divided into Mk = 2m−2k+2 segments. For each layer Lk,
Sk
i can be represented as:

Sk
i = {Ppad[j] | j ∈ [i · lk, (i+ 1) · lk − 1]}, (1)

where lk = Npad/Mk represents the segment length for
each segment in the k-th layer. Recursive partitioning es-
tablishes fixed parent-child indexing between layers. For
any inter-layer gap l ≥ 1, the hierarchical inclusion rela-
tionship is defined as:

Sk
i =

⋃
j∈[i·4l, (i+1)·4l−1]

Sk+l
j . (2)

At the finest layer LK , segment features are generated
through permutation-invariant aggregation of constituent
points:

fSK
i

= A
(
fj | pj ∈ SK

i

)
∈ RC , (3)

where A : Rni×C → RC denotes a permutation-invariant
operator (e.g. max-pooling) with ni = |SK

i | = Npad/MK .

3.3. Adaptive Superpoint Update
Given the structure H, the goal is to refine the partition
Lk = {Sk

1 , . . . , S
k
Mk

} with features fSk
i

∈ Rd into se-

mantically consistent superpoints L′
k = {S′k

1 , . . . , S
′k
Mk

}
with precise geometric boundaries and updated features
f ′
Sk
i
∈ Rd. This is achieved by dynamically allocating raw

points within coarse-grained segments to their appropriate
sub-segments based on semantic similarity, a process that
redistributes raw points within segments to fit object bound-
aries. This process can be transformed into a boundary fit-
ting problem between adjacent segments in 1D sequence
point clouds, as shown in Fig. 2 (c).

Feature Similarity based Affiliation. To establish the af-
filiation relationship between raw points within each seg-
ment and nearby segments, we consider two adjacent levels
in H: the finest Lk = {Sk

1 , S
k
2 , . . . , S

k
Mk

} and its coarser
predecessor Lk−1 = {Sk−1

1 , Sk−1
2 , . . . , Sk−1

Mk−1
} (we only

use l = 1 defined in Eq. (2)). The hierarchical relationship
between these levels is given by (1) Mk−1 = Mk

4 , mean-
ing each coarser level has one-fourth the segments of the
finer level and (2) Each segment Sk−1

i at level Lk−1 con-
tains four consecutive segments from level Lk: Sk−1

i =
Sk
4i ∪ Sk

4i+1 ∪ Sk
4i+2 ∪ Sk

4i+3.
For each raw point pi ∈ Sk−1

i , we identify the most
similar initialized segment feature from its four containing
segments Sk

4i, S
k
4i+1, Sk

4i+2, and Sk
4i+3. Meanwhile, to ex-

pand the receptive field of raw points relative to their po-
tential superpoints, we incorporate segment features from
eight sub-segments at Lk belonging to the left and right ad-
jacent segments Sk−1

i−1 and Sk−1
i+1 , forming a local feature

set {fSk
4i+j

| j ∈ {−4,−3, . . . , 7}}, resulting in a set of

12 initial segment features. For each segment Sk−1
i with

Nk−1 = 4Npad/Mk points, we compute a similarity matrix
Ai ∈ RNk−1×12. Each entry aj,t measures the similarity
between the j-th point and the t-th segment feature in the
above set of segment features:

aj,t =
fpj

· fSk
t

∥fpj∥∥fSk
t
∥
, j ∈ [1, Nk−1], t ∈ [1, τ ], (4)

This process generates similarity matrices {Ai}
Mk−1

i=1 for
the entire level Lk−1. Point-to-superpoint assignments are
determined by selecting the superpoint with the highest sim-
ilarity for each point, which is then mapped to global super-
point indices ϕ(pj) ∈ [1,Mk]. The resulting assignment
index set Assi = {ϕ(pj)}nj=1 provides a key reference for
updating superpoint features in subsequent steps.

Cross-Attention based Update. Cross-Attention [4] en-
ables dynamic and adaptive relationships between super-
points and their constituent points. Through feature similar-
ity based affiliation, precise similarity relationships are es-
tablished, guiding accurate superpoint feature updates. For
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Figure 3. The end-to-end semantic segmentation pipeline con-
structs a graph over superpoints, captures global context using
graph transformers, and integrates point-level embeddings for fi-
nal semantic prediction, where ⊕ denotes simple feature addition.

the assignment indices Assi = {ϕ(pj)}nj=1, the inverse
mapping ϕ−1(i) = {pj | ϕ(pj) = i} represents the origi-
nal points contained within superpoint S

′k
i . Based on Assi,

each superpoint’s feature is updated solely from its mem-
ber points. Using superpoint feature f ′

Sk
i

as the Query and

its member point features
{
fpj

| pj ∈ ϕ−1(i)
}

as Keys and
Values, the update formula is:

f ′
Sk
i
= CrossAttn

 fSk
i︸︷︷︸

Query

,
{
fpj

| pj ∈ ϕ−1(i)
}︸ ︷︷ ︸

Key/Value

 , (5)

Attention weights are computed through scaled dot product,
allowing each superpoint to focus on the most informative
points within its local neighborhood:

CrossAttn(fSk
i
, {fpj

}) = Softmax
(
QiK

⊤
i√

d

)
Vi, (6)

where Qi = fSk
i
WQ ∈ R1×d, Ki = Concat({fpj

WK |
pj ∈ ϕ−1(i)}) ∈ Rnk

i ×d, Vi = Concat({fpj
WV | pj ∈

ϕ−1(i)}) ∈ Rnk
i ×d, nk

i = |ϕ−1(i)| is the number of points
contained in each superpoint, and WQ,WK ,WV ∈ Rd×d

are learnable projection matrices. For coarse-grained su-
perpoints, we apply the same update logic, with interactions
between fine-grained features and their coarse-grained ini-
tializations.

3.4. Superpoint Interaction
The superpoint features f ′

Sk
i

encode geometric-semantic
information for locally homogeneous points. To lever-
age these features for semantic segmentation, inspired by
SPT [29], we integrate a superpoint interaction module
with our oversegmentation network, forming an end-to-end

framework, as shown in Fig. 3. In our hierarchical design,
fine-grained superpoints capture local details while coarse
grained ones represent object-level semantics. We con-
struct multi-level superpoint graphs and employ a cascaded
Transformer-GCN [42] to facilitate cross-superpoint inter-
actions and global context modeling. In the Graph Trans-
former, a superpoint graph G = (V, E) is built by link-
ing each superpoint with its k nearest neighbors in feature
space, where V = {f ′

Sk
i
}Mk
i=1. Edge features are defined via

relative position encoding as eij = g(pj − pi), with pi and
pj representing node coordinates and g being a linear map-
ping. A subsequent GCN processes this graph to enhance
local feature interactions through message passing among
adjacent superpoints. Finally, we fuse backbone point fea-
tures with their corresponding multi-level superpoint before
feeding them into the segmentation head.

3.5. Superpoint Aggregation Loss
We propose a superpoint aggregation loss to optimize su-
perpoint generation, inspired by LMNN [36]. This com-
prehensive loss consists of three components. First, a com-
pactness loss ℓcompact enforces intra-superpoint feature cohe-
sion by minimizing point-to-superpoint distances. Second,
a distinction loss ℓdist encourages inter-class separability by
maximizing the distances between superpoints of different
classes, where each superpoint’s label is determined by ma-
jority voting among its points. Third, a purity loss ℓpurity
maintains label consistency within each superpoint by pe-
nalizing high entropy in its class distribution. The overall
loss function is defined as:

ℓsp =
1

Ns

Ns∑
i=1

∑
p∈Si

∥fi − f ′
Sk
i
∥2

|Si|
+

1

Nc

∑
i,j∈c,i̸=j

max(0, δdist − ∥f ′
Sk
i
− f ′

Sk
j
∥)2+

1

Ns

Ns∑
i=1

K∑
k=1

pi,k log(pi,k),

(7)

where fi denotes the feature of point p, f ′
Sk
i

represents the

feature of superpoint S
′k
i , δdist is a predefined separation

margin, pi,k is the probability of superpoint i belonging to
class k, Ns is the number of superpoints, and Nc is the num-
ber of superpoint pairs involved in ℓdist.

4. Experiments

4.1. Datasets and Metrics
Datasets. We evaluate SPCNet on four datasets with di-
verse characteristics. S3DIS [1] contains 274M points
from six office areas, with Area 5 as the test set. Scan-
Net [9] includes 1,513 indoor scans from 707 scenes with
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Figure 4. The visualization of superpoints generated on the ScanNet (first row) and S3DIS (second row) datasets shows a two-level
hierarchy: L1 with 1024 superpoints and L2 with 256 superpoints. Finer L1 superpoints merge based on semantic similarity to form
larger L2 superpoints. For example, in S3DIS, L1 superpoints of table parts merge into a single table superpoint, and L1 superpoints of
whiteboard sections form a complete whiteboard superpoint. Our superpoints are regular and orderly, with nearly rectangular shapes in
semantically consistent areas (e.g. floors, tables), maintaining continuity, precise object boundaries, and demonstrating superior regularity,
compactness, and purity.

20 categories, averaging 148k points/scan. nuScenes [3]
comprises 1,000 scenes from 32-beam LiDAR, split
750/150/150 for train/val/test, with 17 categories. Se-
manticKITTI [2] is an outdoor self-driving benchmark
with 22 sequences and 20 categories, using sequences 00-10
(densely annotated) for training and 11-22 for testing.
Evaluation Metrics. Following SPNet [15] and SSP [18],
we use Oracle Overall Accuracy (OOA), Boundary Recall
(BR), Boundary Precision (BP), and F1 score to evaluate su-
perpoints. BR and BP assess boundary quality, while OOA
represents the upper bound of semantic segmentation accu-
racy using superpoints. The F1 score balances recall and
precision, defined as F1 = 2·BP ·BR

BP+BR . For semantic seg-
mentation in indoor and outdoor scenarios, we adopt mean
intersection over union (mIoU).

4.2. Model Configuration
We maintain a consistent architecture across all experiments
with minimal dataset-specific adjustments. Our backbone
features a four-stage symmetric encoder-decoder structure,
each with a single block depth. The encoder has embedding
dimensions [32, 64, 128, 256] and the decoder [ 128, 64,
64], with Mamba blocks using conditional positional encod-
ing at the 256 stage. We implement a three-level hierarchy
(m=8, K=2, l=1), organizing points into n, 1024, 256 seg-
ments. Training is performed on dual NVIDIA RTX 4090
GPUs with the Adam optimizer.

4.3. Point Cloud Oversegmentation
Quantitative Results. As shown in Tab. 1, we evaluate
SPCNet on three datasets, reserving ScanNet for ablation
studies, ensuring fair comparison with consistent superpoint
counts. For example, in S3DIS Area 5, methods like VCCS,
Lin et al., SPG, SSP, and SPNet generate around 1050 su-

Method BR BP F1 OOA

S3DIS Area 5 [1]

VCCS [26] 62.06 10.86 18.48 95.22
SPG [19] 52.06 13.11 20.94 95.84
SSP [18] 80.73 13.02 22.42 97.04
SPNet [15] 84.75 13.14 22.65 96.50

SPCNet(Ours) 89.50 26.78 40.50 96.81

nuScenes [3]

SPG [19] 28.20 17.26 21.41 89.22
SSP [18] 22.04 15.63 18.28 92.01
SPNet [15] 68.92 18.34 28.97 87.67
SuperLiDAR [16] 74.72 25.12 37.59 96.31

SPCNet(Ours) 88.77 32.82 47.52 96.33

SemanticKITTI [2]

SPG [19] 25.64 15.82 19.56 86.86
SSP [18] 18.74 10.67 13.59 92.27
SPNet [15] 56.52 14.78 23.43 92.24
SuperLiDAR [16] 65.52 20.52 31.25 96.21

SPCNet(Ours) 73.18 30.15 42.57 96.84

Table 1. Comparison results of generated superpoints on the
S3DIS, nuScenes, and SemanticKITTI datasets.

perpoints, matching our 1024 Hilbert partitions. Our deep
learning-based approach outperforms traditional methods,
benefiting from the specialized backbone network’s ability
to extract rich geometric features that capture complex local
structures. Unlike methods such as SPNet [15], which rely
on FPS+KNN for presampling and soft assignment map-
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ping without limiting the scope of raw points being clus-
tered, resulting in blurry boundaries, our approach lever-
ages the Hilbert curve’s locality, limiting the range of raw
point clustering (preventing clustering of semantically sim-
ilar but spatially distant points), and finally refining super-
point through the Cross-Attention, minimizing noise and
maintaining precise, simple boundaries, as shown in Fig. 5
(d) and (e). Visualization results in Fig. 4 show that our
method tends to aggregate superpoints within object interi-
ors while maintaining distinct object boundaries, especially
in challenging cases like wall-whiteboard interfaces, result-
ing in higher BR and BP. Additionally, our method excels at
merging semantically continuous regions (e.g. floors, table-
tops), leading to fewer incorrect superpoint boundaries and
substantially higher BP metrics. Fig. 6 shows the perfor-
mance of different methods on SemanticKITTI.

Method Device Inference Time (ms)
data proc. / backbone + SP ini. + SP gen.

SPG [19] CPU 13152
SSP [18] RTX 3090 16115 (11812 + 0 + 13426)
SPNet [15] RTX 3090 12182 (11812 + 0 + 1154)
SuperLiDAR [16] RTX 3090 72(0 + 0 + 72)

SPCNet (ours) RTX 4090, RTX 3060 12 (6 + 0.4 + 6), 61

Table 2. The inference time of different oversegmentation meth-
ods on SemanticKITTI. The inference time consists of data pre-
processing/backbone (red/blue), superpoint initialization (green),
and superpoint generation (purple).

Time Costs. We evaluated oversegmentation network ef-
ficiency by measuring inference time per scan on Se-
manticKITTI validation (batch size=1) in Tab. 2. For opti-
mization based SPG [19], we followed SuperLiDAR’s [16]
configuration using Core i5 CPU. For learning-based meth-
ods (SSP [18], SPNet [15], SuperLiDAR), we used SuperL-
iDAR’s results (RTX 3090). Our SPCNet was benchmarked
on RTX 4090 and 3060 GPUs. Our method achieved to-
tal inference times of 12 ms (RTX 4090) and 61 ms (RTX
3060), achieving 100× speedup versus SPG/SSP/SPNet,
and 5× versus SuperLiDAR. Even on RTX3060, our infer-
ence is 10ms faster than SuperLiDAR, indicating at least
3× efficiency accounting for hardware differences. This
stems from: (1) efficient superpoint initialization (0.4 ms)
that compresses FPS+KNN sampling time in SPNet; (2)
the application of a localized attention mechanism within
the superpoint refinement (6 ms). Our backbone architec-
ture allows further acceleration using lightweight alterna-
tives like PointNet[27]. Traditional methods face key bot-
tlenecks: SPG/SSP rely on optimization-based generation
(e.g. graph cuts), SSP/SPNet suffer from redundant process-
ing due to mixed handcrafted/learned features, and SuperL-
iDAR’s BFS-based grouping has complexity dependent on
scene density, potentially reaching O(n2) in dense scenes,
versus our serialization based approach (O(n)).
Ablation Studies. Mamba mitigates the local inductive bias

(a) 3D-UNet only
with k=2

(b) Bottleneck
reinforcement with k=2

(e) SPNet(d) PointNet 
with k=2

Figure 5. Oversegmentation comparisons. (a) Sparse 3D U-Net
with neighbor expansion of 2. (b) Adding the Mamba module
to the bottleneck. (c) Replacing the backbone with a simplified
PointNet, as in SPNet. (d) SPNet results. Notably, while (b) con-
figuration does not fully aggregate semantically consistent objects
into complete superpoints, it notably enhances consistency. SPC-
Net also avoids clustering semantically similar but spatially distant
points, ensuring clearer superpoint boundaries.

Backbone Setting BR(%) BP(%) OOA(%) mIou(%)

3D U-Net 76.33 ↓7.90 28.45 ↓1.70 90.93 ↓1.19 74.10 ↓2.86

+ Mamba fully 78.37 ↓5.86 29.13 ↓1.02 91.24 ↓0.88 76.18 ↓0.78

+ Mamba bottneck (defalut) 84.23 30.15 92.12 76.96

Table 3. Performance comparison of different backbone architec-
tures on the ScanNet validation set.

Neighbor Scope BR(%) BP(%) OOA(%)

No expansion 79.86 ↓4.37 28.57 ↓1.58 91.22 ↓0.90

2 expansion (default) 84.23 30.15 92.12
4 expansion 83.67 ↓0.56 29.85 ↓0.30 91.24 ↓0.88

6 expansion 79.93 ↓4.30 28.65 ↓1.50 89.93 ↓2.19

Table 4. The effect of expanding neighbor segment range on su-
perpoint performance on the ScanNet validation set.

of convolutions in oversegmentation, improving superpoint
continuity and semantic consistency. As shown in Fig. 5 (a)
and (b), this bias causes superpoints in the same semantic
region to align with boundaries but fragment due to inter-
nal inconsistency. Thus, we retain convolutions in U-Net’s
shallow layers for local geometric cues to ensure boundary
precision, and introduce Mamba at the bottleneck to cap-
ture long range semantics. Tables 3 and 4 analyze back-
bone design and neighbor expansion effects on superpoint
quality. We evaluated three backbone configurations: (1)
baseline 3D sparse U-Net only, (2) fully Mamba-based U-
Net, and (3) our default hybrid design with Mamba mod-
ules in the bottleneck layers. Results demonstrate that the
baseline 3D sparse U-Net reduces BR, BP, and OOA by
7.90%, 1.70%, and 1.19% respectively compared to our
default. Similarly, the fully Mamba-based U-Net under-
performs, as Mamba’s global context modeling in shallow
networks with low-dimensional features smooths out high-
frequency boundary information. Our hybrid “shallow con-
volution + deep Mamba” architecture achieves optimal per-
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Figure 3. Performance of different methods on the validation set of SemanticKITTI.

Figure 6. Performance of different methods on the SemanticKITTI validation set under varying numbers of superpoints. It is worth noting
that our method can achieve better results than other methods with fewer superpoints (256, 512, and 1024).

Experiment ScanNet [9] S3DIS [1] nuScenes [3] Sem.KITTI [2]

Best Model Val Test Area5 Val Test Val Test

†SPG [19] - - 58.0 - - - -
MinkUNet [8] 72.2 73.6 65.4 73.3 - 63.8 -
†SPG + SSP [19] - - 61.7 - - - -
ST [17] 74.3 73.7 72.0 - - - -
†SPT [29] - - 68.9 - - - -
PointNeXt [28] 71.5 71.2 70.5 - - - -
OctFormer [34] 75.7 76.6 - 76.1 77.2 64.3 67.8
Swin3D [40] 76.4 - 72.5 - - - -
AF2S3Net [7] - - - 62.2 78.0 74.2 70.8
†SuperLiDAR [16] - - - - 78.5 - 69.6
PTv2 [37] 75.4 74.2 71.6 80.2 82.6 70.3 72.6
PTv3 [38] 77.5 77.9 73.4 80.4 82.7 70.8 74.2

Backbone 76.9 - 69.3 75.4 - 67.6 -
†SPCNet(Ours) 77.8 78.0 72.1 77.6 80.2 69.5 71.9

Table 5. Semantic segmentation results on the ScanNet, S3DIS,
nuScenes, and SemanticKITTI datasets. †Superpoint-based.

formance by leveraging convolutions to preserve local de-
tails in shallow layers while Mamba modules handle global
context modeling in deeper layers.

In the neighborhood expansion experiments (analogous
to k-parameter tuning in KNN), we observed that moder-
ately expanding the candidate superpoint pool of original
points during the feature similarity based affiliation pro-
cess significantly improves sampling accuracy. The model
achieves optimal performance when K=2; excessive expan-
sion (K=4, 6) leads to performance degradation. This may
be because larger receptive fields introduce noise, and the
hard assignment approach introduces more uncertainty as
the number of candidate targets increases, causing early as-
signment errors to propagate to later processing stages.

4.4. Semantic Segmentation
Tab. 5 evaluates our approach on four indoor and outdoor
datasets, comparing it with point-based and superpoint-
based methods. Our optimized oversegmentation strategy
shows significant gains: on S3DIS Area 5, we achieve a
3.2% mIoU improvement over SPT. Compared to state-of-
the-art point-based methods, our approach remains compet-
itive, outperforming PTv3 by 0.3% on ScanNet (77.8%) and
PTv2 by 0.5% on S3DIS Area 5. Additionally, we achieve
71.9% and 80.2% on Sem.KITTI and nuScenes, improving

Setting Components Model Size (m) mIoU(%) ∆(%)
Backbone + SP gen. + SP int.

backbone (defalut) - 18.8 76.96 -

Hierarchical Enhancement

1 partition level + Level1 Superpoint 0.24 (0.218 + 0.022) 77.50 +0.54
2 partition level + Level2 Superpoint 0.02 (0.014 + 0.006) 77.80 +0.30

Table 6. Semantic segmentation improvement with hierarchical
superpoint features in ScanNet validation set. SP gen. means su-
perpoint generation; SP int. means superpoint interaction.

SuperLiDAR by 1.3% and 1.7%, respectively. These results
confirm that our superpoints capture local and global se-
mantic information effectively, while the simple backbone,
enhanced by superpoint features, matches the performance
of more complex point-based methods, validating the supe-
rior quality of the generated superpoints.

As shown in Tab. 6, integrating hierarchical superpoint
features with per-point features extracted by the backbone
improved segmentation. First-level superpoints aggregated
local semantics, boosting intra-class consistency with a
0.54% mIoU gain. Second-level features captured long-
range dependencies, adding another 0.30% improvement.
These hierarchical superpoints acted as adaptive receptive
fields, enhancing performance with only 0.24M parame-
ters.

5. Conclusion
In this paper, we propose a novel serialization based over-
segmentation method to address the challenge of efficiently
grouping semantically consistent points into superpoints
while maintaining spatial proximity. SPCNet achieves
state-of-the-art performance in point cloud oversegmenta-
tion while being 3× faster than existing methods in infer-
ence speed. Extensive experimental results demonstrate the
effectiveness and efficiency of SPCNet. Additionally, SPC-
Net can be flexibly applied to semantic segmentation tasks,
effectively improving the accuracy of semantic segmenta-
tion.
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