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Abstract

Human communication often relies on visual cues to resolve
ambiguity. While humans can intuitively integrate these cues,
AI systems often find it challenging to engage in sophisticated
multimodal reasoning. We introduce VAGUE, a benchmark
evaluating multimodal AI systems’ ability to integrate visual
context for intent disambiguation. VAGUE consists of 1.6K
ambiguous textual expressions, each paired with an image
and multiple-choice interpretations, where the correct an-
swer is only apparent with visual context. The dataset spans
both staged, complex (Visual Commonsense Reasoning) and
natural, personal (Ego4D) scenes, ensuring diversity. Our
experiments reveal that existing multimodal AI models strug-
gle to infer the speaker’s true intent. While performance
consistently improves from the introduction of more visual
cues, the overall accuracy remains far below human perfor-
mance, highlighting a critical gap in multimodal reasoning.
Analysis of failure cases demonstrates that current models
fail to distinguish true intent from superficial correlations in
the visual scene, indicating that they perceive images but do
not effectively reason with them. We release our code and
data at https://hazel-heejeong-nam.github.io/vague/.

1. Introduction
Human communication is inherently contextual; for example,
exclaiming “Hey, this is a disaster!” upon seeing a cluttered
room conveys frustration or exaggeration rather than refer-
ring to an actual catastrophe. Without surrounding cues,
textual dialogues can be ambiguous, making it difficult for
models to accurately capture intent and nuance.

We consider the case of visual contextual cues. Con-
sider Fig. 1, which depicts a speaker making a remark in
a certain situation. Without specifying contexts introduced

*These authors contributed equally.
†Corresponding author.

Hey person1, looks like you're planning 
a party for the neighborhood squirrels.
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Figure 1. A motivating example demonstrating the importance of
visual context in understanding intention. Without a predetermined
context, a single expression can convey multiple different intentions.
The textual expression and Context 1 are from our dataset, while
Context 2 is generated using DALL·E 3 [2] to help understanding.

from visual cues, the speaker’s intention can vary, thus re-
maining ambiguous. This implies that the visual contexts
play important roles in communication, raising the ques-
tion: can AI systems integrate visual cues with ambiguous
dialogue to infer the speaker’s intent?

We introduce Visual Contexts ClArify ambiGUous
Expressions (VAGUE), a benchmark consisting of 1.6K am-
biguous textual expressions, each paired with a single image.
VAGUE aims to model diverse and natural human-to-human
interactions by setting each image as the speaker’s viewpoint,
where the speaker implicitly requests a certain action from
a person within their field of view. We define the problem
addressed through this setup as Multimodal Intention Disam-
biguation (MID), which involves reasoning about the most
plausible request conditioned on visual context. Each sam-
ple in VAGUE is annotated with four multiple-choice candi-
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dates, ensuring clarity and preventing multiple valid answers
caused by paraphrasing or hierarchical inclusion of mean-
ing. The dataset is meticulously curated to ensure visual
dependency; the ground-truth candidate is only preferable
when considering the visual context. VAGUE includes visual
scenes from both artificial sources (Visual Commonsense
Reasoning [46]) and real-world scenarios (Ego4D [41]), cap-
turing a broad spectrum of scene complexity and naturalness.
The textual expressions in VAGUE are initially generated by
GPT-4o [31] following instructions, then reviewed through
extensive human rating and filtering to ensure naturalness
and alignment with the corresponding images.

Experiments on VAGUE demonstrate that existing mul-
timodal AI models struggle to infer a speaker’s true intent
in a multimodal setting. First, although models can lever-
age visual context—as seen by a performance progression
from text-only Language Models (LMs) to pipelined So-
cratic Models (SMs) [47] and ultimately to end-to-end Visual
Language Models (VLMs)—their overall accuracy remains
significantly lower than that of humans, indicating a failure
to capture the true intent. A closer analysis of failure cases re-
veals that the primary source of error is the models’ inability
to distinguish the true intent from a superficial understand-
ing of the visual context. In other words, even though these
multimodal systems can perceive the image content, they
cannot effectively use this information to reason about the
speaker’s true intent.

In conclusion, we introduce a benchmark that exposes
the limitations of current models in integrating visual cues
with intent comprehension and identifies their primary fail-
ure mode. We anticipate that VAGUE will serve as a testing
ground for the development of future multimodal conver-
sational or embodied agents—systems that combine robust
visual perception with nuanced conversational reasoning to
effectively respond to user requests in complex scenes.

Our contributions are threefold:

• VAGUE: a novel benchmark for evaluating multimodal
intention disambiguation. Validated through extensive hu-
man filtering, VAGUE is designed for robust quantitative
assessment by ensuring both the ambiguity of queries and
the visual (in)dependency to answer candidates.

• Carefully curated 1,677 scene images sourced from
VCR [46] and Ego4D [41], capturing a wide range of scene
complexity, diversity, and naturalness to ensure VAGUE’s
generalizability across various contexts.

• Experimental results highlighting a critical challenge in
multimodal intention disambiguation: while existing mod-
els can perceive visual cues, they fail to effectively in-
tegrate this information into reasoning to deduce the
speaker’s true intent.

2. Related Work

2.1. Multimodal Theory of Mind
Theory of Mind (ToM) refers to the ability to infer and reason
about the intentions of others based on available information
[34], where recent language models still struggle with rele-
vant tasks [7] highlighting the need for dedicated research
in this area. Initially, various methods and benchmarks have
been proposed in unimodal settings, relying on text-based
approaches [11, 36]. However, these methods often fail to
capture the richness of real-world interactions, which often
require integrating both linguistic and visual cues.

Moving beyond text-only contexts, recent work has in-
corporated visual information. MMToM [17] introduces a
benchmark where models must process both visual and tex-
tual cues to solve question-answering tasks related to ToM.
The BOSS dataset [9] is a multimodal dataset collected in
situations where nonverbal communication is required. It
is used to evaluate whether human beliefs can be inferred
based on nonverbal cues during social interactions. Simi-
larly, Chen et al. (2024) [5] propose a Video ToM model
that leverages key video frames and transcripts, demonstrat-
ing improved reasoning on the Social-IQ 2.0 dataset [45].
MuMA-ToM [37] further extends this direction by assess-
ing ToM reasoning in multi-agent interactions, evaluating a
model’s ability to infer human beliefs and goals based on
video and text inputs. MToMnet [3] introduces a ToM-based
neural network that integrates contextual cues, such as scene
videos and object locations, with person-specific cues, to
predict human beliefs in specific scenarios.

However, progress in multimodal ToM remains con-
strained not only by the scarcity of high-quality datasets
[5] but also by the lack of explicit consideration for the am-
biguity and indirectness inherent in human communication.

2.2. Multimodal Implicature Understanding
Implicature and the ambiguity that arises from it naturally
emerge in everyday human conversation, requiring prag-
matic understanding [38]. Early research on implicature
understanding has primarily been conducted in text-only set-
tings [27, 30, 40], with some studies specifically focusing
on figurative language and metaphor [4, 21, 39]. However,
since the ambiguity of standalone text is inherently limited,
recent studies have extended to multiple modalities. One ex-
ample is multimodal sarcasm understanding (MSU). WITS
[19] and MOSES [20] are benchmarks for sarcasm explana-
tion, both providing the speaker’s emotion and voice tone as
cues. DocMSU [8] is a document-level benchmark for sar-
casm localization and detection. To improve MSU, EDGE
[32], a graph-based approach, achieved strong performance.
UR-FUNNY [13] is a benchmark for multimodal humor
comprehension, incorporating facial expressions and voice
tones as in MSU [19, 20]. Hessel et al. (2023) [14] intro-
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Q. Select the option that best explains the underlying

    intention of the utterance based on the given image.

Person 2
1

2

Person 1

Hey person1, spot the difference, 
this parking’s a bit too special isn’t it?

✓

Figure 2. Description of the Multimodal Intention Disambiguation
(MID) task in a Multiple-Choice Question format: Given an input
image (I) and an indirect expression (pi), the goal is to infer the
speaker’s hidden intent (T ) and select the most likely answer.

duced a benchmark derived from a Cartoon Caption Contest,
exploring humor identification and explanation. Baluja et
al. (2024) [1] demonstrated that models benefit from mul-
timodal cues in humor understanding. Memes also involve
implicature, with multimodal datasets such as MemeCap
[15] and MultiBully-Ex [16].

However, the cues used in multimodal implicature under-
standing remain simple, primarily appearing in images with
a single main object or person, overlooking the importance
of interactions between multiple objects and people in real-
world scenarios. These limitations underscore the need for
more complex cues, as addressed in VAGUE.

3. Multimodal Intention Disambiguation

In this section, we outline the structure and rationale behind
the format of our primary task, which we term Multimodal
Intention Disambiguation (MID). Then, we further specify
the necessary components that form the basis of the task.

3.1. Problem Setting
Each MID problem comprises an input image I , a direct
text expression pd, and an indirect text expression pi. Here,

the direct expression pd clearly shows the underlying in-
tention of the corresponding pi and serves as an essential
intermediate step of generating pi.

To clarify our problem, we assume that all reasoning is
confined to the depicted scene and that each expression is
spoken by a human who intends for the listener to take a par-
ticular action based on the situation. The ultimate objective
of the task is to interpret the hidden intention T effectively
by leveraging the contextual cues within the image.

To evaluate how well models capture such intentions, we
adopt a multiple-choice (MCQ) format as the primary setup,
as shown in Fig. 2. This decision reflects the fact that certain
prompts can lead to multiple plausible outcomes, driven by
hierarchical relations (e.g., pick up the chips - snack - food)
or by the inherent uncertainty of what action best satisfies the
speaker’s goal (e.g., an indirect prompt complaining about
darkness could be addressed by either turning on a light or
opening curtains). Exploring all possible valid interpreta-
tions is labor-intensive and often infeasible. Consequently,
each MID instance is presented as four distinct options, one
correct and three intentionally designed to be incorrect for
different reasons (see Sec. 4.2.3), challenging models in both
linguistic and visual reasoning.

Formally, let C be the set of all multiple-choice options
cn. Given an image I and an indirect prompt pi, the task is to
select the most valid interpretation of pi from the predefined
options, conditioned on the visual context in I . We define
this task as follows:

T (I, pi) := argmaxcn∈C Pr(cn | I, pi). (1)

3.2. Direct and Indirect Expressions

By the design of our task, curating effective input prompts pd
and pi is crucial for ensuring accurate interpretation. What
makes a good prompt, though? In this section, we define and
explain the criteria that both direct and indirect expressions
must satisfy. For more details on good and bad examples for
each criterion, please refer to our Appendix A.

3.2.1. Directness: Relevance and Solvability
Relevance The direct prompt is an utterance from the
speaker that explicitly conveys its intended meaning without
ambiguity. However, it is equally important that this inten-
tion aligns with the visual context of the scene. For example,
a direct prompt pd such as “Hey person1, I want you to stop
the fireworks” clearly expresses its intended action. How-
ever, if the corresponding image, as shown in Fig. 2, contains
no elements related to fireworks, the prompt is misaligned
with the scene. Thus, a direct prompt must not only reveal
its intention but also maintain relevance to the image. In the
context of our task, relevance is determined by whether a
human can reasonably establish a connection between the
prompt and the depicted scene.
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Solvability Relevance alone does not guarantee that a
prompt is useful. As outlined in Sec. 3.1, the prompt pd must
explicitly request an action that the listener can reasonably
perform. This introduces solvability, which requires that the
prompt present a clear and actionable problem. A solvable
prompt defines a specific issue that can be addressed inde-
pendently, ensuring that the listener is not left with multiple
competing actions to choose from.

3.2.2. Indirectness: Consistency and Ambiguity

Consistency Indirect prompts are designed to obscure their
true intention, but they must still convey the same underlying
intention as their direct counterpart—essentially requesting
the same solution. Since indirect prompts are derived from
direct prompts, consistency serves as a key criterion. We
define a direct prompt pd and an indirect prompt pi as consis-
tent if their interpretations could potentially align in intention.
The term “potentially” is used because indirect prompts, by
nature, may have multiple valid interpretations. For instance,
in the earlier “this is a disaster!” example, it conveys dis-
tress but allows for multiple reasonable responses, such as
cleaning the room or providing reassurance.

Ambiguity If an indirect prompt is entirely consistent with
its direct counterpart without introducing any additional com-
plexity, it becomes indistinguishable from a direct prompt.
Therefore, an indirect prompt should conceal its underlying
intention, which we define as ambiguity. The key princi-
ple behind this criterion is that neither the specific action
required nor the key entity involved should be explicitly or
implicitly mentioned within the prompt. Once these two ele-
ments are concealed, further refinements—such as adjusting
the tone to be more indirect, sarcastic, or humorous—can
enhance the overall nuance and difficulty of interpretation.

4. VAGUE Benchmark Construction

VAGUE is a novel benchmark that extends single-modal
or simple multimodal ambiguity to more realistic domains
and evaluates whether concurrent vision-language models
can perform human-like reasoning with complex visual con-
texts. It comprises 1,677 images, with 1,144 sourced from
the VCR [46] dataset and 533 from Ego4D [41], covering
diverse contextual scenarios as well as real-world human in-
teractions. On average, VAGUE contains seven objects and
four people per image. Each image is paired with a direct
expression pd, an indirect expression pi, and four multiple-
choice answers, along with relevant meta-information. All
textual components are generated using GPT-4o, then refined
through extensive human rating, selection, and filtering, en-
suring a carefully curated benchmark dataset for testing and
advancing multimodal reasoning. We provide detailed bench-
mark statistics and a diversity analysis in Appendix B.2.

4.1. Visual Data Curation
4.1.1. Sampling
VCR [46] The VCR dataset consists of 110K movie scenes
sourced from the Large Scale Movie Description Challenge
[35] and YouTube clips. These images are curated based on
an “interestingness” criterion [46], ensuring the presence of
at least two people, which promotes interactive scenarios. To
prevent redundancy in our dataset, we sample 10K images
while carefully avoiding neighboring frames, as adjacent
frames exhibit minimal variation. This selection process
preserves the contextual diversity of the dataset while main-
taining its focus on complex, multi-entity interactions.

Ego4D [41] While VCR provides a wide range of contex-
tual diversity, it often includes artificially composed settings
that may not fully capture real-world interactions. To address
this, we integrate frames from the Ego4D dataset, which of-
fers a more naturalistic depiction of human interactions. We
specifically leverage the AV (Audio-Visual), which indicate
conversational exchanges between individuals, to ensure the
presence of people in the selected frames. Similar to VCR,
we avoid neighboring frames to maintain diversity and filter
out heavily blurry images to enhance data quality. This pro-
cess results in 888 candidate images from 94 videos, which
serve as the basis for further text processing.

4.1.2. Object Extraction
To ensure the complexity of the visual information, we ex-
tract a list of physical objects present in each image using
a tagging model, RAM [49]. This step allows us to easily
identify scenes with sufficient visual detail. In the case of
VCR, many scenes are relatively simple, often containing
only a few objects. Therefore, we sort VCR images by the
number of detected objects and retained the top 4,000 as
candidates for text processing, ensuring that our benchmark
primarily consists of rich visual cues in contextually diverse
scenes. Please refer to Appendix B.3 for more details.

4.1.3. Person Indicator
In our task, we assume that the speaker is outside the scene,
viewing the image and talking to a person in it. However,
identifying the addressee is not always straightforward, as
images mostly contain multiple individuals. While ground-
ing the specific person referenced in the utterance could
introduce additional complexity, it is not the primary focus
of our evaluation. To clarify the listener, we assign an in-
dicator tag to each person in the image as shown in Fig. 3.
For VCR, we use their existing annotations [46], while for
Ego4D, where bounding boxes are not fully available, we em-
ploy YOLOv11 [18] to detect and annotate humans. While
this provides a straightforward method for grounding the
target person, it requires models to perform basic Optical
Character Recognition (OCR). Therefore, we conduct exper-
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A. be relevant to the image.

B. have an actionable solution.

Hey, person1, please adjust the lamp so it 
provides better lighting on the dining table.

should …

A. have consistent meaning with     .
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: Hey, person1, did so…
: Hey, person1, are we…
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Indirect Expression
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Hey person1, did someone forget 
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Image Caption

Solution Triplet

A group of people 
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(person1, adjust, lamp)

Answer Candidate Generation

: What if the models..

1

2
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Imagine a random fake scene 

Apply superficial reasoning

Hallucinate an object in the image

Objects
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Image Feature

: Person1 should check for billing errors.

: Person1 should open the curtains.

: Person1 should check the candle.FS

SU

NE

Sanity check 

should … Incorrect Choices

Figure 3. Overview of the data generation process. Based on human-defined criteria and instructions, GPT-4o [31] generates initial data,
which are then rated and filtered by humans to ensure quality. Since generating high-quality indirect expressions from raw images is
challenging, the process follows these steps: generating a direct expression and intention from the image, creating an indirect expression
using information from the previous step, and producing answer candidates based on all the information gathered so far. In the answer
candidates, FS stands for Fake Scene Understanding, SU stands for Superficial Understanding, and NE stands for Nonexistent Entity. FS
evaluates global hallucination, where the model misinterprets visual context from an entirely different image (e.g., an outdoor camping
scene with a candle), while NE addresses local hallucination, where only a specific object is replaced with a fabricated one (e.g., curtains).

iments to evaluate the OCR capabilities of the models used
in our study. See Appendix B.4 for details.

4.2. Multimodal Expression Synthesis
As shown in Fig. 3, VAGUE’s textual expressions are gener-
ated first by the model and undergo an extensive process of
human rating and filtering. We use GPT-4o [31] for all text
processing. The instructions used for generating direct (pd)
and indirect (pi) expressions are provided in Appendix B.5,
while the instructions for generating answer candidates for
multiple-choice questions are detailed in Appendix B.7.

4.2.1. Direct Expressions
The direct expression pd serves as a crucial foundation for
crafting the indirect one pi, as both share the same underly-
ing intention. To ensure that pd adhere to the principles of
relevance and solvability discussed in Sec. 3.2.1, we generate
pd conditioned on the input image I and a task prompt that
explicitly defines these criteria.During the generation pro-
cess, we also instruct the model to output a solution triplet in
the format: (subject, action, object). Since direct expressions
explicitly state their intentions, extracting each component
of the solution triplet is straightforward. To maintain con-
sistency with the visual context, the ”object” in the triplet is
restricted to physical objects we extracted in Sec. 4.1.2.

After generating pd for all candidate images, human raters
evaluate each prompt based on relevance and solvability,
assigning scores from 1 to 5. Only those prompts that receive
a rating of 4 or 5 are retained for further use. The detailed
rating criteria for human verification and an example of the
rating process are provided in Fig. J13.

4.2.2. Indirect Expressions
To ensure that the indirect expressions pi maintain both
ambiguity and fluency while aligning with the true intent T ,
we adopt a two-stage process: proposal and selection.

In the initial step, the model is prompted to generate three
distinct candidate options. Each candidate follows the crite-
ria outlined in Section 3.2.2, but with explicit instructions
to incorporate different linguistic strategies: sarcasm, hu-
mor, and meme/idiomatic expressions, respectively. This
approach ensures diversity in the generated responses. In the
second step, human annotators evaluate the three candidates
and select the one that best aligns with the intended indi-
rectness. The selected prompt is then rated on a scale from
1 to 5 based on more specific criteria. Only those prompts
that receive a score of 3 or higher are retained for use in the
dataset. The detailed rating criteria for human verification
and an example of rating process are provided in Fig. J14

4.2.3. Counterfactual Choices
Generating high-quality counterfactual choices is crucial. To
enable detailed analysis of model weaknesses in multimodal
intent disambiguation, we design interpretable counterfac-
tual choices that provide more plausible alternatives.

Fake Scene Understanding The first counterfactual
choice is an interpretation that could arise when the model
largely misinterprets the image. This process is conducted
in two steps. In the first step, a fake caption is generated by
assuming an imaginary scene that can be aligned with the in-
direct expression but is inconsistent with the true intent. The
caption of fake scene is then combined with the speaker’s
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indirect statement to derive the most likely interpretation.

Superficial Understanding The subsequent choice corre-
sponds to an interpretation generated when the model fails
to deeply reason about the implicit intent of the sentence
and instead relies on surface-level meaning. We enforce the
model to focus only on the literal wording, without consider-
ing any implied or deeper meaning of the indirect sentence.
These answer choices are generated alongside the indirect
expression pi. During the indirect selection phase, the corre-
sponding superficially understood choice is selected together,
maintaining coherence between them.

Nonexistent Entity The last choice arises when the model
interprets the text correctly but fails to adequately consider
the details of the image, resulting in a plausible yet incorrect
choice. This resembles the correct answer in structure, but
replaces the key object in the solution with one that does not
exist in the image. To prevent the task from becoming too
easy by generating highly irrelevant objects, we constrain
the substituted object to one that, while absent from the
image, is highly expected to be present in the scene and
could replace the original entity. To identify such entities,
the model is provided with the image as input to choose
objects that align with the scene’s context. This method
ensures that the counterfactual choice leverages the expected
coherence between the scene and its potential entities while
rigorously testing the model’s attention to visual details.

5. Experiments
Models We use the following models in our experiments.
The detailed descriptions of each model are in Appendix C.
• Phi3.5-Vision-Instruct (4B) [29]
• LLaVA Onevision (7B) [23]
• Qwen2.5-VL-Instruct (7B, 72B) [43]
• InternVL-2.5-MPO (8B, 26B) [6]
• Idefics2 (8B) [22]
• LLaVA NeXT Vicuna (13B) [24]
• Ovis2 (16B) [28]
• GPT-4o [31]
• Gemini 1.5 Pro [12]
• InternVL-3 (38B) [42]

5.1. MLLMs Benefit from Visual Cues
Our first objective is to assess how effectively MLLMs lever-
age visual cues to resolve ambiguity in utterances. To this
end, we systematically control the level of detail in the visual
cues provided to the models and measure their accuracy in
inferring the speaker’s true intent. Performance is evaluated
in both multiple-choice and free-form settings. For clar-
ity, we primarily report multiple-choice accuracy, deferring
free-form results to Appendix I.

We consider three levels of visual cues:

• Language Models (LMs) receive no visual input, requir-
ing models to rely on superficial textual priors such as
common-sense knowledge of sarcasm or humor to deter-
mine intent.

• Socratic Models (SMs) [47] use text-only LMs but incor-
porate short image captions (up to two or three sentences)
as additional input. This short generic caption may lack
sufficient detail, which may be insufficient for accurately
inferring intent. Each SM model generated its own image
captions and used them in subsequent processing.

• Visual Language Models (VLMs) receive the raw image
input, enabling a more direct interpretation of visual cues.

Results The results in Tab. 1 indicate that MLLMs can
leverage visual cues, albeit to a limited extent, since SMs
and VLMs consistently outperform LMs across all evalu-
ated models. Additionally, more detailed visual input gener-
ally improves performance, with VLMs surpassing SMs
in most cases, except in the case of proprietary models.
This exception is further analyzed in Sec. 5.2. Both the
VCR and Ego4D subsets exhibit similar performance trends,
demonstrating the generalizability of our findings across
both staged and real-world scenarios. Finally, the consis-
tently low performance of LMs further reinforces the validity
of our dataset as a multimodal benchmark.

5.2. Analysis on Failure Modes
Here, we examine the ways in which models fail to infer the
true intent and how these failure patterns vary with the level
of visual cues provided. As shown in Fig. 3, our multiple-
choice questions include three distinct types of incorrect
answer candidates. We assess the model’s raw visual un-
derstanding using the Fake Scene Understanding (FS) and
Nonexistent Entity (NE) candidates, which test whether the
model can correctly interpret the scene without being misled
by fabricated or nonexistent elements. Conversely, the Super-
ficial Understanding (SU) candidate evaluates the model’s
reasoning ability, testing whether it can go beyond surface-
level perception to infer intent. We provide the full table of
failure modes in the MCQ setting in Appendix I

Results Figure 4 illustrates how frequently each model
selects different types of incorrect answers instead of the
correct intent. Among the error types, Superficial Under-
standing (SU) is the most common. This indicates that while
models generally succeed in recognizing basic visual details,
they often fail to reason deeply about those visual cues to
accurately infer the underlying intent of the speaker. How-
ever, proprietary models exhibit fewer SU-related errors,
indicating stronger reasoning capabilities.

Moreover, stronger visual cues improve accuracy across
all models and failure types. This improvement highlights
the crucial role of visual conditioning in reducing both vision-
based errors (FS and NE) and reasoning-related failures (SU).
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Model
VAGUE-VCR VAGUE-Ego4D

LM SM VLM LM SM VLM
(L) (L+V) (L+V) (L) (L+V) (L+V)

Phi3.5-Vision-Instruct (4B) 26.6 35.3 (↑ 8.7) 46.0 (↑ 19.4) 22.5 31.1 (↑ 8.6) 42.4 (↑ 19.9)

LLaVA-Onevision (7B) 13.1 29.4 (↑ 16.3) 43.1 (↑ 30.0) 11.3 29.5 (↑ 18.2) 43.2 (↑ 31.9)

Qwen2.5-VL-Instruct (7B) 11.1 25.6 (↑ 14.5) 46.8 (↑ 35.7) 9.8 28.0 (↑ 18.2) 48.4 (↑ 38.6)

InternVL-2.5-MPO (8B) 23.0 48.4 (↑ 25.4) 63.9 (↑ 40.9) 24.2 54.0 (↑ 29.8) 66.8 (↑ 42.6)

Idefics2 (8B) 13.9 21.1 (↑ 7.2) 58.7 (↑ 44.8) 14.8 18.2 (↑ 3.4) 58.3 (↑ 43.5)

LLaVA-NeXT-vicuna (13B) 24.2 37.2 (↑ 13) 46.4 (↑ 22.2) 20.3 34.1 (↑ 13.8) 52.5 (↑ 32.2)

Ovis2 (16B) 21.9 23.8 (↑ 1.9) 24.5 (↑ 3.6) 20.5 25.3 (↑ 4.8) 25.7 (↑ 5.2)

InternVL-2.5-MPO (26B) 21.2 48.5 (↑ 27.3) 63.7 (↑ 42.5) 21.8 55.2 (↑ 33.4) 68.7 (↑ 46.9)

InternVL-3 (38B) 24.8 47.2 (↑ 22.4) 63.6 (↑ 38.8) 18.0 47.5 (↑ 29.5) 59.8 (↑ 41.8)
Qwen2.5-VL-Instruct (72B) 29.6 55.6 (↑ 26.0) 74.2 (↑ 44.6) 26.8 59.3 (↑ 32.5) 69.8 (↑ 43.0)
GPT-4o 46.4 69.5 (↑ 23.1) 65.1 (↑ 18.7) 48.2 67.5 (↑ 19.3) 63.6 (↑ 15.3)

Gemini-1.5-Pro 43.2 62.4 (↑ 19.2) 60.6 (↑ 17.4) 40.3 60.6 (↑ 20.3) 60.6 (↑ 20.3)

Table 1. Experiments on the Multimodal Intention Disambiguation (MID) task with varying levels of visual cues. We report the accuracy
(%) of the Multiple-Choice Question. ↑ indicates the performance gain from visual cues, i.e. increment compared to the LM setting.(L)
denotes the use of language input only, while (L+V) indicates the incorporation of visual cues. The noticeable increase in accuracy across
LM, SM, and VLM demonstrates that the introduction of detailed visual cues is beneficial for the task.

FS            SU            NE FS            SU            NE FS            SU            NE FS            SU            NE FS            SU            NE
Phi3.5-Vision-Instruct (4B) Qwen2.5-VL-Instruct (7B)LLaVA-Onevision (7B) InternVL2.5-MPO (8B) Idefics2 (8B)

FS            SU            NE FS            SU            NE FS            SU            NE FS            SU            NE FS            SU            NE
LLaVA-Next Vicuna (13B) InternVL2.5-MPO (26B)Ovis2 (16B) GPT-4o Gemini-1.5-Pro

FS            SU            NE
InternVL3 (38B)

FS            SU            NE
Qwen2.5-VL-Instruct (72B)

Figure 4. We present a bar plot to analyze the distribution of incorrect answer choices selected by each model. Each number represents
how frequently a given choice was selected from the 1,677 items in the dataset. The counterfactual choice categories are FS (Fake Scene
Understanding), SU (Superficial Understanding), and NE (Nonexistent Entity). We use distinct colors to represent LM (Language Models),
SM (Socratic Models), and VLM (Visual-Language Models).

Notably, proprietary models perform better with captioned
inputs (SM) than with raw images (VLM). A closer examina-
tion of Fig. 4 reveals that this discrepancy arises from vision-
based failures (FS and NE) rather than reasoning-centric
failure (SU). This indicates that their captioning ability poten-
tially allows them to obtain more sophisticated information
while reducing hallucination in the images. The supporting
experiments and explanations are provided in Appendix F.

5.3. Comparison with human
To validate our benchmark and establish an upper bound
for performance, we assess human accuracy, highlighting
the gap between existing models and human capability.
This evaluation follows the multiple-choice setup within
the VLM setting, using a subset of 400 samples. As shown

in Tab. 2, human performance reaches 94%, demonstrat-
ing near-perfect accuracy. Although proprietary models
and some large-sized models show a decent performance, a
notable performance gap (∼20%) still exists compared to
human evaluators. This result underscores the significant
gap between AI models’ multimodal reasoning capabilities
and human-level understanding when inferring hidden in-
tent, suggesting that visual perception alone, even when
accurate, is insufficient without deeper cognitive integration.
This performance gap is due to the models’ tendency to
rely on surface-level text rather than understanding deeper
visual-textual implications. Thus, advancing multimodal
reasoning likely requires models to integrate higher-order
cognitive processes, like commonsense reasoning and prag-
matic understanding, into visual interpretation tasks. Refer
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Model Acc (%) FS SU NE Correct

Ovis2 (16B) 23.0 119 171 18 92
LLaVA-Onevision (7B) 41.0 43 183 10 164
Phi3.5-Vision-Instruct (4B) 44.3 60 132 31 177
Qwen2.5-VL-Instruct (7B) 47.0 47 152 13 188
LLaVA-NeXT-icuna (13B) 48.0 48 143 17 192
Idefics2 (8b) 57.0 28 120 24 228
Gemini-1.5-Pro 60.3 60 73 26 241
InternVL-3 (38B) 61.5 38 94 22 246
InternVL-2.5-MPO (8B) 61.8 42 95 16 247
GPT-4o 62.3 61 63 27 249
InternVL-2.5-MPO (26B) 63.0 36 101 11 252
Qwen2.5-VL-Instruct (72B) 72.3 39 60 12 289

Human 94.0 12 4 8 374

Table 2. Performance across models and humans on a sampled set
of 400 questions. The results show that humans outperform models
by a margin of over 20%.

Model Type Acc (%) Incorrect count

FS SU NE

GPT-4o

SM 68.9 165 240 117
SM+CoT 69.5 (↑ 0.6) 165 241 105

VLM 64.6 226 226 141
VLM+CoT 66.4 (↑ 1.8) 162 156 85

Gemini-1.5-Pro

SM 61.8 176 374 83
SM+CoT 61.0 (↓ 0.8) 190 367 94

VLM 60.6 249 264 145
VLM+CoT 64.4 (↑ 3.8) 213 267 117

Table 3. Result of Chain-of-Thought (CoT) experiments on propri-
etary models, in both SM and VLM settings. ↑ and ↓ indicate an
increase and decrease in accuracy when zero-shot CoT is applied.

to Appendix E for details on the selected subset and human
evaluation setup.

5.4. Chain-of-Thought Experiments
Given the strong reasoning demands of multimodal intent
deduction, we further explore the effectiveness of Chain-
of-Thought (CoT) prompting [44] in enhancing the reason-
ing capabilities of MLLMs. The CoT prompt templates,
provided in Fig. J21 and Fig. J22, are designed to explic-
itly ground the reasoning process, reducing hallucinations.
While our main results focus on proprietary models, ow-
ing to their superior suitability for zero-shot CoT reasoning,
we also present experiments and analyses for open-source
models ranging from 4B to 72B in Appendix G.

Results As shown in Tab. 3, CoT prompting improves per-
formance for raw image inputs (VLM), while showing no
clear trend and remaining at a similar level for image cap-
tion inputs (SM). One possible explanation for this discrep-
ancy is that CoT primarily enhances reasoning by improving

grounding and reducing hallucinations. Since image cap-
tions inherently contain fewer hallucinations, SMs see some
benefit from CoT prompting albeit at the cost of reduced de-
tail. Additionally, the performance improvements observed
with CoT prompting are consistent across different types of
false answer candidates, suggesting a generalizable effect in
enhancing reasoning quality.

6. Conclusion
We present VAGUE (Visual Contexts ClArify ambiGUous
Expressions), a new benchmark aimed at assessing models’
ability to interpret nuanced communication in complex mul-
timodal scenarios. Our results show that models benefit from
visual information when inferring the underlying intention
of indirect expressions, as evidenced by their improved per-
formance with increasing levels of visual cues. However, a
significant disparity persists between machine capabilities
and humans. To gain deeper insights into model inaccu-
racies, we design multiple-choice questions that explicitly
address failure points, enabling a systematic and quantitative
evaluation of the reasons behind performance. The primary
challenge identified is the tendency of multimodal models to
inadequately integrate visual cues, relying instead on the lit-
eral interpretation of textual information. This shortcoming
highlights the need for further research, and we anticipate
that VAGUE will open up promising avenues for developing
systems capable of deeper multimodal reasoning to enhance
AI’s ability to engage in human-like interactions.

7. Limitations
First, we acknowledge that there are cultural and linguis-
tic limitations. We incorporate sarcastic, humorous, and
idiomatic implicatures in generating indirect expressions.
However, since the initial data drafts are created by a model
(GPT-4o [31]), they may reflect cultural biases present in
its training data. To prevent any potential ethical issues, all
human annotators are instructed to remove any content con-
sidered problematic or discriminatory during the rating and
filtering process. Also, all textual expressions in VAGUE are
limited to English. Therefore, we encourage future explo-
ration of indirect expressions across diverse languages and
cultures. The second limitation pertains to the dependency of
certain meta-information on the quality of the parent dataset
and the performance of the models utilized during the dataset
generation. We observe that bounding box annotations from
YOLOv11 [18] are occasionally duplicated, leading to a re-
ported number of people higher than actually present. Like-
wise, the tagging model RAM [49] sometimes misidentified
objects. Therefore, we remove any corrupted instances that
could undermine the integrity of the task during the human
rating and filtering process.
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