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Abstract

Multimodal LLMs are turning their focus to video bench-

marks, however most video benchmarks only provide out-

come supervision, with no intermediate or interpretable rea-

soning steps. This makes it challenging to assess if mod-

els are truly able to combine perceptual and temporal in-

formation to reason about videos, or simply get the cor-

rect answer by chance or by exploiting linguistic biases.

To remedy this, we provide a new video reasoning dataset

called MINERVA for modern multimodal models. Each ques-

tion in the dataset comes with 5 answer choices, as well

as detailed, hand-crafted reasoning traces. Our dataset is

multimodal, diverse in terms of video domain and length,

and consists of complex multi-step questions. Extensive

benchmarking shows that our dataset provides a challenge

for frontier open-source and proprietary models. We per-

form fine-grained error analysis to identify common failure

modes across various models, and create a taxonomy of

reasoning errors. We use this to explore both human and

LLM-as-a-judge methods for scoring video reasoning traces,

and find that failure modes are primarily related to tempo-

ral localization, followed by visual perception errors, as

opposed to logical or completeness errors. The dataset,

along with questions, answer candidates and reasoning

traces is publicly available under https://github.com/google-

deepmind/neptune?tab=readme-ov-file#minerva.

1. Introduction
Video understanding has long been a holy grail for computer
vision. Video benchmarks have evolved from testing action
recognition on short clips [17, 26, 50] to more recent bench-
marks testing advanced capabilities over longer time hori-
zons (LVBench [45], VideoMME [15], Neptune [34], and
others). The development of the latter has been supercharged
by the rise of multimodal large language models [1, 6, 39],
which perform complex video tasks on videos up to an hour
long [45]), and are steadily approaching human performance
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on these recent benchmarks [15, 34].

While these datasets aim to measure complex video under-
standing capabilities, they do not provide further insight into
how or why models succeed or fail beyond the correctness
of their final answers. One way to inspect model failures
is by exposure to step-by-step rationales generated by the
model. Attempts to improve these rationales have led to a
paradigm shift towards models (particularly in the text do-
main), that spend more time “thinking" [3] i.e. producing
intermediate thoughts towards a final answer, often via ad-
ditional compute at inference time [24, 42]. ‘Thinking’ or
reasoning in the video domain, however, looks very different
to reasoning in the text or coding domain. In the text domain,
models can directly quote sections or edited versions of the
input as thoughts – these intermediates are easier to assess
by humans, or by another language model. This is not the
case for the video domain. The high dimensionality and
multi-modality of video means that solving a video task of-
ten requires temporal localization, perceptually recognizing
key objects, events and actions (from multiple modalities
such as speech or frames) and applying logical reasoning
to tie these intermediates all together. Complex queries in
video question answering (videoQA) hence naturally require
multi-step processes to solve, where each step may require a
different skill and/or access to a different modality input. We
henceforth refer to this multi-step process as a ‘reasoning
trace’ for videoQA. This includes the set of the steps required
to solve the question, including perception and localization.

Yet, despite the fundamentally multi-step nature of this
capability, existing video benchmarks only evaluate final
answers: they only check the outcome and not the reasoning.
It is not clear, however, if a model arrives at a correct answer
due to a successful execution of key steps, pure chance, lin-
guistic bias, or the process of elimination of answer choices.
Conversely, if it fails to produce the correct answer, was it
completely unable to solve the problem, or did it get close
but ultimately make a mistake that changed the final answer?
Using final answers alone makes it difficult to design datasets
that will remain challenging but still provide signal; all the
more pertinent as new models improve at breakneck speed.
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Question: How many times does the ball 
change hands on the play that results in 
Pampanga having 52 points on the 
scoreboard?

I watched the play that increased Pampanga's score in the game to 52, which was played from 07:07 - 
07:19, and counted the number of times the ball changed hands from the start of the play to the score. I 
counted the first possession change at 07:09, when the player with the number 8 jersey passes the ball 
to the player with the number 19 jersey. I watched the player with the number 19 jersey hand off the ball 
to the player in the number 15 jersey at 07:12, marking the second possession change. I then watched 
the third possession change take place from 07:13 - 07:14 when number 15 passed the ball back to 
number 19, who then scored at 07:16 to increase Pampanga's score to 52. Thus, three total possession 
changes occurred during the play before the basket.

(a) 5 (b) 3 (c) 4 (d) 2 (e) 1 

Skills: Counting, Reading, Temporal Reasoning, Event Localization

Question: Approximately how long would it take 
the woman to knead the dough if she was 
working twice as fast?

(a) 30 seconds (b) 45 seconds (c) 2 minutes(d) 
3 minutes (d) 20 seconds 

I watched the video and kept track of how long it takes the woman to knead the dough in the 
video. She begins mixing the dough at 01:11 with a spoon to incorporate the water. Then, at 
01:21, she begins mixing and kneading by hand. She continues kneading the dough until 
02:40. Therefore, it takes her 1 minute and 29 seconds to knead the dough in the video, or 89 
seconds. If she was working twice as fast, it would have taken her approximately 45 seconds.

Skills: Counting, Numerical Reasoning, Counterfactual

Question: Using the magnitude of the 
gravitational force of the moon given in the 
video and a value of d=5, what would the 
answer be to the equation given at 03:16?

(a) 8.25 (b) 8.0 (c) 8.1 (d) 8.5 (e) 7.9
I heard the narrator say that weight relates to the force of gravity at 02:20. Then, I observed an example of 
the same mass on the earth versus the moon at 02:26. I read that the weight was mass times the force of 
gravity. I read that the force of gravity in the example for the moon was 1.62 m/s^2 at 02:26. I moved to 
03:16 to find the equation. I heard the equation was "W = Fd" and heard that the variables were "Work" 
"Force" and "Distance". Therefore, I used the gravitational force of the moon for F and the value of 5 given 
from the question for D. I calculated (1.62 m/s^2)(5 m) = 8.1 J.

Skills: Numerical Reasoning, Reading, Listening, Temporal Reasoning

Question: Why does the gravedigger pull a 
gun on the man in the khaki suit?

(a) To save his parents (b) To save the strangers (c) To 
save his children (d) To save himself (e) To save his 
enemies

I watched the entire video and never saw the gravedigger interact with the two young men or acknowledge 
them, and therefore determined he did not know them. I watched the video until the 02:58 mark and saw 
that the man is digging a grave. At 03:02 there's a clear shot of him noticing the two men being held at 
gunpoint. I continued to 03:38 where it becomes clear the man in the khaki suit plans to kill the young men 
by covering them in driveway sealant. At 03:51 the gravedigger pulls a gun on the man in the khaki suit and 
commands him to stop what he's doing to the two young men. Therefore, it became clear that the 
gravedigger pulls a gun on the man in the khaki suit to save the lives of strangers.

Skills: Goal Reasoning, 'Event Occurrence, Temporal Reasoning

Figure 1. Examples from MINERVA: We introduce MINERVA, a complex video question-answering dataset. Unlike existing video datasets,
the answer to each question is accompanied by a detailed reasoning trace, which outlines the steps required to come to the answer. Videos
cover multiple domains such as (clockwise) – sports, cooking, short films and science lectures. Reasoning traces are detailed, including
timestamps (highlighted in green) and key actions (highlighted in pink). We show a single frame from each video.

In light of this, we release MINERVA1 – a benchmark
for video reasoning which consists of question, answers and
reasoning traces. MINERVA is challenging and complex –
every question requires multiple steps to solve, and even the
very strong Gemini 2.5 Pro Thinking achieves only 66.2%
accuracy, while humans are able to achieve 92.5%. The
dataset is hence well positioned for hill-climbing and fu-
ture assessment of multimodal models. Every question in
MINERVA requires complex reasoning using two or more
skills (for example numerical reasoning, temporal reason-
ing, spatial navigation). Videos also span multiple domains
(short films, sports, instructional videos etc), with various
video lengths (from 2 minutes to over 1.5 hours), making
the dataset diverse. For each question we also provide the
hand-crafted, detailed reasoning trace, with the steps that
are required to come to the correct answer. Unlike datasets
that provide auxiliary information in a single format such
as timestamps (LITA [21], CG-Bench [10] + others), the
reasoning trace is an unconstrained block of text - allowing
flexibility. Each reasoning trace does include timestamps
where necessary to refer to relevant sections of the video, but
also describes key actions, objects, as well as outlines logical
reasoning steps (see Fig. 1 for examples). For each question,
we also release a number of less challenging sub-questions,
with each sub-question typically representing a single step
in the reasoning chain.

1Multimodal INterpretablE Reasoning Video Annotations. Minerva is
also the Roman goddess of thinking and wisdom.

We benchmark both open-source and proprietary models
on our dataset, and manually compare some of their rea-
soning traces to the ground truth reasoning annotations to
identify failure modes. We use these failure modes to build
a taxonomy of errors (in other words, a rubric) for video
reasoning. This rubric is specific to the video domain, and
highlights the following broad categories of errors - (1) Per-
ceptual Correctness, (2) Temporal Localization, (3) Logical
Reasoning and (4) Completeness. We use this rubric to as-
sess how both humans and LLMs grade reasoning outputs
along these criteria when given the ground truth reasoning,
illuminating where automatic graders correlate to humans
and where they may not, highlighting directions for potential
improvement for reference-based metrics. In addition, we
also find in some cases that LLM performance on video rea-
soning improves simply by being prompted with the rubric,
in rough analogy to ‘Let’s think step by step’ [27] in text rea-
soning. To summarize, we make the following contributions:
(i) We introduce MINERVA, a challenging video reasoning
benchmark for LMMs consisting of 1,515 hand-crafted ques-
tions and 4,065 less challenging sub-questions. For each
question, we provide 5 answer choices, as well as detailed,
manually-annotated reasoning traces; (ii) We evaluate mul-
tiple frontier models on MINERVA, both open-source and
proprietary, and perform ablations to show low textual bias
and the importance of visual information; (iii) we perform
fine-grained error analysis to identify common failure modes
across various models, and create a taxonomy of reasoning
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errors. We find that failure modes are primarily related to
temporal localization and visual perception. Preliminary
analysis of LLM-based metrics show areas for future work.

2. Related Work
2.1. Recent VideoQA Datasets
There exist many valuable video datasets. Temporal-
Bench [7] and PerceptionTest [36] include a variety of tasks,
such as video QA, captioning, and grounding, but contain
shorter videos (most videos under 2.5 minutes). Similarly,
CinePile [38] and VideoVista [29] focus on short-form con-
tent (average of 160s). VideoVista [29] is notable for its
broad coverage of 19 understanding and 8 reasoning tasks.
These benchmarks, along with InfiniBench [5] (maximum
52-minute videos), and Neptune [34], rely on semi-automatic
pipelines using LLMs for annotation. In contrast, our dataset
is entirely manually annotated. TVBench [11] specifically
addresses the challenge of temporally difficult answer can-
didates. E.T. bench [32] focuses on multi-event and time-
sensitive understanding, using human-annotated videos with
a maximum length of 795 seconds. Video-MME [15] bridges
the gap between short and long-form content, and datasets
such as LVBench [45] (average length 68 minutes) and
HourVideo [8] ( egocentric videos, 20 to 120 minutes) ex-
tend to even longer videos. In contrast to these, our work
provides not only the final outputs but also human-annotated
reasoning traces, allowing us to assess the model’s reasoning
process in addition to its accuracy.

2.2. Reasoning Traces for Video
As discussed in the previous section, few datasets provide
auxiliary dataset beyond final answers. ScienceQA [40] con-
sists of science questions about images, and provides the ac-
companying lectures, which when used for training results in
increased performance with fewer data points. Some recent
works have aimed to develop automatic labeling pipelines
to instead generate noisy auxiliary information at scale. Vi-
sual CoT [41] provides bounding box pseudolabels gener-
ated by off-the-shelf models for image VQA, while VideoE-
spresso [18] does something similar for video, constructing a
pipeline connecting different frozen models together to label
bounding boxes for sparse key frames. VideoCoT [47] is per-
haps the closest to our work, aiming to generate text-based
chain of thought for videos; however, we note key differ-
ences here. The primary goal of VideoCoT is to present
a semiautomatic pipeline using LLMs and VLMs to scale
up for training purposes, while we present a fully manually
annotated, high quality dataset for evaluation purposes. The
videos in VideoCoT are all taken from established Kinet-
ics700 [26], making them shorter and limited in domain.
Finally, their automated rationales tend to contain substan-
tial information about the video that does not relate to the

particular query, rather than providing specific reasoning for
the given question.

2.3. Reasoning Analysis
With the growth of reasoning models, substantial work has
been conducted into analyzing reasoning in text-only settings
and remains an open problem [33]. Previous works demon-
strate that correctness of final answers alone often does not
indicate correct reasoning, commonly due to hallucination of
reasoning steps or answers [16, 19, 37, 44]. These works fall
into (i) reference-based, which use additional human annota-
tion as reference, and (ii) reference-free (evaluation without
such additional information). Unsurprisingly, multiple works
find that reference-based evaluation proves consistently more
reliable [13], and that language models are poor evaluators of
reasoning in isolation [22, 25, 44]. In this work, we primarily
focus on contributing a high-quality dataset with reference
annotations for video reasoning, which may spur the de-
velopment of and provide a comparison for further research
into both reference-based and, by comparison, reference-free
metrics for video reasoning.

Earlier work in reference-based evaluation (before LLMs)
explored rule based methods such as n-grams for summariza-
tion with ROUGE scores [30] or for machine translation with
BLEU [35]. ROSCOE [16] observed the need for evaluation
of reasoning for early LLMs, inspired by chain-of-thought
prompting [48], using various customized metrics such as
word vector similarity. As LLMs advanced, they began to
be used for evaluation themselves, such as via LLM-as-a-
Judge Zheng et al. [52]. MLLM as a judge [9] and LLaVA-
Critic [49] show these capabilities in multimodal settings,
but this has thus far been largely explored for the image-text
domain. Unlike these works, we explore reference-based
LLM-as-a-judge strategies for analysis of video reasoning
traces. In both text and multimodal contexts, well-designed,
itemized evaluation criteria for rating different model re-
sponses give substantially more consistent, well-aligned
LLM scores [31, 52] – we follow along these lines of work
by providing a rubric for scoring video reasoning, and pro-
vide a preliminary analysis of its effectiveness.

3. MINERVA

We introduce MINERVA, a videoQA dataset consisting of
1,515 challenging questions for videos of varying length.
Each question has 5 answer options and a detailed reasoning
trace accompanying the final answer (see Fig. 1 for exam-
ples). The key features of our dataset are: (i) multistep,
complex questions. Each question requires multiple steps
and multiple skills to solve, (ii) multimodality, with both
frames and ASR needed for some questions, (iii) high qual-
ity – the entire dataset is hand crafted by experienced anno-
tators, and most importantly (iv) intermediate reasoning
– detailed, hand-crafted reasoning traces. These reasoning
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Figure 2. Dataset statistics. Video lengths (left), lengths of answers and reasoning (middle), and domains (right). Videos cover a wide range
of lengths, with some longer than 100 minutes. Every question comes with a reasoning trace which is long and detailed, mean number of
words is 92 (middle). Domains are hand-selected to include videos that lend themselves well to complex reasoning questions.

traces allow us to perform an analysis of where models are
making errors, beyond just their final answer outputs. We do
this via reference-based analysis of model outputs, which
can be performed solely in the text domain (and is there-
fore much cheaper than reference-free assessments). We
showcase the value of this annotation via both human and
LLM-based judgments of model outputs (in Sec. 5), based
on a taxonomy of errors and detailed rubric.
Statistics: Statistics are provided in Fig. 2. The dataset
covers a wide range of video lengths, with the longest video
being 100 minutes while the shortest video is less than 2
minutes (mean of 12 minutes). There are multiple questions
per video, with the distribution following a min/mean/max
of 1/6.8/10 questions per video (223 videos in total). Rea-
soning traces are long and detailed, with the mean number of
words in a reasoning trace being 92 (Fig. 2). 99.6% of rea-
soning traces contain timestamps, with the mean number of
timestamps per reasoning trace being 4. Each question also
consists of a number of sub-questions. Each sub-question
represents a single step in the intermediate reasoning chain,
and comes with a ground truth open-ended answer, a list
of skills required to solve the sub-question, and a list of
dependencies. The dependencies are pointers to previous
sub-questions that need to be solved before the sub-question
in question, giving us a reasoning tree. The average number
of sub-questions per question in the dataset is 2.7.

3.1. Dataset Construction

As multimodal models continue to improve, it becomes in-
creasingly non-trivial to come up with challenging ques-
tions. Questions should be complex, requiring multiple steps
to solve, and not solvale with only the speech or external
knowledge (full criteria provided to raters can be found in
Appendix 8.1.1). Our dataset construction pipeline consists
of the following steps:
1. Video Selection: We begin by selecting video domains

from YouTube that lend themselves well to questions fulfill-
ing the desiderata above.
2. Manual Annotation: Raters propose questions, answers
and reasoning traces.
3. Quality Review: Questions are reviewed by other raters.
4. Adversarial Filtering: We attempt to mitigate textual
bias using consensus from multiple frontier text-only mod-
els.

3.1.1. Video Selection
Video selection is non-trivial, as many videos online contain
simple storylines, few shots, or are dominated by talking
heads. To avoid this, we identify a (non-exhaustive) set of
domains that lend themselves well to reasoning. These are
described below (and shown in Fig. 2).
Short Films: We search for videos tagged as “short film",
which are complex, multi-event videos that typically have
a story line. Short films tend to contain relationship and
event arcs over varying time horizons. Note that this set does
not include mainstream movies, so there is less chance of
training data contamination or external knowledge bias.
Sports and Board Games: This set includes sports such as
tennis, basketball, motorsports, hockey, cricket, and board
games such as chess, scrabble and risk. These videos lend
themselves well to questions that require reasoning against
the rule set of the sport or game, as well as recognition of
fine-grained actions and identification of player or piece po-
sitions on screen.
Educational: Inspired by reasoning works in the maths and
textual domain, we include some STEM lectures. However
this domain is only 8% of the dataset (Fig. 2, right), as it
is challenging to find lectures where the speech does not
dominate (and visual reasoning is important).
Lifestyle: Our final domain category consists of VLOG-
style lifestyle videos, including cooking, general how-to
videos, as well as travel vlogs and pet videos. These are typ-
ically multi-event videos where events may follow a logical
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Table 1. Frame and ASR ablations on MINERVA.

Method # of Frames ASR MCQ-Acc. %

GPT-4o [1] 64 ✁ 39.74
GPT-4o [1] 250 (max) ✂ 44.82
GPT-4o [1] 250 (max) ✁ 45.54

Gemini 2.0 Flash [39] 64 ✁ 47.85
Gemini 2.0 Flash [39] 256 ✂ 49.70
Gemini 2.0 Flash [39] 256 ✁ 53.47

Qwen-2.5VL [6] 64 ✁ 33.00
Qwen-2.5VL [6] 768 (max) ✂ 34.39
Qwen-2.5VL [6] 768 (max) ✁ 35.05

causal flow (e.g. steps in a recipe). Travel and vlogging style
videos also add egocentric viewpoints, and lend themselves
well to questions requiring spatial reasoning.

3.1.2. Annotation and Quality Review

Once videos are identified, raters then propose complex ques-
tions, answers, decoys, reasoning traces and label question
types. The raters are instructed to attempt to propose ques-
tions such that each question requires at least two of the
following skills: Temporal Reasoning, Counting, Cause and
Effect, Goal Reasoning, Situational Awareness, Event Occur-
rence, State Changes, Reading (OCR), Listening (identifying
a detail in the audio track), Spatial Perception, Numerical
Reasoning (all math operations other than counting), Object
Recognition, Counterfactual Reasoning (‘what if’, but with
an objective outcome). Each annotation is verified by at least
one other rater (details in Appendix 8.1.4). The annotations
are also periodically reviewed by the papers’ authors, who
provide detailed feedback to the raters.

3.1.3. Filtering for Quality and Biases

Finally, we address quality and potential for biases. We
begin by filtering examples where the reasoning traces are
of low quality or too short (<20 words). While raters are
explicitly instructed to avoid proposing questions that can be
solved from text alone, we find (very few) examples that are
possible to guess without vision. We address these potential
text-biases (both in terms of QAD-only and ASR-only) with
adversarial filtering [20, 28]. Our process consists of taking
the consensus agreement (in order to avoid discarding diffi-
cult questions that models may have answered correctly by
chance) across a diverse range of open- and closed- source
text-only baselines (Deepseek, GPT-4o, Gemini-flash-002
and Qwen2.5-VL) with only QAD and/or ASR inputs, and
best practices in prior work [45]. We provide additional
details in the Appendix.

Table 2. Blind Baselines on MINERVA. †Random performance.

Method w/o ASR w/ ASR

Random 20.00 20.00

GPT-4o [1] †19.60 29.17
Gemini 2.0 Flash [39] 23.04 28.25
Qwen-2.5VL [6] †18.88 23.17
DeepSeek [12] 21.45 22.51

4. Benchmarking
4.1. Models
We benchmark a number of open-source and proprietary
models, described below.
Blind Baselines: We first evaluate models using a text-
only prompt in two settings. (i) The model is given only
the question, answer and decoys (QAD baseline). (ii) The
model is additionally given an ASR transcript of the video
(QAD+ASR baseline). This helps identify questions that can
be answered by prior or commonsense knowledge, or from
ASR alone without requiring visual information.
Video Models: We experiment with 3 of the best-performing
open source VideoQA models, Qwen2.5-VL [6], VideoL-
LaMA3 [51] and InternVideo2.5 [46], which represent the
current state-of-the-art in long context open multimodal mod-
els (we do not evaluate older versions superseded by these,
e.g. VideoLLaMA2 or Qwen2). For proprietary models, we
experiment with the Gemini model family [39] from Google
DeepMind, GPT-4o [1], GPT-4.1 [2] and o1 [3] from Ope-
nAI, as well as Claude 3.5 Sonnet v2 [4] from Anthropic.
o1 and Gemini 2.5 [43] are reasoning or ‘thinking’ models,
capable of reasoning through their thoughts before respond-
ing. For all models, we attempt to fit as many frames as
possible - given API query limitations. We experiment with
varying number of frames, and compare performance with
and without ASR provided with the frames.

4.1.1. Prompts
We conduct an ablation on the impact of prompting styles
on MINERVA with our best model. We try out 3 styles
of prompting: (i) asking the model to answer the question
directly; (ii) asking the model to ‘reason step by step’; and
(iii) additionally providing the model with the MINERVA
rubric for video reasoning (described in Sec. 5.1.1). Prompts
are provided in the Appendix 9.1. We then use the best result
of this study to prompt all the other baselines. We tried to
standardize prompts as far as possible, while attempting to
incorporate author-provided model-specific prompts to give
models the best possible advantage.

4.1.2. Implementation Details
For all models, we follow best practices and guidance from
model/API authors. In general, we sample video frames
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uniformly from the videos and construct prompts by inter-
leaving them with timestamps. Since many questions ask
about specific times in the speech and the video, we also
interleave the ASR with timestamps at five second inter-
vals. We prompt models to provide their answer choice in
a machine-readable format for parsing; if the model fails to
provide a response or it is not readily parse-able, then we as-
sign a random answer choice for computing MCQ accuracy.
We provide detailed settings in the appendix.

4.2. MCQ performance
Modality Ablations: QAD-only and QAD+ASR-only base-
lines with no visual information are provided in Tab. 2, with
further modality ablations in Tab. 1. All QAD-only baselines
get close to chance, indicating that the decoy answer choices
do not offer cues to the correct answer. ASR-only baselines
using 4 powerful language models obtain extremely low per-
formance compared to those with frames, showcasing the
necessity of visual information. We also note that for all 3
models in Table 1, increasing the number of frames from
64 frames leads to an increase in performance as well, with
ASR providing complementary gains. Finer-grained analysis
on the impact of varying the number of frames provided for
inference can be found in Fig. 10 in the appendix.
Scoring final answers (MCQ): We provide the MCQ re-
sults in Tab. 3. We observe that the gap between open-source
and proprietary models has narrowed, with Qwen2.5-VL and
InternVideo2.5 outperforming Claude Sonnet. Gemini 2.5
Pro Thinking sets the state-of-the-art in the dataset at 66.2%.
With peak performance still far from human performance,
we hope MINERVA will be a challenging benchmark to mea-
sure progress on video understanding.
Thinking Ablations: We ablate the impact of the thinking
mode in the recently released Gemini 2.5 models [43]. Re-
sults are provided in the appendix. Turning thinking mode on
improves the performance of the model, with improvements
more pronounced as the number of frames increases. This
suggests that the ability to reason about long video content
is necessary to achieve high accuracy scores on MINERVA.
Results by Skill/Domain/Length: Model performance by
(a) skill, (b) video domain, and (c) video length is provided
in Fig. 3. (We note that each question is tagged with multiple
skills by construction, rather than each being associated with
only one.) Models struggle most with counting questions,
followed by counterfactuals and state changes. Gemini 2.5
Pro performs highest across all skills, with GPT-4.1 perform-
ing similar to Gemini 2.5 Pro for state changes and cause
and effect. All models perform well in the domain of short
films, while models struggle most on math videos. Humans
perform well across all skills, with the lowest performance
for counting, and perform well across all domains except
for Tech/AI. The performance of all video models degrades
as videos get longer, similar to reports in prior work [15].

Table 3. Benchmarking performance on MINERVA. using multi-
ple choice accuracy (MCQ-Acc.). * we sample up to frame limit,
following optimal settings from [6, 51].Since API limits restricted
OpenAI o1 and Claude 3.5 Sonnet v2 to 64 frames, we also report
results with Flash and GPT-4o with 64 frames in Table 1.† For
this model only, we found 256 frames performs slightly better than
2048 (see Appendix).

Method # Frames ASR MCQ-Acc. %

Random - - 20.00

Open-source
Qwen2.5-VL [6] *768 ✁ 35.05
VideoLLaMA3 [51] *180 ✁ 35.91
InternVideo2.5 [46] 256 ✁ 35.18

Proprietary
Claude3.5 Sonnet v2 [4] 64 ✁ 31.28
OpenAI o1 [23] 64 ✁ 43.48
GPT-4o [1] 250 ✁ 45.54
GPT-4.1 [2] 256 ✁ 53.99
Gemini 2.0 Flash [39] †256 ✁ 53.47
Gemini 2.5 Flash Thinking [43] 256 ✁ 57.30
Gemini 2.5 Pro Thinking [43] 1024 ✁ 66.20
Human performance all ✁ 92.54

Human performance is also highest for videos less than 5
minutes long (95.8%).
Prompt Ablations: Results are provided in the suppl. mate-
rial. We find that asking the model to perform step-by-step
reasoning rather than directly producing an answer results
in a significant boost to MCQ accuracy. What is interesting
however, is that explicitly providing the rubric in the prompt
improves the final score even further. Note that this improve-
ment comes with minimal extra inference-time compute (no
multiple calls needed), and our rubric was designed to be as
general as possible.
Human performance: We perform a human study by asking
raters (a disjoint set from the ones who annotated the data) to
answer the questions in the dataset. Results are provided in
Table 3. We note that there is a big gap between model and
human performance, with the best model (Gemini 2.5 Pro
Thinking) still almost 30% behind human performance.

5. Analysis of Reasoning Traces
5.1. Assessing Methods for Video Reasoning
In this section, we explore methods to score step-by-step
rationales generated by multimodal models. Besides in-
creased performance [14, 48], prompting models to provide
reasoning steps also greatly improves interpretability, but
objectively studying their correctness and helpfulness (irre-
spective of the final answer) is still an open problem. While
human assessments are usually the gold standard, they are
expensive and time-consuming, and so we provide a pre-
liminary exploration of LLM-based assessments as well. A
reference-free metric can score model traces without needing
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(a) (b) (c)

Figure 3. Model and human accuracy (MCQ) broken down by (a) skill, (b) video domain, (c) video length. Note that questions can
belong to more than one skill for (a). We provide a common legend for all 3 plots (in the right). Best viewed in color and with zoom. Axes
in the radar charts are scaled to the highest accuracy per dimension. The full results for (a) are provided in Tab. 11 and for (b) in Tab. 10 in
the appendix.

Table 4. Reasoning Failures: Examples where models produce correct final answers. but have low reasoning scores based on human and
MiRA judgments. Such mistakes often go unnoticed in datasets that only test final answers. Mistakes are highlighted in red.

Question Answer Ground truth Reasoning Model Reasoning
In what colors do the aliens
speak over the course of the
video?

Green and red. I found 2 aliens at 06:04 and 1 at 08:29. During those times, I examined
the text boxes of each speaking alien. I then noticed that the aliens at
06:04 speak in green font, while the alien at 08:29 speaks in red font.
Therefore, the colors in which the aliens speak over the course of the
video are green and red.

The video content focuses entirely on Scrabble gameplay, discussing various long-word
bingos and historical plays. There are no scenes or segments featuring aliens speaking
or any reference to colors associated with alien speech. The question appears to be
unrelated to the actual content of the video. Therefore, none of the provided color
options (A, B, C, D) are relevant, leading to option E as the correct choice indicating
that the premise of the question is incorrect.

After adding up all the visi-
ble numbers on the Wago 221
lever nut when it is first seen
in the video what is the total?

348.34. At the 05:12 timestamp, the electrician introduces the Wago 221 lever
nut into the frame. I noted that 221 was the first number displayed, and I
observed as he rotated the device to reveal the side profile view, which
featured several numbers. At the 05:14 timestamp, I examined each
number, which read as follows: 24, 12, 0.14, 0.2, 4, 5, 50, and 32. I
added all the visible numbers to arrive at a sum of 348.34.

The question asks for the sum of all visible numbers on the Wago 221 lever nut when
it is first seen in the video. The Wago 221 connector is mentioned in the transcript at
timestamp 05:13, but the specific numbers on the connector are not detailed in the text.
However, based on typical Wago 221 models, the numbers usually include ’221’, ’2’,
and possibly other smaller digits like ’1’. Adding these numbers (2 + 2 + 1 + 2 + 1 =
8), and considering potential additional small digits, the closest matching option is (E)
348.34, assuming there may be other minor digits contributing to the total.

How many cars can be seen
driving by outside while the
man in the navy sweater vest
first speaks?

11. I watched the video to identify the time period that the man in the navy
sweater vest first speaks, which is 00:05 to 00:48. From there, I focused
my attention on the glass balcony door to his right, where the road and
the cars using the road are visible. After that, I counted how many cars
passed within the timeframe of 00:05 to 00:48, which came to a total of
11 cars.

Here’s my reasoning:
1. **Identify the relevant time range:** The question asks about cars seen while the
man in the navy sweater vest is speaking. He begins speaking around [00:07:15] and
continues for a significant portion of the video. 2. **Count the cars:** I need to watch
the video within the time range identified above and count the cars that pass by outside
the window. 3. **Cars passing by:** I can see 11 cars passing by outside the window.

Figure 4. Human analysis of model produced reasoning traces

ground truth traces, but would need the original video (and
can therefore become prohibitively expensive as video length
scales). Armed with the traces from MINERVA, instead we
explore reference-based metrics, which can operate entirely
in the lower-bandwidth text space. Our ground truth rea-
soning traces have the following properties - (i) the number
of steps to solve each question is variable, (ii) the reason-
ing traces are long (Fig. 2), and (iii) some steps are more
important than others. This set-up is challenging for rule-
based or embedding-based analysis, but lends itself better to
LLM-as-a-judge assessments.

We begin by examining model outputs to create a tax-
onomy of reasoning errors, and then devise a very simple

LLM-based judge to score video reasoning. We also collect
human evaluation scores on model outputs for a subset of
MINERVA, and analyze model and human correlations.

5.1.1. Taxonomy of Video Reasoning Errors
We propose a simple taxonomy of reasoning errors for video
models applied to complex questions. We do this by first
examining reasoning outputs from a range of models and
identify that errors fall into 4 general categories:
1. Perceptual Correctness: This covers errors in perception,
including identifying objects, actions, events, or correctly
parsing the ASR or performing OCR.
2. Temporal Localization: Errors in identifying the correct
temporal range(s) of the video to solve the question.
3. Logical Reasoning: Errors in reasoning given the percep-
tual elements (whether they are correctly identified or not).
This includes arithmetic or numerical reasoning errors.
4. Completeness: A reasoning trace is not complete if it
lacks required steps to produce the correct answer. Examples
of errors for each category are provided in Table 8 in the
Appendix. We use these four axes, along with a 3-point Lik-
ert score to create a general rubric for evaluating reasoning
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Figure 5. LLM Analysis of model reasoning traces: We report
MiRA scores for two axes in the MINERVA rubric.

traces provided by video models, which we call the MIN-
ERVA rubric (we found any more than 3 points to be difficult
for both humans and models to provide consistently). In
the next two sub-sections, we explore human and model
assessments for a subset of model traces.

5.1.2. Human Assessments
We randomly sample 100 questions from MINERVA and two
model outputs for each question from 5 models spanning
both open-source and proprietary models {Gemini 2.5 Pro
Thinking, Claude 3.5 Sonnet v2, VideoLLaMA3, GPT-4o,
and Qwen2.5-VL}. We then provide these 200 model rea-
soning traces to human raters, along with QADs and ground
truth reasoning traces, and ask them to score each reason-
ing trace with the MINERVA rubric described above. Note
that having the ground truth reasoning traces makes it much
quicker for raters, and they do not need to watch a (poten-
tially long) video for each model output. Details of the
instructions provided to raters are provided in Appendix.

5.1.3. MiRA: LLM-based Assessments
We ask an LLM to score reasoning traces according to the
MINERVA rubric – i.e. the same score the human raters pro-
vided. We experiment with multiple LLMs (details in the
appendix). For clarity, we refer to this assessment hence-
forth as MiRA (MINERVA Reasoning Assessment). Note all
scores are normalized to be between 0 and 1.

5.2. Results
Human Scores on Reasoning: Human scores for 5 models
are provided in Fig. 4. We find temporal grounding has the
lowest score for almost all models (as well as the largest vari-
ance between models), followed by perceptual correctness.
For temporal grounding, only Gemini 2.5 Pro scores above
80% (mean). While Qwen-72B and VideoLLaMA3 have
equivalent MCQ scores, human scores for reasoning traces
are significantly different, especially along temporal, logical
and completeness axes. Scores for logical reasoning and

completeness are higher for all models, suggesting models
are failing largely in the ‘video’ domain, and not text/logical
domain.
LLM-as-a-judge Scores for Reasoning: To understand the
current limitations of using LLMs as judges for each cate-
gory in the taxonomy, we examine the correlation between
LLM and human judgement. We first conduct an experi-
ment to determine which LLM to use (a table of results is
provided in the appendix). In general, human correlation
scores increase with LLM size. We also experiment with
an MLLM conditioned on video (1 fps, Gemini 2.0), and
find that performance decreases slightly (row 5 vs. 3), likely
due to context dilution from frame tokens. This highlights
the advantage of our ground-truth reasoning: it provides
a condensed form of the relevant information, enabling a
cheaper, text-only, metric. In general, for text-only Gemini
2.0, correlation with human judgments are reasonable (> 0.3
Pearson r scores for all 4 axes), and are specially high for T,
P and C rubric criteria. We therefore use this model as our
metric in this work.
Scoring reasoning using (MiRA) on the full set of ques-
tions: The advantage of our references is that we can scale
the results for the reference-based LLM evaluation for multi-
ple models (here we choose 8 of the models, covering both
open-source and proprietary models) to the full dataset with
limited manual effort. We show scores for the Temporal and
Perceptual categories in Fig. 5. Raw scores and plots for the
other two categories are in Fig. 12 in the appendix for com-
pleteness. Interestingly, our preliminary analysis shows gaps
between the 3 open-source models (which perform similarly
on MCQ eval) – with Qwen2.5-VL far outperforming the
others on temporal localization (see qualitative examples in
Tab. 9 in the appendix). We also find scores are lowest for
temporal localization and perceptual correctness, with the
largest variation among models in the former. This mirrors
the results from the human study, suggesting that when video
models with heavy, well-trained LLMs are applied to video
reasoning, they tend to provide plausible sounding detailed
reasoning traces, however they still lack some key perceptual
insights and temporal grounding in the video.

6. Conclusion

We present MINERVA, a videoQA dataset with complex ques-
tions, answers and ground truth reasoning traces. Our dataset
is challenging for multiple frontier multimodal models, and
provides insights into the reasoning failures of these mod-
els. Our analysis of using LLMs to judge model-generated
reasoning traces shows promise and points out opportunities
for future work in this direction.
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