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Abstract

Mathematical problems in real-world scenarios are of-
ten presented in a purely vision-form, where textual prob-
lem statement and accompanying math figures, e.g., ge-
ometry figures and functional graphs, are integrated into
a single image. This vision-form problem-solving task
requires precise comprehension and reasoning on both
textual and graphical elements in the images, posing
significant challenge to current Multimodal Large Lan-
guage Models (MLLMs), which process text and math
figures in isolation. In this work, we propose Vision-
Math, the first exploration for vision-form mathematical
problem-solving model, which employs a three-stage pro-
gressive multimodal reasoning alignment strategy to sys-
tematically enhance task-specific capabilities. Building
upon a LLM proficient in unimodal mathematical reason-
ing, VisionMath first establishes foundational OCR capa-
bilities through capturing rendered mathematical problem
images. Subsequently, the model develops comprehen-
sive understanding of figure structures and properties via
learning from figure descriptions and mathematical educa-
tional videos. Finally, the model’s reasoning capacity is
activated using carefully constructed visual-form problem-
solving datasets VisionMath-IT with chain-of-thought anno-
tations. For comprehensive evaluation, we construct multi-
lingual benchmarks covering diverse problem types, includ-
ing geometry, algebra, function problems in both English
and Chinese. Experimental results demonstrate that Vision-
Math significantly outperforms existing general-purpose
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Figure 1. Demonstration of mathematical problem examples of
image-text-separation-form (a) and vision-form (b).

and math-specialized models, showcasing superior multi-
lingual and multi-type problem-solving capabilities. Our
model weights, data and code will be made available at
https://github.com/mengqiDyangge/VisionMath.

1. Introduction

Recent advancements in reasoning capabilities have sig-
nificantly enhanced the performance of both general-
purpose [3, 7-9, 22, 27-29, 50, 52] and math-specalized
MLLMs [10, 14, 32, 42], enabling them to demonstrate re-



markable proficiency in solving various types of mathemat-
ical problems. Current MLLMs primarily address “image-
text-separation-form” mathematical problems, where the
textual problem statement (including formulas) and math
figures, such as geometric figures and functional graphs, are
input separately into the model, as shown in Figure 1(a).
However, in real-world scenarios, problem statement and
math figures are often captured within a single image, as
the demonstration in Figure 1(b). The lack of exploration
has led to the inability of existing MLLMs to effectively
process such “vision-form” problems. For instance, on the
MathVista benchmark [32], when switching the input sam-
ples from image-text-separation-form to vision-form, the
accuracies of GPT-40 mini for Geometry Problem Solving
(GPS) and Math Word Problems (MWP) decreases from
58.1% to 53.4% and from 59.6% to 53.2%, respectively.
Such performance gap limits the model’s real-world appli-
cation, especially when the problem involves complex for-
mulas and figures.

The above issue drives us to take the first step in ex-
ploring a MLLM tailored for vision-form math problem-
solving. To enhance the model’s understanding and rea-
soning capabilities for both text and figures, we develop
our MLLM, named VisionMath, focusing on three criti-
cal aspects: text recognition, figure comprehension, and
integrated text-figure reasoning. Specifically, we design
a three-stage progressive multimodal reasoning alignment
strategy. In the first stage, we establish the basic OCR ca-
pabilities, enabling accurate perception of problem state-
ments, especially formulas. The training combines docu-
ment image OCR datasets [6, 16, 21, 37, 47, 51] with ren-
dered math problem image datasets, requiring the model to
transcribe the text present in the images. The second stage
strengthens figure comprehension with a dual-path enhance-
ment strategy. On one hand, math figure captioning datasets
[14, 60] are employed to explicitly improve the structural
visual parsing of geometric figures and functional graphs.
Note that these captions generated by LLMs or rule-based
systems often suffer from limited diversity and domain gap
with real-world math figures. Thus, on the other hand, we
foster a more in-depth math property understanding of real-
world figures via learning from mathematical educational
videos [61], which offer diverse and real-world math figures
across complexity levels accompanied by teachers’ pro-
found analysis. In the final stage, we employ vision-form
problem-solving datasets to instruct the model to perform
step-by-step reasoning based on the joint text-figures un-
derstanding, thus improving the integrated text-figure rea-
soning capabilities.

To deal with the lack of vision-form mathematical
problem-solving datasets, we introduce VisionMath-IT, a
large-scale, high-quality bilingual (English/Chinese) in-
struction tuning dataset. This dataset, developed through a
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Figure 2. Performance comparisons between VisionMath and
other representative MLLMs.

systematic pipeline involving data collection, filtering, ren-
dering, and re-formatting, offers a rich collection of vision-
form math problems. Furthermore, we develop special-
ized evaluation benchmarks to thoroughly assess the perfor-
mance of MLLMs in solving various types of vision-form
math problems. The first is VisionMath-Bench, which is a
Chinese benchmark encompassing geometry, algebra, and
function problems. Others are English benchmarks derived
from commonly used image-text-separation-form datasets,
including Vision-MathVista [32] and Vision-MathVerse
[59]. Extensive experimental results demonstrate that
our VisionMath significantly outperforms all open-source
general-purpose and math-specialized MLLMs across these
benchmarks. Simultaneously, VisionMath shows substan-
tial improvements over GPT-40 on VisionMath-Bench and
Vision-MathVista, while achieving overall performance
gains compared to GPT-40 on Vision-MathVerse. Intuitive
comparisons of representative models are visualized in Fig-
ure 2. Our contributions are summarized as follows:

* We present the first exploration of practical vision-form
math problem-solving task, proposing a progressive mul-
timodal alignment reasoning strategy to systematically
enhance the model’s visual-form mathematical compre-
hension and reasoning capabilities.

Through the design of a rigorous data construction
pipeline, we meticulously curated a large-scale, high-
quality dataset for vision-form mathematical problem-
solving, named VisionMath-IT.

We develop comprehensive benchmarks covering bilin-
gual algebraic, geometric, and functional problems, and
evaluate multiple state-of-the-art MLLMs to benchmark
their performance on vision-form math problem-solving
tasks. Extensive results highlights the superiority of our
proposed approach.



‘ Samples

Dataset

ChartQA [35], Deepform [46], DocVQA [36], InfographicVQA [38], Kleister Charity [43], Tabfact [6],

VisionMath-OCR Document image OCR and understanding 1.36M WikiTableQuestions [40], Visualmrc [47], Ccpdf [51], RVL-CDIP [15] synthdog [20], Vary [54],
i B pubtabnet [62], Turl [11], OCRCC [5], Dvqga [18], FigureQA [19], PlotQA [39], MMC [26]
Mathematical Problem OCR 1.34 M VisionMath-IT-Chinese, MMathCoT-1M [33]
.. o Figure Caption 0.55M Geol70k-Caption [14], MAVIS-Caption [60]
VisionMath-Figure Mathematical Educational Video ‘ 0.60M ‘ Multimodal-textbook [61]
VisionMath-IT English Vision-Form Problem 1.96M Geol70k [14], MathV360 [42], MultiMath-300k-English [41], MMathCoT-1M [33], Numbia [4]
stonVal Chinese Vision-Form Problem 0.62M VisionMath-IT-Chinese, MultiMath-300k-Chinese [41]
Table 1. Detailed subsets and data volumes of different training datasets.
2. Related Work 3. Method

General-purpose Multimodal Large Language Model.
Recent years have witnessed remarkable advancements in
general-purpose MLLMs. LLaVA series [22, 27-29] has pi-
oneered systematic explorations of effective training strate-
gies, including multi-stage alignment, multi-task data ra-
tioning, reinforcement learning, and synthetic data train-
ing, significantly improving the capabilities. Meanwhile,
QwenVL series [3, 50, 52] demonstrate SOTA performance
across diverse tasks such as high-resolution image under-
standing, document understanding, and long-form video
understanding. InternVL series [7-9] use larger-scale visual
encoder for multimodal pre-training to bridge the perfor-
mance gap between commercial [2, 48, 49] and open-source
models. EMU series [44, 45, 53] aims to unify multimodal
understanding and generation. MiniCPM [57] substantially
advances edge-device multimodal intelligence through ar-
chitectural and efficiency innovations. While these ad-
vancements have collectively propelled MLLM capabilities
across diverse vision tasks [13, 23-25, 30, 34-36, 58], their
multimodal reasoning and mathematical problem-solving
proficiency remains suboptimal due to the inherent trade-
offs in general-purpose design.

Math-specalized Multi-Modal Language Model. To im-
prove mathematical reasoning, several works have made
multifaceted attempts. G-LLaVA [14] first collects geom-
etry data to improve geometry problem solving. Math-
LLaVA [42] and R-COT [10] employ rule-based synthetic
data generation, significantly improving performance on
geometry and algebra problems. MAVIS [60], MathGLM-
Vision [56], and MultiMath [41] develop large-scale multi-
source multimodal math datasets to strength mathemati-
cal reasoning through domain-adaptive fine-tuning. Math-
PUMA [63] constructs paired samples conveying identical
mathematical concepts to bridge the performance discrep-
ancies between text-rich and image-rich problems. URSA
[33] introduces error localization supervision to minimize
logical errors and visual misinterpretations during reason-
ing. Despite these developments significantly expanding the
capabilities frontier, previous works overlook fully vision-
form mathematical problem-solving, leading to suboptimal
performance in this practical task. This has inspired us to
conduct an in-depth analysis on the characteristics of this
task and make targeted improvements.
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3.1. Data Engine of VisionMath

High-quality data is crucial for effective model training. To
meet the capability requirements for solving vision-based
mathematical problems, ranging from basic perception to
complex reasoning, we meticulously develop three special-
ized datasets: VisionMath-OCR, VisionMath-Figure, and
VisionMath-IT. The detailed composition of each dataset is
shown in Table 1.

3.1.1. VisionMath-OCR

VisionMath-OCR is designed to enable accurate recogni-
tion and parsing of general text, formulas, and symbolic no-
tations within problem statements. Specifically, this dataset
is partitioned into two components.

Document Image OCR. This component includes a collec-
tion of document image OCR and understanding datasets
(as listed in Table 1), aimed at establishing general-purpose
OCR capabilities with a focus on recognizing standard text,
charts, and tables.

Mathematical Problem OCR. This component consists of
rendered images with multilingual mathematical problems
from the datasets in Table 1. It requires the model to accu-
rately restate the complete problem statement, ensuring pre-
cise OCR of formulaic structures and symbolic notations.

3.1.2. VisionMath-Figure

VisionMath-Figure is introduced to enhance math figure
perception and comprehension, particularly the properties
and structural relationships of points, lines, and surfaces in
geometry figures and function graphs. Based on the sources
of data, the dataset can be divided into two parts:

Figure Captions. This portion of the data is derived from
the Geol70k [14] and MAVIS [60] datasets, consisting of
mathematical figures and their corresponding descriptions.
These descriptions contain basic component information
about the figures, which helps enhance the model’s figure
structure perception and understanding. It is important to
note that the figures in the Geol70k dataset are primarily
planar geometric shapes, which limits their diversity. On
the other hand, the figures in the MAVIS dataset are mainly
constructed using rule-based methods, often resulting in a
domain gap compared to real-world mathematical figures.
To address this, we also utilize mathematical educational
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Figure 3. Pipeline of Chinese Vision-Form Problem Synthesis.

videos as an additional data source to further improve the
understanding of mathematical figures.

Mathematical Educational Videos. We observe that math-
ematical educational videos contain a rich variety of real-
world mathematical figures, along with in-depth analysis
and extensive knowledge about these figures, such as the
properties of geometric shapes. This information is bene-
ficial for the understanding and reasoning of mathematical
figures. Therefore, we collect mathematical videos from the
Multimodal Textbook [61] and construct training samples
with the following steps:

Stepl: Subject Filtering. The videos in the Multimodal
Textbook encompass multiple subjects. Therefore, we first
utilize a Large Language Model (LLM) to filter the videos
based on their titles and select those that are related to math-
ematics education.

Step2: ASR Text Filtering. Multimodal Textbook has al-
ready extracted frames from the videos and used ASR tools
to transcribe the corresponding teacher explanations. How-
ever, some of the transcriptions contain non-informative
filler phrases devoid of mathematical knowledge. There-
fore, we employ an LLM to filter out text that does not in-
clude mathematical explanations.

3.1.3. VisionMath-IT

VisionMath-IT is a bilingual (English/Chinese) instruction-
tuning dataset aimed at empowering end-to-end vision-form
mathematical problem-solving, and English-Chinese exam-
ples of different problem types are shown in Sec. C. of
the supplementary materials. Its construction adheres to
two principles: (1) Diversity. Curating visually-presented
mathematical problems spans algebra, geometry (includ-
ing plane geometry, analytic geometry, solid geometry) and
function problems with accompanying figures. (2) Struc-
tured Solution Formatting. The responses are unifying into
(chain-of-thought, final answer) pairs. This not only covers
a wide range of problem types to improve generalization but
also eliminates style variations in solution formats, allowing
to concentrate on learning the reasoning process.
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To ensure VisionMath-IT meets rigorous diversity re-
quirements and enables models to effectively learn hetero-
geneous reasoning patterns from various solution structures,
we implement a multi-source data curation strategy.
English Vision-Form Problem Synthesis.

The publicly available English image-text-separation-form
datasets already encompass diverse question types and sub-
stantial samples. Therefore, the focus is on selecting high-
quality data for vision-form problem transformation and so-
lution formalizing. The specific steps are as follows:

Step 1: Data Filtering. To filter out high-quality data
from existing datasets, we first sample a portion of instances
from different datasets and manually inspect the clarity of
the mathematical images. We then retain the datasets with
overall acceptable visual quality to serve as the source for
training data. The retained dataset is shown in the “English
Vision-Form Problem” section of Table 1.

Step 2: Image-form Problem Rendering. For each sam-
ple in the retained image-text-separation-form datasets, the
text-based problem statement and the associated math fig-
ures are jointly rendered into a single image, resulting in
vision-form mathematical datasets.

Step 3: Solution Formatting. For each problem, we de-
sign rules to split the original solution’s chain-of-thought
process and final answer, and unify the response format us-
ing the template “{CoT process}. Therefore, the answer is
\\boxed{final answer}”.

Chinese Vision-Form Problem Synthesis.

Due to the lack of specialized high-quality and diversity in
existing datasets for Chinese mathematical problems, we
conduct extensive data collection on the Internet and per-
form automatic data filtering and curation strategies. As
shown in Figure 3, the specific pipeline are as follows:
Step 1: Source HTML Decomposition. The HTML col-
lected from the web often contains much irrelevant infor-
mation. Therefore, we first extract the HTML parts corre-
sponding to the question, solution, and answer based on pre-
defined rules. And the question images can then be obtained
by rendering the html code corresponding to question.
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for enhancing Mathematical OCR, deepening math figure Understanding, and fine-tuning problem-solving capabilities.

Step 2: Formula Standardization. In the HTML code,
mathematical formulas may appear as image paths or in
style code formats. To obtain readable question and answer
text, these image paths or style codes must be extracted, ren-
dered into images, and subsequently converted into LaTeX
code using OCR tools. By replacing the original mathemat-
ical formula codes with the LaTeX codes, we can ultimately
obtain the raw question, solution, and answer text.

Step 3: Text Cleaning and Formatting. The raw texts
obtained from stage 2 often encounter some quality issues,
including incorrectly recognizing mathematical images as
formulas and converting them into garbled LaTeX, along
with improperly mixed presentation of sulution steps and
final answers. To clean and standardize the raw texts,
we leverage the powerful text understanding capabilities
of LLM to filter out any garbled LaTeX. Additionally, we
also use LLMs to explicit separate the CoT process and an-
swer text, fill in any missing answers, and organize them
into the format “{CoT process}. Therefore, the answer is
\\boxed{final answer}”.

The final dataset, VisionMath-IT-Chinese, consists of
332K math problems related to K-12 education. This corpus
encompasses multiple formats including multiple-choice,
fill-in-the-blank, and free-form problems, spanning core
mathematical subjects such as geometry, algebra, function,
and word problem-solving. Furthermore, we have also pro-
cessed Multimath-300k-Chinese using the same pipeline as
English Vision-Form Problem Synthesis.

3.2. Architecture of VisionMath

The architecture of the Vision-Math model is illustrated in
Figure 4, which follows the structure that has been widely
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verified to work well in general MLLMs. This comprises
three core components: a pre-trained visual encoder Intern-
ViT [9], which is good at encoding semantically rich vi-
sual features; a lightweight projector, i.e., a two-layer MLP
[27], that transforms visual representations into the seman-
tic space of LLMs; and an open-source LLM Qwen2.5-
Math [55], which has advanced reasoning capabilities for
text-form mathematical problems.

3.3. Progressive Multimodal Reasoning Alignment

To harness the synergistic integration of diverse datasets
in Table | for building strong vision-form mathematical
problem-solving model, we propose a three-stage multi-
modal reasoning alignment strategy that incrementally en-
dows the model with capabilities ranging from foundational
visual perception to advanced complex reasoning, as illus-
trated in Figure 4. The underlying design logic follows a
hierarchical progression: first achieving accurate percep-
tion of problem statements, then advancing to comprehen-
sive understanding of math figures, and finally enabling in-
tegrated text-figure reasoning.

3.3.1. Mathematical OCR Capability Establishment

During the first stage, we focus on equipping the model
with the capabilities to accurately perceive fundamental
problem-statement elements, including text, mathematical
formulas, charts, and tables. To achieve this, we leverage
the curated VisionMath-OCR dataset for training, updating
all parameters in the visual encoder, projection layer, and
language model. To prevent the LLM’s catastrophic forget-
ting of reasoning capabilities during multimodal training,
we also strategically interleave a small proportion (25%) of



text-form mathematical dataset Numbia [4] into the training
batches, ensuring balanced language skill retention.

3.3.2. Math Figure Perception & Understanding

In the second stage, we employ a dual-path enhancement
strategy to improve the model’s comprehension of mathe-
matical figures. On the first path, leveraging figure cap-
tion data, we instruct the model to generate descriptive cap-
tions for input figures, thereby enhancing its ability to ac-
curately perceive and understand figure primitives (such as
points, lines, planes) and their spatial relationships, e.g.,
parallelism, intersections and containment. On the comple-
mentary path, utilizing the constructed educational video
dataset, we task the model with predicting corresponding
lecture content (i.e., refined ASR text) based on input video
frames. The diverse mathematical figures present in these
videos further strengthen the model’s figure understanding
capabilities. Additionally, the lecture content provided by
educators contains rich knowledge, including in-depth fig-
ure analysis and geometric properties of figures, which fur-
ther deepens the model’s understanding and reasoning capa-
bilities regarding visual content. Similarly, a small amount
(25%) of Numbia is added at this stage to prevent the lan-
guage model from degrading.

3.3.3. Vision-Form Mathematical Instruction Tuning

After completing the above two-phase training curriculum,
the model has demonstrated robust foundational compre-
hension of vision-form mathematical problems. Building
upon the acquired capabilities, the final stage orchestrates a
seamless transition toward advanced mathematical reason-
ing through end-to-end supervised instruction tuning using
the complete VisionMath-IT dataset.

4. Evaluation Benchmarks

To comprehensively evaluate and compare model perfor-
mance on mathematical problems across multiple languages
and subjects, our evaluation benchmarks are designed to in-
clude the following parts.

4.1. Chinese Mathematical Proficiency Benchmark

VisionMath-Bench is a Chinese evaluation benchmark com-
prising 100 Plane Geometry (Pla Geo), 90 Analytic Geom-
etry (Ana Geo), 103 Solid Geometry (Sol Geo), 72 Algebra
(Alg) and 135 Function (Func) problems, with test samples
systematically collected according to standardized mathe-
matics curricula spanning primary to senior secondary edu-
cation in China. Test accuracies for different problem types
are reported separately during evaluation.

4.2. English Mathematical Proficiency Benchmarks

English mathematical evaluation benchmarks are derived
through the conversion of commonly used image-text-
separation-form evaluation datasets, i.e., MathVista and
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MathVerse. Detailed dataset processing and statistics are
shown in the Sec. B. of the supplementary materials.

5. Experiment

5.1. Implementation Details

VisionMath employs InternViT-300M-448px as the visual
encoder and Qwen2.5-Math-7B-Instruct as the base lan-
guage model. The three-stage alignment training generally
adopts the same training settings, except for using different
datasets. The maximum number of image tiles for visual
encoding and the maximum input sequence length for LLM
are limited to 9 and 4096, respectively. The learning rate
for the visual encoder is 2e-6, while that for the projection
layer and LLM is le-5. Each stage undergoes 1 epoch of
training with a batch size set at 384.

5.2. Comparisons with SOTAs

To make thoroughly performance comparisons of exist-
ing methods on vision-form mathematical problem-solving
task, we extensively evaluate 8 open-source general-
purpose MLLMs, 5 open-source math-specialized MLLMs,
and 4 closed-source commercial general-purpose MLLMs,
on the constructed evaluation benchmarks.  General-
purpose MLLMs are evaluated using VLMEvalKit [12],
while math-specialized MLLMs are evaluated based on the
original codebases. The detailed results are listed in Table
2, and the key findings are summarized below.

VisionMath substantially outperforms open-source
MLLMs. As can be seen from Table 2, leading open-
source general-purpose MLLMs (e.g., Qwen2-VL) surpass
math-specialized MLLMs (e.g., URSA) across multiple
benchmarks, despite URSA exhibiting superior perfor-
mance than Qwen2-VL on image-text-separation-form
problems. This divergence stems from math-specialized
models’ excessive overfitting to figure-text separated
problems, which induces catastrophic degradation of
essential OCR for recognizing problem statements, making
it difficult to generalize to the vision-form problem-solving
tasks. However, both categories of current open-source
models exhibit significant performance gaps compared
to VisionMath across different languages and problem
types. On the Chinese VisionMath-Bench, VisionMath
outperforms the top general-purpose model Qwen2-VL
by 16.0%, 24.4%, and 9.7% on plane geometry, analytic
geometry, and solid geometry problems, while exceeds the
dedicated math-specialized model MultiMath by 44.0%,
36.6%, and 34.3%. In Chinese algebra and function
problem-solving, VisionMath achieves 18.0% and 9.6%
advantages over Qwen2-VL and 48.6% and 31.8% leads
against MultiMath. Similar superiority is also observed
on English benchmarks Vision-MathVista and Vision-
MathVerse, where VisionMath substantially outperforms



Model Param VisionMath-Bench Vision-MathVista Vision-MathVerse
PlaGeo AnaGeo Sol Geo Alg Func GPS MWP TD TL VI VD VO
Closed-Source General-purpose MLLMs
Gemini-1.5-flash [49] - 23.0 12.6 20.4 26.4 31.1 62.3 64.4 53.9 443 442 40.0 442
Gemini-1.5-pro [49] - 33.0 232 31.1 40.3 36.3 73.6 66.7 61.7 56.2 52.8 522 53.3
GPT-40 mini [17] - 22.0 13.7 18.4 333 274 53.4 532 473 38.7 34.0 345 34.4
GPT-4o [17] - 31.0 28.4 37.8 44.4 31.0 59.6 67.2 53.9 47.1 45.1 42.1 424
Open-Source General-purpose MLLMs
Phi3V [1] 4B 4.0 32 39 42 5.9 18.8 21.0 16.4 17.0 15.5 154 14.0
Phi3.5V [1] 4B 0.0 0.0 4.9 42 1.5 19.7 37.6 18.8 159 14.3 14.1 17.5
DeepSeek-VL [31] 7B 2.0 1.1 2.9 1.4 44 18.3 26.9 8.5 9.8 10.4 10.2 12.8
MiniCPM-V2.6 [57] 8B 6.0 8.4 11.7 16.7 18.5 375 39.2 17.6 18.1 17.4 17.4 16.4
LLaVA-OneVision [22] 7B 11.0 8.4 8.7 11.1 21.5 29.8 55.9 24.5 21.6 21.1 21.1 16.7
InternVL2 [9] 8B 17.0 11.6 15.5 25.0 27.4 433 52.7 373 29.8 25.8 26.5 25.9
InternVL2.5 [7] 8B 18.0 15.8 16.5 25.0 26.7 452 522 36.7 29.1 27.0 27.7 24.7
Qwen2-VL [52] 7B 33.0 18.9 35.0 38.9 34.8 39.4 52.1 35.0 31.5 29.7 29.2 28.3
Open-Source Math-specilized MLLMs
G-LLaVA [14] 7B 0.0 1.1 1.0 1.4 0.0 23.1 2.1 17.0 15.5 14.1 12.2 53
Math-LLaVA [42] 13B 1.0 22 0.0 2.8 44 313 27.4 17.4 17.5 16.4 16.0 12.6
Math-PUMA-Qwen?2 [63] 7B 1.0 1.1 1.0 2.8 4.4 25.0 30.8 18.3 18.9 19.2 18.5 155
Math-PUMA-DeepSeek?2 [63] 7B 1.0 22 1.1 42 59 19.7 29.3 19.7 19.5 20.0 17.9 12.2
MultiMath [41] 7B 5.0 6.7 104 8.3 12.6 31.8 26.3 17.1 18.2 17.6 18.1 11.7
URSA [33] 8B 2.0 0.0 6.8 42 104 22.1 29.0 15.0 21.3 21.7 20.5 13.3
VisionMath (Ours) 7B 49.0 433 44.7 56.9 444 70.3 69.4 58.0 48.0 453 442 39.6
OCR tool + Open-Source MLLMs
OCR tool + InternVL2.5 [7] 8B 22.0 16.8 13.7 27.8 27.4 48.1 54.9 38.3 29.4 27.3 25.4 29.3
OCR tool + URSA [33] 8B 22.0 14.7 214 26.4 26.7 34.6 425 28.7 23.7 21.6 214 31.2

Table 2. Comparisons of representative MLLMs on vision-form mathematical problem-solving benchmarks. The best results of open-
sourced and closed-sourced MLLMs are marked in orange and blue , respectively.

all open-source MLLMs across all problem types. This
demonstrates that well-designed datasets combined with
rationally progressive training strategies can methodically
build the model’s capabilities—from foundational math el-
ement perception to complex reasoning, thereby achieving
excellent vision-form problem-solving proficiency.

VisionMath is superior to the tool-integrated methods.
A natural question is whether the end-to-end VisionMath
model is better than pipelines that employ OCR tools to
extract textual problem statements, and then feed vision-
form problem image and extracted statements into MLLMs
for solving. The results of InternVL2.5 and URSA inte-
grated with GPT-40 as OCR tools show that our method still
achieves all-around superiority across benchmarks. This
demonstrates that current MLLMs’ performance bottleneck
in solving vision-form math problems stems not merely
from inaccurate mathematical OCR, but more from the need
for enhancements in figure perception and reasoning.

VisionMath achieves competitive results compared to
closed-source MLLMs. Compared to advanced small-
scale closed-source MLLMs, such as GPT-40 mini
and Gemini-1.5-flash, VisionMath maintains comprehen-
sive performance superiority across all evaluation bench-
marks. When benchmarked against large-scale closed-
source MLLMs, e.g., GPT-40 and Gemini-1.5-pro, Vision-
Math’s benchmark performance varies. It leads GPT-40
and Geimi-1.5-pro on VisionMath-Bench, surpasses GPT-

1168

40 while matching performance with Gemini-1.5-pro on
Vision-MathVista, and outperforms GPT-40’s but trails be-
hind Gemini-1.5-pro on Vision-MathVerse.

5.3. Ablations

In this section, we conduct ablation studies on dataset com-
ponents and training strategies employed in our method,
evaluating their contributions on Chinese VisionMath-
Bench and English Vision-MathVerse (overall accuracy is
reported due to space limitations) to validate the efficacy
in enhancing problem-solving capabilities. Note that, Due
to source constraints, 1M subsets of VisionMath-OCR and
VisionMath-IT are sampled for training.

Is a dedicated OCR capability enhancement stage nec-
essary? Yes. As demonstrated in Table 3, omitting the
foundational mathematical OCR capability acquisition dur-
ing initial training leads to significant performance degrada-
tion across both evaluation benchmarks. This verifies that
precise OCR, specifically optimized for text, symbol, for-
mulas of problem statement, serves as a critical enabler for
subsequent correct reasoning execution.

Is the math figure comprehension strengthen stage ben-
eficial? Yes. Table 4 presents results of different meth-
ods: (1) baseline without enhanced figure comprehension,
(2) figure structural understanding enhancement using cap-
tions, (3) figure property understanding enhancement lever-
aging mathematical educational videos, and (4) a combined



VisionMath-Benc
‘ PlaGeo AnaGeo SolGeo Alg Func MathVerse
wo OCR-stage 37.2 31.1 343 313 352 375
Ours 39.0 33.2 36.9 343 378 41.1

Table 3. Effectiveness of Mathematical OCR enhancement.

Fig. M.E. ‘ VisionMath-Benc MathVerse
Cap. Vid. | PlaGeo AnaGeo SolGeo Alg Func
37.0 30.3 322 31.1 324 36.7
v 38.0 313 33.0 336 333 382
v 38.5 33.8 34.6 319 340 39.8
v v 39.0 332 36.9 343 378 41.1

Table 4. Contribution of Figure Captioning (“Fig. Cap.”) and
Mathematical Education Video Learning (“M.E. Vid.”) to enhanc-
ing the mathematical figure comprehension.

Eng. Chi. VisionMath-Benc MathVerse
Pro. Pro. | PlaGeo AnaGeo SolGeo Alg Func
v 24.0 23.8 252 30.1 352 39.2
v 38.2 32.0 35.2 349 373 26.1
v v 39.0 33.2 36.9 343 378 41.1

Table 5. Ablations on the effect of the collected vision-form En-
glish Problem (“Eng. Pro.”) and Chinese Problem (“Chi. Pro.”)-
Solving datasets.

strategy integrating the above enhancement. Compared to
the (1) baseline, both (2) figure structural enhancement and
(3) property understanding enhancement strategies improve
performance, and (4) combining them yields further gains.
This underscores the importance of understanding and uti-
lizing the component structures and properties of math fig-
ures for correct reasoning, making the specialized figure un-
derstanding strengthen stage essential.

Are collected English and Chinese vision-form problem-
solving datasets effective and complementary? Yes. Ta-
ble 5 demonstrates that instruction tuning with exclusively
English (or Chinese) data achieves only acceptable perfor-
mance on their language-specific benchmarks-MathVerse
for English and VisionMath-Bench for Chinese. In con-
trast, simultaneous utilization of bilingual data yields per-
formance improvements on both benchmarks compared to
monolingual training. This demonstrates that mathemati-
cal reasoning capabilities transcend language barriers, thus
aggregating multilingual datasets synergistically enhances
reasoning to develop better problem-solving models.

5.4. Qualitative Analysis

Figure 5 presents visualization examples of vision-
form problem-solving from advanced open-source model
Qwen2-VL, closed-source model GPT-40, and our Vision-
Math. Analysis of the geometry problem in (a) reveals that
both Qwen2-VL and GPT-40 exhibit misinterpretations of
geometric properties: Qwen2-VL incorrectly states “... AB
is parallel to CD, angle A is equal to angle BOC ...”, while
GPT-40 asserts “... AB is parallel to CD... angle C (50°)
and angle A are corresponding angles”. Erroneous geo-
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Problem Image (a)

Problem Image (b)

As shown in the figure, AB parallel CD, CP intersects
AB at 0,AO = PO, if angle C = 50.0 °, then the degree
fangle A is
of angle A is () P
A B
o
c 50° D

A.25° B.30° C.40° D.50°

What is the size of the shaded area under the curve?
Round the answer to 2 decimal places
Y

Qwen2-VL Answer:

Since AB is parallel to CD, angle A is equal to angle BOC
(error 1). Since AO is equal to PO, angle A is equal to
angle BOC, which is equal to angle C. (error 2)
Therefore, the answer is C. (error 3)

GPT-40 Answer:

1. Since AB is parallel to CD and CP intersects them, angle
C(50°) and angle A are corresponding angles.(error 1)
Corresponding angles are equal when two lines are
parallel and are intersected by a transversal.

2. Therefore, angle A is also 50°. So, the degree of angle A
is 50°.

The correct option is D. (error 2)

VisionMath Answer:

Since AB is parallel to CD, we have angle C = angle POB =
50°.

Since AO = PO, we have angle A = angle P.

Therefore, angle A = 1/2 angle POB = 25 °.

Therefore, the answer is S\\boxed{A}S.

Qwen2-VL Answer:
area under the curve is half of the full circle's area (error

1):
\[\frac{1}2} \times 9\pi = \frac{9\pi}{2} \]

EPHIY MSAAH2) = \frac(28.26)(2) = 14.13 (error 2)

To find the area under this curve from \(x=0\) to \(x = 6
\), we need to calculate the area of the semicircle. (error 1)

[ A_{\text{semicirclel} = \frac(9}2) \pi \approx \frac(g}(2}
\cdot 3.14159 \]

\[ A_{\text{semicircle}} \approx 14.13717 (error 2)\]
VisionMath Answer:

Step 1: The given function is \(f(x) = \\sqrt{9 - (x-3)"2\\).

Step 2: The shaded area is a quarter of the circle

shaded area is W\\frac{O\piHAN).
Therefore, the answer is $\\boxed{7.07}5.",

Figure 5. Quantitative comparisons of Qwen2-VL, GPT-40, and
VisionMath on the vision-form mathematical problem-solving
task. Red and green text in answers mark incorrect and correct
math understanding and reasoning, respectively.

metric propositions that propagate through their reasoning
chains, resulting in incorrect answers. In contrast, our Vi-
sionMath precisely interprets the spatial relationships with
the correct proposition “... AB is parallel to CD, we have
angle C = angle POB ...”, demonstrating rigorous geomet-
ric reasoning that ultimately arrives at the correct answer.
This further substantiates the efficacy of the specialized en-
hanced figure comprehension training. In case (b), where
the problem requires calculating the shaded area under the
curve, both Qwen2-VL and GPT-4o fail to capture the con-
straint, erroneously computing the entire semicircle area be-
neath the curve. In contrast, VisionMath accurately parse
the condition, correctly computing the quarter-circle area to
obtain at the validated solution. More qualitative examples
can be found in the Sec. D. of the supplementary materials.

6. Conclusion

In this work, we pioneer the exploration of a practical
vision-form mathematical problem-solving task. We sys-
tematically deconstruct three core capabilities required for
vision-form problem resolution, i.e., precise problem state-
ment OCR, advanced comprehension of math figure struc-
tures and properties, and excellent multimodal reasoning
capacity. Correspondingly, we design a three-phase pro-
gressive multimodal reasoning alignment strategy to in-
crementally develop these competencies. To comprehen-
sively evaluate model performance, we construct multilin-
gual benchmarks spanning various problem types. Exper-
imental results demonstrate that our method significantly
outperforms open-source general-purpose, math-specalized
and tool-integrated MLLMs, while achieve comparable per-
formance to closed-source models with significantly larger
parameter scales.
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