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Abstract

This paper presents a method that utilizes multiple camera
views for the gaze target estimation (GTE) task. The ap-
proach integrates information from different camera views
to improve accuracy and expand applicability, addressing
limitations in existing single-view methods that face chal-
lenges such as face occlusion, target ambiguity, and out-of-
view targets. Our method processes a pair of camera views
as input, incorporating a Head Information Aggregation
(HIA) module for leveraging head information from both
views for more accurate gaze estimation, an Uncertainty-
based Gaze Selection (UGS) for identifying the most reli-
able gaze output, and an Epipolar-based Scene Attention
(ESA) module for cross-view background information shar-
ing. This approach significantly outperforms single-view
baselines, especially when the second camera provides a
clear view of the person’s face. Additionally, our method
can estimate the gaze target in the first view using the im-
age of the person in the second view only, a capability not
possessed by single-view GTE methods. Furthermore, the
paper introduces a multi-view dataset for developing and
evaluating multi-view GTE methods. Data and code are
available at https://www3.cs.stonybrook.edu/
˜cvl/multiview_gte.html.

1. Introduction

Gaze Target Estimation (GTE) is an important problem
with applications in areas such as social behavior analy-
sis [13, 52], human-machine interactions [1, 32], and men-
tal disorder diagnosis [17, 63]. Earlier works studied gaze
behaviors using specialized equipment like eye trackers
[16, 40] or head-mounted cameras [15, 46], which are ex-
pensive and intrusive. Recent advances in deep learning
[23, 26, 36, 62] have facilitated the development of GTE
models to estimate gaze in the wild using ordinary scene
cameras, thereby broadening their range of applications.

Several methods have been proposed for GTE using or-
dinary scene cameras. However, as shown in Fig.1, existing
methods struggle with images in which the subject’s face is
not visible to the camera and multiple potential targets exist.

Figure 1. Benefits of multi-view GTE. Single-view GTE models
struggle with input where the subject face is occluded, and cannot
predict the target location outside the frame. In contrast, a multi-
view GTE model can leverage another view’s information to im-
prove GTE accuracy, and predict the gaze target across views.

In addition, single view GTE methods only function when
both the person and their gaze target are visible in the im-
age. If the gaze target is outside the image, these methods
cannot function at all. These limitations make current meth-
ods restrictive due to the limited field of view of a camera.

Using multiple cameras provides a solution to these lim-
itations. Compared to single-camera systems, multi-camera
setups provide broader coverage and multiple perspectives
of both human faces and the scene background. This en-
ables more accurate gaze estimation by providing a clearer
view of the face, and allows predicting gaze targets that may
appear in a different camera view from the subject. Further-
more, multi-camera setups are widely utilized in many envi-
ronments, such as supermarkets and lecture halls, that could
benefit from non-intrusive gaze target estimation (GTE).

However, there are challenges in developing a method
that effectively leverage multiple cameras for GTE. Due to
perspective changes between different views, directly com-
bining input images or extracted features without account-
ing for the geometric relationship between them, is not ben-
eficial. Meanwhile, in real-world applications, explicit and
complete 3D reconstruction of the scene and subject is not
always feasible, as the views often have limited or no over-
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lap. Even if 3D reconstruction is possible, performing it for
every input—particularly when the subject or other people
move in the scene—would be memory and time-intensive.

In this paper, we introduce the first multi-view GTE
model that effectively and efficiently leverages information
from multiple camera views. Our model builds upon a
transformer-based single-view GTE framework and extends
it to process a pair of camera views. It incorporates a Head
Information Aggregation (HIA) module that leverages the
head appearance information and the geometric relationship
between both views to enhance the head embedding and im-
prove gaze direction estimation. The estimated gaze vectors
are then processed by an Uncertainty-based Gaze Selection
(UGS) module, which selects the more reliable gaze vector
from the two views, replacing the predicted vector in the
less reliable view. Additionally, the Epipolar-based Scene
Attention (ESA) module integrates scene background infor-
mation from different perspectives. Altogether, these mod-
ules enhance the GTE capability with both the gaze and
scene information from multiple views.

Compared to single-view methods, our model leverages
an additional view to achieve significant improvements, es-
pecially when the additional view captures the person’s
head appearance. Our model also addresses a unique sce-
nario that existing single-view GTE models cannot handle:
when the gaze target is visible in one view but the person
is only visible in the second view. This scenario is chal-
lenging as triangulation cannot be used to infer the absolute
depth of the person and scene due to little view overlap. To
address this issue, we estimate absolute depth by compar-
ing monocular depth maps against a pre-reconstructed 3D
scene, generated from a multi-view reconstruction model
[64] prior to training. This allows us to estimate the abso-
lute depth for all new inputs in a scene by applying the 3D
reconstruction model only once.

To train and evaluate our method, we introduce the first
dataset for multi-view GTE: the Multi-View Gaze Target
(MVGT) dataset. This dataset was collected across four
real-world scenes, featuring 28 subjects with precise gaze
target annotations. The images were captured simultane-
ously from multiple calibrated cameras positioned in the
scene. We also introduce a data collection protocol that can
collect data non-intrusively and obtain precise gaze targets
without introducing artifacts.

In summary, our main contributions are: (1) the first
exploration of the multi-view GTE task; (2) a novel GTE
model that effectively leverages the human head and scene
information from multiple views, surpassing current state-
of-the-art single-view models; (3) the MVGT dataset, fea-
turing images captured synchronously by multiple cali-
brated cameras with precise target annotations, along with
a data collection protocol to collect accurate gaze target an-
notations without creating artifacts.

2. Related Works

Gaze target estimation was first investigated in [49], which
introduced the GazeFollow dataset. Lian et al. [38] gener-
ated 2D direction fields for GTE, while Chong et al. ex-
tended the task to predicting whether the target is located in
the image [8] and GTE in videos [9]. Later models adopted
additional modalities such as depth [3, 14, 42, 56, 65] and
human pose [3, 19, 66] for improvement. Recent methods
compute 3D field-of-view (FoV) heatmap as gaze target pri-
ors by predicting a 3D gaze vector and using depth input
[27, 28, 54]. Additional works leveraged transformer archi-
tectures for GTE [53, 55], and jointly predicting the head
location and gaze targets [57, 59]. Some works explored
unified GTE and social gaze prediction [20, 21], or GTE
using fewer labels [43, 58]. All these methods focus on
GTE in a single camera view. Several works have explored
solutions for out-of-frame gaze targets. Recasens et al. [50]
introduced a dataset and a model to predict gaze targets in
future video frames based on a person seen in the current
frame. Li et al. [37] investigated GTE in 360° images, and
Yu et al. [71] learned a joint embedding for first- and third-
person frames. However, they did not leverage the explicit
geometric relationships between views from the calibrated
camera parameters. Furthermore, no previous work has ex-
plored GTE with multiple third-person views, which is in-
creasingly prevalent in real-world applications.
Multi-view settings have been extensively studied in tasks
such as 3D human pose estimation [11, 24, 31, 48, 60] and
3D reconstruction [6, 18, 33, 44, 64, 68]. These meth-
ods estimate the 3D locations of human body/hand key-
points or object/scene point clouds and generally require
large overlap between different views. In the gaze domain,
a few recent works [4, 7, 25] have investigated improving
gaze direction estimations using multi-view input on spe-
cialized datasets [47, 72]. However, these methods impose
several restrictions on the input data: the subject’s head
cannot turn away from the camera, the face must be rec-
tified, and the eyes should be clearly visible. These lim-
itations prevent these methods from being directly appli-
cable to GTE. Nonaka et al. [45] introduced a multi-view
dataset for 3D gaze estimation, but the subjects wore in-
trusive eye-tracking glasses, and their proposed model does
not consider interactions between views. To our knowledge,
no previous work has investigated multi-view GTE, and no
dataset is available for training and evaluating this task.

3. Multi-View Gaze Target (MVGT) Dataset
For the development and evaluation of multi-view GTE
models, we collected a dataset named MVGT. The dataset
contains 13,686 images of size 4000×3000 with 2,281
unique gaze targets, resulting in 68,430 pairs when pairing
camera views for multi-view GTE. The images were cap-
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Figure 2. Dataset samples and information. (a) Example images and annotations of the subject’s head location (green bounding box) and
the gaze target (yellow dot) from all 6 cameras. (b) Dataset information including the density of the gaze target in the entire dataset, the
camera setup in an example scene, and the number of cameras that the gaze target appears.

tured by 6 synchronized GoPro Hero 8 cameras from four
scenes: a university commons room, a small convenience
store, a kitchen, and a research lab space. Images are dis-
tributed approximately evenly across scenes. The cameras
were controlled by a cellphone via Bluetooth for simultane-
ous image capturing, and were calibrated before data col-
lection (see Supplementary). Fig. 2 shows examples of im-
ages and annotations. In total, 28 subjects participated in
the data collection, with 7 subjects in each scene. We pro-
vide detailed annotations per image, including the subject’s
head bounding box (detected with a YOLOv5 head detec-
tor [29, 61]), the 2D gaze-target coordinate, and a visibility
label. Human annotators mark the laser point as gaze tar-
get location and classify each as “target inside,” “target out-
side,” or “target occluded,” representing 44.3%, 47.5%, and
8.2% of the dataset, respectively. Fig. 2(b) shows most tar-
gets are simultaneously visible in at least two camera views.

We also introduce a non-intrusive data collection proto-
col for obtaining precise gaze targets without artifacts. Dur-
ing collection, each subject was instructed to point to a ran-
dom gaze target with a handheld laser pointer, then turn off
the pointer while maintaining their gaze on the target. By
comparing images with and without the laser point (Fig. 3),
we accurately determined the gaze target location. This ap-
proach is both cost-effective and more precise than letting
annotators subjectively infer the targets [9, 49]. The dataset
only contains images without laser points, while images
with laser points were used solely to establish the ground
truth. This protocol avoids artifacts on the gaze object com-
pared to using an image-inpainting model to remove the
laser point [28]. Meanwhile, it is easily applicable to new
scenes and allows for future extension of the dataset. To
introduce pose variability, subjects were asked to stand for
half of the samples and sit for the other half.

(a) taken with laser pointer on (b) taken with laser pointer off
Figure 3. Images of a subject looking at the same gaze target, one
with the laser pointer on (a) and one with the laser pointer off (b).

4. Multi-view Gaze Target Estimation

In this section, we describe our method for multi-view GTE.
To maximize applicability, our model processes a pair of
images as its basic operation, with the potential to analyze
more images by aggregating results from multiple pairs. For
a pair with a primary view and a reference view, the method
predicts the gaze target location and in/out probabilities for
each view by leveraging information from the other view.

4.1. Processing pipeline
The processing pipeline of our framework is shown in
Fig. 4. The input consists of a pair of images from the pri-
mary and reference views, I1, I2 ∈ R3×H×W , and the head
bounding boxes of the subject in each view xbox

1 ,xbox
2 ∈

R4. We assume that the camera intrinsic parameters,
K1,K2 ∈ R3×3, and extrinsic parameters, R1,R2 ∈ R3×3

and t1, t2 ∈ R1×3, are also known for the two views.
Since both images undergo similar processing steps, we

will omit the view index for brevity unless specified oth-
erwise. Given an image and the subject’s head box, we
crop out the head image Ih, also creating a binary mask
Mh ∈ R1×H×W of the subject head location in the im-
age. The head image is first processed by the Head In-
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Figure 4. Overall framework. Our method takes images from a pair of camera views as input. The head images are processed by the HIA
and UGS module to output enhanced head embeddings and generate FoV heatmaps from more accurately estimated gaze vectors benefiting
from multi-view input. Camera parameters are provided as input to HIA and UGS to encode the geometric relationship and transform gaze
vectors between views. The FoV heatmaps are input as priors to the multi-view scene encoder with the scene images. The output scene
features and head embeddings are fed to a gaze decoder followed by output heads to output the gaze target heatmap and in/out probabilities.

Figure 5. Structures of HIA and UGS. HIA aggregates head infor-
mation from the other view using the head appearances and geo-
metric relationships between views. UGS selects the more reliably
predicted gaze vector based on the output uncertainty scores and
transforms it to the other view using the camera parameters.

formation Aggregation (HIA) module, which outputs the
head embedding eh ∈ Rd after interactions across views.
The head embedding is then processed by the Uncertainty-
based Gaze Selection (UGS) module to output a more ac-
curate 3D gaze vector g benefiting from multiple views.
Field-of-view (FoV) heatmaps Mf ∈ R1×H×W are com-
puted from the predicted gaze vectors, serving as gaze tar-
get priors. These heatmaps are concatenated with the scene
images and head masks for each view and are fed into a
multi-view scene encoder that contains two Epipolar-based
Scene Attention (ESA) modules, outputting the scene fea-
ture Fs ∈ Rc×h×w. The scene features and head embed-
dings are then input to a gaze decoder and the output heads,
which produce the gaze target heatmap H ∈ R1×64×64 and
the probability pin that the target is located in the image.

4.2. Head Information Aggregation Module
We propose the HIA module that leverages head images
from both camera views to enhance the head embeddings
and improve gaze vector estimations. First, the head feature

Fh ∈ Rc0×h0×w0 is extracted from the head image Ih using
a ResNet-18 backbone. Then, Fh is flattened into tokens of
Rc0×h0w0 . The tokens enter the Head Attention module as
queries, which is a cross-attention block to aggregate infor-
mation from the keys and values of the other view. Take the
primary view as an example:

F̃h
1 = Fh

1 + CrossAtt(Qh
1 ,K

h
1 ,V

h
1 ), (1)

where Qh
1 = Wh

q (F
h
1 ),K

h
1 = Wh

k (F
h
2 ⊕ R21), Vh

1 =

Wh
v (F

h
2 ⊕ R21), and Wh

q ,W
h
k ,W

h
v are the linear projec-

tion layers. Following [41], we concatenate the keys and
values with the relative camera rotation R21 to incorpo-
rate the geometric relationship information between views,
where R21 = R1R

−1
2 . As shown in the Supplementary,

both the relative rotation and the head appearance from the
other view are vital for performance improvement. F̃h

1 are
average-pooled to produce the head embedding eh1 . The ref-
erence view undergoes a similar process to yield eh2 .

4.3. Uncertainty-based Gaze Selection Module
Although the HIA module helped the information propaga-
tion, the two input views can still predict gaze vectors of
different qualities. Therefore, we propose the UGS module
which picks the more reliably predicted gaze vector from
the two views to generate better-quality FoV heatmaps. To
find out the more reliable view, we extend the gaze es-
timator in GTE models to predict an uncertainty score σ
along with the gaze vector g. We make the model learn
the Aleatoric Uncertainty [35] of the input image with the
uncertainty-aware loss Lgaze between the predicted gaze
vector g and the ground-truth ĝ, similar to [10]:

Lgaze(g, ĝ) =
1

2σ2
(1− g · ĝ

||g||2||ĝ||2
) +

1

2
log(σ2), (2)

where the first term is the cosine angular loss suppressed
by the uncertainty score, and the second is a regularization
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term. The ground truth gaze vector ĝ can be obtained from
the pseudo point cloud using the ground truth gaze coor-
dinate, which we will show later. As shown in previous
works [10, 35], the model trained with this form of uncer-
tainty loss tends to predict a larger σ for the predictions with
larger errors. Therefore, we select the view predicted with
lower σ and replace the other view’s prediction with the one
with lower uncertainty using camera transformation:

g′
j = RjR

−1
i gi, i, j ∈ {1, 2}, σi < σj (3)

The gaze vectors are used to generate the FoV heatmaps
with the monocular depth maps D. The camera intrinsic
matrix K is represented as:

K =

fx 0 cx

0 fy cy

0 0 1

 . (4)

Given a pixel coordinate (u, v) in the image, the 3D point
cloud P (u,v) = [P x, P y, P z] in the camera coordinate sys-
tem of the input view is represented as:

P x = (u− cx)/fx ∗D(u, v),

P y = (v − cy)/fy ∗D(u, v),

P z = D(u, v).

(5)

Therefore, the 3D vector from any pixel (u, v) to the sub-
ject’s eye (ex, ey) can be obtained as V(u,v) = P (u,v) −
P (ex,ey), and the ground truth gaze vector ĝ is V(gtx,gty).
Similar to [54], they are computed from “pseudo” point
clouds, as D contains relative depth values from a monocu-
lar depth estimation model, which is up to a scale and shift
factor to the absolute depth D∗. However, when we use
a depth estimation model that has low depth distortion and
shift [69, 70], we can ignore the shift term, and V(u,v) will
only be the same due to the elimination of the scale factor
based on Eq. (5). Based on the pseudo point clouds, we
obtain the value at (u, v) in the FoV heatmap:

Mf (u, v) = max(0,
V(u,v) · g

||V(u,v)||2||g||2
). (6)

We adopt an exponential decay scheme if the value on
the FoV heatmap is lower than 0.9, as in [54]. As shown in
Supplementary, we observe larger σ values for gaze vectors
with larger errors, and by selecting the more reliable view,
UGS improves the FoV heatmap and final prediction, espe-
cially when the original predicted vector has a large error.

4.4. Multi-view Scene Encoder
The FoV heatmap Mf is used as priors and concatenated
with the scene image I and the head mask Mh for both
views, and input to the multi-view scene encoder. As shown
in Fig. 6, the multi-view scene encoder consists of a ViT-
base [12] encoder along with two Epipolar-based Scene At-
tention (ESA) modules for propagating scene information

Figure 6. Structure of the multi-view scene encoder and ESA
module. The transformer blocks are shared between the two in-
put views. Two ESA modules are inserted in the transformer en-
coder. In ESA, each feature token attends to multiple tokens sam-
pled along the epipolar line in the other view.

between views. The transformer blocks are shared between
views. In the ESA module, each token in one view attends
to the feature tokens uniformly sampled along the epipolar
line of the other view. Take a token p with a coordinate of
(u, v) in the primary view feature Fs

1 as an example:

p′ = p+ CrossAtt(W s
q (p),W

s
k (Ep),W

s
v (Ep)), (7)

where Ep = {ql}Nl=1 are the feature vectors sampled along
the epipolar line of p in Fs

2. The epipolar line is com-
puted from the fundamental matrix: lepi = Fx, where
x = [u, v, 1]T and F is computed from the camera param-
eters using multi-view geometry [22]. Epipolar attention
has been used in multi-view tasks including 3D reconstruc-
tion [30, 67] and pose estimation [24], where it enhances the
feature with another view’s appearance associated in 3D,
especially in the case of occlusion in the primary view. In
our case, it also saves computation and memory compared
to dense cross-attention on the higher-resolution scene fea-
tures. We observed that ESA improves GTE performance
when the other view contains the gaze target.

4.5. Output and Losses
In the final stage, the head embedding ẽh and the scene fea-
ture Fs from the scene encoder is fed to a gaze decoder.
The head embedding ẽh is eh from the HIA module added
with a positional encoding epos, which is mapped from the
normalized head center coordinate with an MLP. The head
embedding ẽh is used as a query while Fs serves as the key
and value. The gaze decoder outputs a gaze token eg . For
gaze target estimation, eg is element-wise multiplied with
each token in Fs, and fed into a heatmap head to output the
gaze target heatmap H. On the other hand, the head embed-
ding ẽh is also concatenated with the gaze embedding eg to
output the probability of the target located in the frame pin.

The overall training loss is formulated as:

L = αLhm + βLio + λLgaze, (8)
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Figure 7. The modified model structure for cross-view GTE. The
parts encircled in red are the modules we modified/added for the
cross-view gaze estimation cases. Modules for estimating the gaze
vectors are the same as above and omitted.

where Lhm is the Mean-Square-Error (MSE) loss between
the predicted heatmap H and the ground truth heatmap Ĥ
which is a Gaussian centered at the ground truth gaze target
coordinate. Lio is a binary cross-entropy loss between pin

and the ground truth in/out label. For gaze targets labeled
with “occlusion”, we assign them to the “inside” class for
the in/out task, as these targets remain within the frame but
are merely obscured by other objects.

4.6. Cross-view Estimation
Our method can be extended to address cross-view estima-
tion, where the primary view only contains the gaze target,
and the subject is only visible in the reference view. In this
case, we need to generate the FoV heatmap Mf

1 using the
eye location P

(ex,ey)
2 and the predicted gaze vector g2 from

the reference view. However, as mentioned in Sec. 4.3, the
point clouds were “pseudo” point clouds of which the depth
values are up to a scale and shift to the real absolute depth,
so the actual 3D location of P ∗(ex,ey)

2 is not known. There-
fore, the eye location P ∗e

1 in the primary view’s camera co-
ordinate system cannot be directly obtained.

We use a Multi-view Stereo model to reconstruct the
scene in 3D to obtain the absolute depth values. As in the
cross-view cases, the input pair of view usually has little or
no overlap (Fig. 7), we assume that a set of images from all
six cameras have been obtained before the capturing of in-
put data, so that the 3D scene can be reconstructed. We use,
e.g., six images collected in extrinsic parameters calibra-
tion to reconstruct the 3D scene with a SOTA multi-view re-
construction model, Dust3R [64]. When inputting the cam-
era parameters calibrated in real-world metrics, Dust3R can
generate depth estimations that are very close to the abso-
lute depth values by optimizing a reconstruction loss [64].
After obtaining the absolute depth values for both views,
for each image, we estimate the scale and shift between the
monocular depth map in each new input image and the abso-
lute depth in the reconstructed scene. In this way, P ∗(ex,ey)

2

can be obtained, along with P ∗e
1 via camera transforma-

tion, from which Mf
1 can be generated. We provided the

detailed procedure for scale and shift estimation and some
reconstruction examples in Supplementary.

On the other hand, we also updated the later part of the
model for cross-view GTE (Fig. 7). As the primary view
does not contain the subject’s head, we add a feature trans-
form module to generate the head embedding ehout1 from
the reference view. The feature transform module is a two-
layer MLP, which takes the concatenated input of the ref-
erence view’s head embedding eh2 and the relative camera
rotation R21. Meanwhile, we add a learnable “outside em-
bedding” eposout to ehout1 as the positional embedding to get
the final head embedding for primary view. In the exper-
iments, we fine-tuned our model trained for the ordinary
multi-view setting above on the view pairs that fall in the
cross-view GTE category. As will be seen, our method can
predict the cross-view gaze targets well.

5. Experiments

5.1. Experimental setups

Implementation details. We process the scene image at
a resolution of 512×384 and the head crop at a resolution
of 224×224. The gaze backbone is a ResNet-18 [23] pre-
trained on Gaze360 [34], while the transformer part of the
multi-view scene encoder is a ViT-base [12] model pre-
trained with MultiMAE [2]. We used Metric3D [70] for
monocular depth estimation. In ESA, we sampled 48 fea-
ture vectors along the epipolar line for each query token.

Training and evaluation. To simulate the real-world ap-
plication of applying a trained model to a new scene with
multiple camera setups, we performed leave-one-scene-out
cross-validation in our experiments. In the experiments,
all models are first trained on the GazeFollow dataset [49],
fine-tuned on three scenes of our MVGT dataset, and then
validated on the left-out scene. Each of the four scenes was
left out for validation, and the results averaged across scenes
are reported. For our method, we train the single-view ver-
sion of the model on GazeFollow and fine-tune the whole
model on the MVGT dataset. We used a batch size of 40
pairs of views. The specific parameter settings for validat-
ing each scene are described in the Supplementary.

Evaluation metrics. We use the normalized L2 Distance
(Dist.) between the predicted gaze target coordinates and
the ground truth gaze target annotations to evaluate GTE
performance. AUC is not used because it is more suited for
evaluating the alignment of predicted heatmaps with group-
level annotations, making it less suitable for datasets with
single-point annotations, as explained in [55]. We use AP
to evaluate the performance on in/out classification.
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Method
Head Visible Head Not Visible

Target Visible Target Not Visible Target Visible Target Not Visible
Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑

Random 0.451 0.555 0.456 0.546 0.464 0.502 0.457 0.564
Center 0.259 / 0.261 / 0.272 / 0.253 /
Chong [9] 0.159 0.855 0.157 0.862 0.191 0.792 0.174 0.866
Miao [42] 0.141 0.886 0.140 0.892 0.164 0.831 0.163 0.886
Tafasca* [54] 0.149 0.893 0.148 0.895 0.166 0.831 0.154 0.884
Ours-Single 0.151 0.877 0.148 0.878 0.179 0.758 0.154 0.855
Ours 0.129 0.909 0.122 0.912 0.161 0.836 0.152 0.868

Table 1. Comparing with single-view GTE methods on test data divided based on the head
and target visibility in the reference view. Best numbers are marked as bold and 2nd best
are underlined. Our method shows large improvement when the subject head is visible,
while maintaining comparable performance when the head is not visible.

Figure 8. Results regarding different head ori-
entations in the reference view. Our method
shows a much larger improvement when the
subject face is half/fully visible.

5.2. Comparison with Single-View Methods

We compare our multi-view GTE method with SOTA
single-view GTE methods, and the single-view baseline
version of our method (Ours-Single). In Ours-Single, we
exclude the HIA, UGS, and ESA modules to eliminate inter-
action between views, and the gaze estimator only outputs a
single gaze vector without the uncertainty score. We evalu-
ate the model on primary views, treating the reference view
as additional input. To ensure a fair comparison with single-
view methods, when a primary view image (e.g., Camera1)
is paired with different cameras (Camera2, Camera3, etc.)
in multiple pairs, we evaluate on the primary view for each
pair and average the scores for the same primary view im-
age. This ensures the same total number of testing samples,
enabling direct comparison between methods.

We experimented with the following baseline methods:
Random generates heatmap response and in/out probability
randomly in a [0,1] uniform distribution. Center generates
a heatmap always at the image center. Chong [9] is a pop-
ular GTE model that only uses RGB input. Miao [42] uses
monocular depth maps as direct input for GTE. Tafasca [54]
is a recent model that generates a FoV heatmap from a pre-
dicted 3D gaze vector and a monocular depth map. We re-
implemented the model and were able to reproduce its per-
formance on the GazeFollow dataset (See Supplementary).

To better understand the benefits of using an additional
view, we divide the test cases into four categories based on
the visibility of the subject’s head and the gaze target in the
reference view. The number of samples for each category is
shown in Supplementary. In Tab.1, our method shows sig-
nificant improvement when the reference view contains the
head, while maintaining comparable performance with the
best baselines when it does not. The improvement is most
pronounced when the reference view includes the head but
not the gaze target, which typically occurs when the subject
is facing toward the camera with a clear face appearance.

The benefits of the reference view are further highlighted
by comparing to our method without the reference view
and multi-view processing (Ours-single). The advantage of

the reference view is clear, except when neither the head
nor the target is visible in it, as expected, since little addi-
tional information can be gained in this case. As shown in
Fig. 9, our methods can leverage the useful face informa-
tion from the reference view and obtain higher-quality FoV
heatmaps (Rows 1-2). It also benefits from the appearance
of the gazed objects in a different perspective (Row 3). This
demonstrates the effectiveness of our method in leveraging
two-view input. Using more than two views can further im-
prove performance, as shown in the Supplementary.

Performance Regarding Head Orientation. We further
investigate the effect of the face visibility when the refer-
ence view contains the subject’s head, by analyzing the head
orientation. We use a head pose estimation model [51] to
obtain the yaw angle from the head image. The head pose
estimator does not perform well when the head is facing
away from the camera, so we combine it with a face key-
point estimator [5] to divide the head orientations into three
categories: backward: < 30 face keypoints are detected;
sideways: ⩾ 30 face keypoints are detected and the head
pose yaw angle ⩾ 55°; forward: the remaining images.

The results are shown in Fig. 8. As illustrated, having
the head visible in the reference view consistently provides
benefits, reducing the distance error. The error reduction
rate is 23.7% and 23.2% for forward and sideways orienta-
tions, respectively—significantly greater than the 9.3% er-
ror reduction rate when the person is facing backward.

5.3. Ablation Study

Tab. 2 shows the ablation study results. The first row shows
the single-view baseline version of our method. When the
gaze estimator is extended to predict an uncertainty score σ,
the model shows a small improvement due to better gaze
vector prediction [10]. The HIA module significantly im-
proves the performance by incorporating head information
from the reference view and the geometry relations, which
lead to more accurate gaze vectors and enhanced head em-
beddings when input to the output heads. The UGS mod-
ule further improves the performance by selecting the more
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Figure 9. Qualitative comparisons of our method with and without multi-view pro-
cessing. Yellow dots indicate ground truth. Our method can leverage the head
appearance in the reference view to obtain better FoV heatmaps (Rows 1&2), and
get enhanced performance using the scene appearance from the other view (Row3).

Figure 10. Qualitative examples for cross-view
GTE. The reference view input, and the primary
view’s FoV heatmaps and predicted heatmaps are
shown. Ground truth is shown as yellow dots.

σ HIA UGS ESA
Head Visible Head Not Visible

Target Visible Target Not Visible Target Visible Target Not Visible
Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑ Dist. ↓ AP ↑
0.151 0.877 0.148 0.878 0.179 0.758 0.154 0.855

✓ 0.145 0.874 0.147 0.874 0.177 0.756 0.151 0.855
✓ ✓ 0.135 0.896 0.133 0.897 0.174 0.821 0.153 0.873
✓ ✓ ✓ 0.130 0.902 0.123 0.908 0.170 0.810 0.152 0.863
✓ ✓ ✓ ✓ 0.129 0.909 0.122 0.912 0.161 0.836 0.152 0.868

Table 2. Ablation Study Results. All three modules demonstrate their effectiveness in leverag-
ing multi-view information to improve GTE accuracy.

Method Dist. ↓ AP ↑
Random 0.446 0.462
Center 0.245 /
DeepGazeIIE [39] 0.248 /
Recasens [50] 0.271 0.542
Ours 0.188 0.820

Table 3. Cross-view GTE results.

accurate gaze vector in the two views. The ESA modules
provide further improvement when the gaze target is visi-
ble (1st and 3rd columns), suggesting that they add help-
ful scene context for GTE. The improvement is relatively
less when the head is visible in reference because the gaze
vectors and the corresponding FoV heatmaps determine the
priors for the potential attended area, instead of the scene
background. See the Supplementary for more detailed anal-
yses of the proposed modules. Notably, the benefits of in-
corporating camera parameters as input in the HIA module
for the in/out prediction task, are evident.

5.4. Cross-View Estimation

In this section, we train the model to predict the gaze tar-
get in the primary view which contains the target but not
the subject, by using the person’s appearance in the refer-
ence view. We fine-tune the model trained in the ordinary
multi-view setting above on these cross-view camera pairs
(around 7000 pairs). In this case, none of the single-view
GTE models can predict the targets or serve as baseline
methods. The strongest baseline we propose is adapting a
method for predicting gaze targets in future video frames
from the current observed frame [50] (outside of the current
observed frame). We fine-tune it on the cross-view sam-
ples in our dataset, treating the reference view as the “cur-
rent frame” and the primary view as the “future frame.” We

also evaluated DeepGazeIIE [39] as a representative base-
line of the saliency prediction model. Table 3 shows that
our method outperforms the other approaches by a wide
margin. The qualitative examples in Fig. 10 demonstrate
that our method generates reasonable FoV heatmaps in the
primary view based on the person’s appearance in the refer-
ence view, and predict target locations reasonably well.

6. Conclusions

This paper proposed the first method for multi-view gaze
target estimation (GTE). The model incorporates a Head
Information Aggregation (HIA) module to aggregate head
information, an Uncertainty-based Gaze Selection (UGS)
module to select the more reliable gaze vector predicted,
and Epipolar-based Scene Attention (ESA) module for inte-
grating scene background information. Our method shows
large improvements when the reference view contains the
person’s head, and can be extended to cross-view GTE
that single-view methods cannot handle. In addition, we
introduced the MVGT dataset, the first dataset for multi-
view GTE with calibrated camera parameters and precisely
annotated targets. Future work could explore learning
geometric-aware features without inputting camera param-
eters, or address the cross-view task without access to the
reconstructed 3D scene. We expect our work can draw more
attention to using multi-view input in the GTE domain.
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