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Figure 1. We propose a pipeline for the scalable generation of realistic 3D animal pose and shape estimation training data. Training solely
on samples produced using our pipeline (see pairs above), we achieve state-of-the-art performance on a real-world multi-species benchmark.

Abstract

The model-based estimation of 3D animal pose and shape
from images enables computational modeling of animal be-
havior. Training models for this purpose requires large
amounts of labeled image data with precise pose and shape
annotations. However, capturing such data requires the
use of multi-view or marker-based motion-capture systems,
which are impractical to adapt to wild animals in situ and
impossible to scale across a comprehensive set of animal
species. Some have attempted to address the challenge of
procuring training data by pseudo-labeling individual real-
world images through manual 2D annotation, followed by
3D-parameter optimization to those labels. While this ap-
proach may produce silhouette-aligned samples, the ob-
tained pose and shape parameters are often implausible
due to the ill-posed nature of the monocular fitting prob-
lem. Sidestepping real-world ambiguity, others have de-
signed complex synthetic-data-generation pipelines lever-
aging game engines and collections of artist-designed 3D
assets. Such engines yield perfect ground-truth labels but
are often lacking in visual realism and require considerable
manual effort to adapt to new species or environments. We

propose an alternative approach to synthetic-data genera-
tion: rendering with a conditional image-generation model.
We introduce a pipeline that samples a diverse set of poses
and shapes for a variety of mammalian quadrupeds and
generates realistic images with corresponding ground-truth
pose and shape parameters. To demonstrate the scalability
of our approach, we introduce GenZoo, a synthetic dataset
containing one million images of distinct subjects. We train
a 3D pose and shape regressor on GenZoo, which achieves
state-of-the-art performance on a real-world multi-species
3D animal pose and shape estimation benchmark, despite
being trained solely on synthetic data. We release our data
and pipeline at https://genzoo.is.tue.mpg.de.

1. Introduction

The estimation of animal pose from images enables the
computational modeling of animal behavior [1]. In quan-
tifying behavior, pose offers a low-dimensional representa-
tion amenable to analysis [39]. From pose, actions can be
segmented [34] or individual health can be monitored [8].
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Pose by itself can be a fairly descriptive feature when
measured in a laboratory setting, where cameras, light-
ing, and environmental conditions can be tightly controlled.
However, pose becomes less informative in the wild, where
environmental conditions can vary greatly. Inspired by
trends in the modeling of humans [28, 31], recent work has
expanded beyond primitive pose-based representations and
toward parametric models that represent not only 3D pose,
but also shape [3, 7, 26, 64, 67]. These representations, typi-
cally derived from collections of 3D scans, are often steered
by body-joint rotation parameters and a latent shape code.

However, estimating the parameters of such representa-
tions from images is challenging due to the ill-posed nature
of 3D inference from 2D images, the diversity of real-world
animals, and the variability of imaging conditions in natural
environments. Training an effective regression model typi-
cally requires large amounts of annotated data. Datasets cu-
rated for human pose and shape estimation, for parametric
body models like SMPL [31], include extensive sequences
captured using marker-based mocap systems [21] or fitted
IMU devices [49]. While humans can be brought into 4D
capture halls and outfitted with dense markers, wild animals
are less cooperative. As a result, alternative approaches
must be devised to overcome the problem of obtaining data.

The most common approach is the manual annotation of
2D landmarks or silhouettes [4, 65], which can be used for
weak model supervision. Other approaches begin with 2D
annotations and produce pseudo-labels of pose and shape
by optimizing a model such as SMAL [64] to fit the labeled
2D features [55]. However, while optimizing to conform to
a silhouette may yield 3D fits that appear plausibly aligned,
producing accurate 3D annotations is difficult without suf-
ficiently strong priors, as many physically implausible pose
and shape combinations might explain the same silhouette.

Recently, the use of video-game engines to produce ren-
dered synthetic data has been explored as an alternative
to labeling real-world images [6, 18, 20]. While the ap-
proach sacrifices visual realism, it offers greater control
over dataset curation. Graphics engines’ explicit repre-
sentation of 3D scenes enables the production of precise
ground-truth annotations and control over dataset statistics.
However, traditional graphics-based synthetic datasets re-
quire substantial manual effort to design or modify. To pro-
duce data for additional species, or render them in a new en-
vironment, requires a new set of 3D assets. While the data
can be made to appear realistic, achieving both visual real-
ism and sufficient diversity requires considerable resources.

We investigate a potentially simpler alternative to the
production of synthetic data: rendering with a conditional
image-generation model. We propose a pipeline that, given
the name of a species, produces paired images and ground-
truth pose-and-shape parameters. Rather than relying on
explicit collections of 3D assets and scenes, our pipeline is

controllable by language: the inclusion of a new species or
environmental setting is accomplished via prompting. Our
pipeline facilitates the generation of realistic images with
a degree of control comparable to traditional synthetic-data
generators, thus combining the advantages of visual real-
ism, scalability, and the ability to control data production.

To demonstrate the scalability of our approach, we intro-
duce GenZoo, a million-image dataset comprised of unique
poses and shapes across diverse mammalian quadrupeds;
see Fig. 1 for samples. Training a regression model solely
on our synthetic dataset, without the use of annotated real-
world images, we achieve state-of-the-art performance on
Animal3D [55], a real-world multi-species animal pose and
shape estimation benchmark, validating the quality of our
dataset. We also introduce a synthetic evaluation dataset
with greater annotation fidelity than previous benchmarks.
In summary, our key contributions include:
1. A scalable pipeline for the generation of synthetic 3D

quadrupedal animal pose and shape estimation data
2. GenZoo, a million-scale multi-species synthetic dataset
3. A state-of-the-art pose and shape regression model
4. GenZoo-Felidae, a high-fidelity synthetic benchmark.

2. Related Work

Animal Pose and Shape Estimation. The 3D reconstruc-
tion of animals follows two primary paradigms: model-free
and model-based. Model-free approaches make minimal as-
sumptions about the animal’s 3D body structure, and the
objective is to obtain a representative 3D surface. Given
the diversity observed across animal species and shape,
this approach is fairly common. Notable examples include
CMR [23], which deformed a spherical mesh to reconstruct
birds from images, and LASSIE [61], MagicPony [52], and
3D-Fauna [29], which learned articulated 3D shape from
image collections. ViSER [58], LASR [57], BANMo [59],
and PPR [60] recovered 3D shape of animals from video.

Model-based approaches alternatively assume that a 3D
model is provided (or retrievable [54]), either as a species-
specific template model or as a parametric 3D model that
captures shape variations within and across species. This
approach is particularly valuable for downstream analy-
sis, as 3D pose and shape parameters can be leveraged to
estimate and track conformation and behavior over time.
Among model-based approaches, Cashman and Fitzgibbon
[9] were the first to address the representation challenge,
creating a morphable model for dolphins. Later, Kanazawa
et al. [22] estimated a deformable 3D model for cats. Zuffi
et al. [64] introduced SMAL, an articulated shape model for
a variety of quadrupeds learned from scans of toys. SMAL
has been adopted to estimate shape and pose for zebras [66],
to estimate the 3D pose and shape of dogs [4, 5, 43] from
2D datasets with keypoints and silhouette annotations, and
to create dog avatars [45]. Further modeling developments
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“A southern giraffe photographed with a Fujifilm X-T4 mirrorless
and a 100-400mm lens in a desert oasis with palm trees,
showcasing a side profile view with its head on the left . . .”
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Figure 2. Pipeline Overview. Starting with a sampled animal name (Sec. 3.2), we sample corresponding shape parameters (Sec. 3.3).
Paired pose parameters are sampled from a set of pseudo-poses (Sec. 3.4). Sampled camera and scene descriptions are combined with a
pose caption to form a prompt (Sec. 3.5). Rendered control signals and the prompt are used to guide the conditional image-generation
model, resulting in the final image (Sec. 3.6).

include Rüegg et al. [44]’s BITE extension of SMAL for
dog breeds, Li et al. [26]’s use of a horse-specific model
for lameness detection, Wang et al. [50]’s learning of a bird
model from images, and Zuffi et al. [67]’s pioneering horse
model learned from real 4D scans. Zuffi and Black [63]
introduced SMAL+ in AWOL, an enhanced version of the
SMAL model learned from additional 3D scans. In RAW,
Kulits et al. [24] extended the animal-reconstruction prob-
lem to additionally model the surrounding environment.

Rendered Synthetic Data for Pose Estimation. A number
of works approach the generation of synthetic data for hu-
man pose and shape estimation. SURREAL [48] sampled
random backgrounds and applied cloth textures to posed
SMPL [31] meshes. AGORA [37] rendered images of
clothed-body scans with SMPL-X [38] ground-truth anno-
tations. BEDLAM [6] extended this, presenting a dataset
with simulated clothing, hair, and large variation in human
shape. Hewitt et al. [18, 19] applied displacement maps on
a modified SMPL body to simulate natural cloth wrinkles.

In contrast, synthetic animal datasets lack comparable
sophistication. This is due in part to the lack of extensive
motion datasets like AMASS [33], but also to the greater
morphological variation between animals. Several methods
have employed mesh renders to train a 2D joint regressor for
a single species, including for mice [7], cougars [14], and
dogs [46]. However, none of these methods can be easily
combined to train a multi-animal 3D pose and shape regres-
sor. Although Mu et al. [36] produced a dataset of more than
ten different animals, it can only be applied to learn 2D joint
estimation and not 3D pose and shape, as it lacks variation
in shape. Li et al. [27] introduced PFERD, a marker-based
horse motion-capture dataset obtained with dense motion
capture, including a diverse set of body shapes and sizes.

Generative Models and Training Data. Recent advances
in controllable image generation, such as Stable Diffu-

sion [42] and ControlNet [62], enable realistic data pro-
duction for downstream tasks [2, 32, 51]. DatasetDM [53]
finetuned Stable Diffusion to generate synthetic images and
ground-truth pairs for depth and human pose estimation as
well as semantic and instance segmentation. Others have fo-
cused on human pose and shape estimation data, to synthe-
size new samples [15, 51, 62] or augment existing ones [10].

3. Method

In this section, we present our approach for generating syn-
thetic training data for 3D animal pose and shape estima-
tion (see Fig. 2). After introducing the SMAL body model
(Sec. 3.1), which defines our pose and shape representation,
we introduce our pipeline. Starting with a set of mammalian
species or breeds (Sec. 3.2), we sample a taxon. Based on
the taxon, we sample an animal shape (Sec. 3.3) and as-
sign a pose (Sec. 3.4). From the model parameters, we ren-
der a primitive image, which is captioned using a vision–
language model (VLM) and used to synthesize a prompt
(Sec. 3.5). Finally, we condition an image-generation model
using both the prompt and render (Sec. 3.6). We close with
an explanation of our regression-model baseline (Sec. 3.7).

3.1. SMAL
The Skinned Multi-Animal Linear (SMAL) [64] model is a
function that, given shape parameters β and pose parame-
ters θ, transforms a 3D template to produce a posed mesh.
The transformation occurs in two steps: first, the vertex
template instance vt is deformed into an intrinsic shape vs,
then Linear Blend Skinning (LBS) is applied to rotate the
deformed body parts based on the pose parameters θ:

vs = vt +BβT

v = LBS(vs, θ;W,Jr). (1)

8494



Here, the template vt represents the initial state of a
triangular mesh with nV vertices, B is a matrix of shape
3nV ×nB containing the nB basis vectors of a linear shape
deformation space, Jr is the joint regressor that maps model
vertices to a set of nJ 3D joint locations, and W is a skin-
ning weight matrix used in LBS. The linear shape space is
learned using Principal Component Analysis (PCA) on a set
of scans of toy quadrupedal animals. In particular, we em-
ploy SMAL+, an expanded variant of SMAL introduced in
AWOL [63], learned from a set of 145 registered toy scans,
including figures covering a number of mammalian species.

3.2. Species Sampling
Our approach offers a key advantage over traditional
rendering-based synthetic-data generation: rather than re-
quiring additional artist-designed 3D assets, adding a new
species requires only prompt modifications. This enables
precise control over dataset sampling statistics: new taxon
can be readily added or species proportions rebalanced.

To maximize data diversity, we sample from a variety of
taxa listed in the Mammal Diversity Database [11]. While
SMAL can represent a wide range of quadrupedal animals,
its fixed joint topology and limitated shape-space expres-
sivity constrain the set of representable taxa. As a result,
we restrict our sampling to mammals within the superorder
Laurasiatheria (e.g. giraffes, deer, cows), excluding mem-
bers of the order Eulipotyphla (e.g. rats, moles). See Fig. 3
in the Supp. Mat. visualizing the taxonomy we sample from.

We note that breeds are considered distinct from taxo-
nomical species. For example, Canis familiaris (dog) is
regarded as a single species. Considering the diversity in
shape, size, and visual appearance across breeds of dogs,
we expand the single dog category with a set of 247 breeds
when sampling. We sample dogs with 50% probability.
Once species or breed has been sampled, we generate a 3D,
posed animal and a corresponding image through steps de-
scribed in Secs. 3.3 to 3.6 and laid out visually in Fig. 2.

3.3. Shape Sampling
AWOL [63] is a recent flow-based generative model that
maps CLIP [40] embeddings to SMAL shape parameters,
producing shapes conditioned on an embedding of an ani-
mal text description. While generating shapes well-aligned
with a given prompt, AWOL is non-stochastic: each input
maps to one shape, making it difficult to cover the space of
possible shapes. Avoiding AWOL altogether and sampling
betas naively would result in implausible shapes. Represen-
tativeness and diversity are competing objectives. Instead,
we sample in CLIP embedding space and use AWOL for de-
coding. For each taxon, we compute 128 CLIP text embed-
dings, using a list of appearance descriptors such as “big,”
“young,” or “scrawny.” CLIP is prompted with “A photo of
a X Y.” We fit a multivariate Gaussian distribution to the re-

Figure 3. Pose Transfer. The same set of pseudo poses transferred
across individuals with different body-shape / limb proportions.

sulting CLIP embeddings, from which we can then sample
to generate stochastic shapes that maintain alignment with
the taxon. This enables non-naive sampling of (species-
aligned) shape with the deterministic AWOL, introducing
controlled variability through sampling of the distribution.

3.4. Pose Sampling
A similar dilemma between diversity and realism arises in
the sampling of ground-truth pose. To maximize diversity,
one could sample random rotations. This is feasible for
human body models like SMPL [31] where vast amounts
of motion-capture data are available, which can be used to
learn a generative pose prior [38]. However, the absence
of comparable data for animals or SMAL makes sampling
valid poses more difficult and requires different strategies.

To address this data limitation, we apply BITE [44], an
optimization-based dog-pose estimation method, to process
a large collection of online dog images and extract plausi-
ble pseudo-poses. Although BITE does not extract accurate
poses from every image, we use only the extracted pose,
discarding the original photos. We then sample from this
collection of poses to populate our generated dataset.

We source our poses from dogs because of: 1) the large
number of dog photos available online, 2) their dynamic
nature and relative flexibility, and 3) the broad range of body
shapes and proportions “dog” encompasses, which lead to
a variety of different poses. In collecting pseudo-poses, our
goal is not to match exactly the joint positions of the animal
in the source image, but to cover well the space of possible
quadruped poses when sampling new ones. Not all poses
we employ are realistic on every body shape. For example,
one might not expect to encounter in the wild a jumping
cow. However, it’s possible, and we hope to represent it in
our dataset. See Fig. 3 for a visualization of a set of poses
transferred across individuals of varying body proportions.
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Figure 4. Animal3D Reconstruction Samples. We show the input image (top), GT mesh (middle), and our model’s prediction (bottom).

3.5. Prompt Sampling

After sampling species, shape, and pose, we render out the
resulting model in Pyrender [35]. The render is passed to
a VLM, Molmo-7B-D-0924 [12], prompted with “This is a
picture of an animal. Which direction is the animal facing?”
The caption provides guidance on global orientation, help-
ing to reduce ambiguity in the subsequent image-generation
step, particularly for producing images of complex poses.

In addition to captioning, and inclusion of the species
name, we also sample a camera setting (e.g., “Samsung
Galaxy S23 with enhanced night mode camera”) and a
scenery setting (e.g., “bike trail through the woods”) from
predefined lists. We find that explicit prompting of these
attributes increases visual realism and diversity. After the
above are sampled, we pass the descriptors to an LLM,
Qwen2.5-7B-Instruct [47], to synthesize these components
into a coherent and concise prompt. See Sec. 4.4 for a quan-
titative ablation study on our prompting design decisions.

3.6. Conditional Image Generation

Once the prompt has been prepared, we employ FLUX [25],
a generative text-to-image rectified-flow transformer model,
to synthesize paired images. While FLUX can be condi-
tioned on CLIP [40] and T5 [41] embeddings, it cannot na-
tively be controlled with pose and shape parameters. To
achieve such control, we employ an auxiliary, pretrained
ControlNet [62] model and perform no finetuning of it.

ControlNets are task-specific generators of a generative
model – FLUX in our case – trained to maximize output
probability conditioned on provided control signals, such as
a Canny-edge or depth map. Using Pyrender, we produce a
depth map and a shaded render for Canny-edge extraction.
During generation, FLUX and the ControlNet are used con-
currently to guide the generation process by both the text
prompt and extracted control signals. We generate all im-
ages at a resolution of 1024x1024. See Fig. 2 for a visual
of the control signals applied, Sec. 4.3 for an ablation on
the control signal used, and also Supp. Mat. Sec. C for an
ablation on the choice of image-generation model.

3.7. Parameter Regressor
We train a regression model on GenZoo using two architec-
tures. Following the results of an ablation study performed
by Goel et al. [16], we build off the backbone of ViT-
Pose [56] and add a parameter-estimation head. This back-
bone was originally trained for human 2D-keypoint estima-
tion. To match the baselines employed in Animal3D [55],
we additionally train our model with ResNet-50 [17]. We
supervise the training of the model using losses on 2D-
joint re-projection and directly on pose and parameters. See
Supp. Mat. Sec. A for additional details on reproducibility.

4. Evaluations

We quantitatively evaluate the regressor trained on our data
using three metrics on joint positions: 1) PCK@0.5, defined
as the percentage of correct keypoints within half the head–
tail length; 2) PA-MPJPE, the procrustes-aligned mean per-
joint positional error in mm; and 3) S-MPJPE, defined as
PA-MPJPE without the rotation transform in mm, as used in
Animal3D [55] to account for SMAL scale inconsistency.

4.1. Animal3D
We employ Animal3D [55] to evaluate the transferability of
our model trained on GenZoo. Animal3D is built on a set of
images borrowed from the ImageNet [13] and COCO [30]
datasets. Annotators manually labeled 2D keypoints and sil-
houettes, which were used to guide an optimization-based
fitting process, resulting in SMAL pseudo-labels. It con-
tains animals of forty classes, which correspond to Ima-
geNet labels of a subset of the superorder Laurasiatheria.

Training solely on GenZoo, we achieve state-of-the-art
performance, outperforming the strongest baseline by 57%
in S-MPJPE (374.9→160.1), see Tab. 1. We also observe
notable improvements in PCK@0.5 (85.6→97.0) and PA-
MPJPE (123.9→116.6), but gains appear comparatively
saturated. See Fig. 4 for reconstruction samples, Fig. 5
for a qualitative comparison, and Fig. 6 for performance by
class. PCK@0.5, which we report in order to compare with
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Input GT HMR-Human∗ HMR-Syn∗ PARE-Human∗ PARE-Syn∗ WLDO-Syn∗ Ours

Figure 5. Qualitative Method Comparison. Predictions between our method and the baseline results (*) sourced from Animal3D [55].

↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE

Ours 97.0 160.1 116.6
Ours (ResNet) 95.11 201.1 132.67

HMR∗ 63.1 496.2 124.8
PARE∗ 85.6 374.9 127.2
WLDO∗ 65.1 484.0 123.9

Table 1. Quantitative Method Comparison. We compare our
models trained on GenZoo with the best-performing numbers on
the Animal3D benchmark. Asterisks (∗) signify the result is from
Animal3D and the best number was chosen across experiments.

the numbers reported in Animal3D, is a very generous met-
ric. Despite the large improvement in S-MPJPE, we observe
only modest difference over the baselines in PA-MPJPE.

To investigate this, we look to the ground-truth. We
visualize in Fig. 7 an Animal3D annotation next to our
model prediction. While we observe that the projection
of the ground-truth is well-aligned with the image silhou-
ette, when viewed from the side it appears as a very differ-
ent animal, highlighting the difficulty of producing accurate
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Figure 6. Animal3D Performance By Species. Our model out-
performs the SOTA aggregate of 374.9 S-MPJPE across species,
demonstrating the cross-species generalization of our model.

manual annotations without sufficient priors. This suggests
there may be a bound on performance. We explore this fur-
ther in a perceptual study detailed in Supp. Mat. Sec. B.

4.2. GenZoo-Felidae
Motivated by our observations in Sec. 4.1, we propose a
complementary benchmark. We design it to both evaluate
model generalization to unseen species and to test estima-
tion ability against ground-truth shape. We use the GenZoo
data-generation pipeline to create a 1000-sample test set
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Animal3D GenZoo-Felidae

↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE ↑ PCK@0.5 ↓ S-MPJPE ↓ PA-MPJPE ↓ S-V2V ↓ PA-V2V

Full 97.1 166.9 118.4 99.6 83.5 62.0 91.5 72.1

-Depth 96.7 184.1 135.1 99.1 114.2 83.3 131.1 101.8
-Canny 96.2 172.3 119.4 99.5 81.0 59.7 87.5 68.7
-Caption 96.9 167.1 120.1 99.5 93.5 71.0 104.3 82.0
-LLM 97.2 168.2 120.7 99.5 92.4 70.3 101.3 81.2

Table 2. Quantitative Ablation Effects. Ablation-study results for models trained on 100,000 samples each.

Input GT Ours

Figure 7. Animal3D Comparison. Highlighting the difficulty
of producing manual 3D annotations of monocular, real-world
images, we observe physical implausibilities in the Animal3D
ground-truth. In contrast, a model trained on our dataset does not
exhibit the same biases. See Supp. Mat. Sec. B for a perceptual
study comparing our predictions with the dataset’s pseudolabels.

with no overlap in species, pose, camera setting, or en-
vironmental conditions. We extract individual poses from
various artist-designed feline motion sequences retargeted
to the SMAL skeleton. We designate the 47 species in the
Felidae family as test-only and do not train on them. We re-
fer to our benchmark as GenZoo-Felidae. We show dataset
samples and reconstructions in Fig. 10 and metrics in Tab. 2.

4.3. Control Signal

We evaluate different ControlNet conditioning combina-
tions, comparing our full model (combined Canny-edge
and depth control) against the controls applied individu-
ally. Depth-only conditioning produces the most-realistic
images but shows poorest ground-truth alignment. In con-
trast, Canny-edge-only conditioning achieves the best align-
ment but compromises visual realism. We observe that
combining the two at reduced strength balances these trade-
offs. See Fig. 8 for an illustrative sample. We find that quan-
titative evaluation supports our qualitative findings (Tab. 2).

4.4. Captioning and Textual Conditioning

We assess the impact of removing the VLM captioning step
and LLM prompt synthesis. While both components pos-
itively contribute to Animal3D performance metrics, their
impact is most pronounced in GenZoo-Felidae. See Tab. 2.

Render Canny Depth Canny+Depth

Figure 8. Control-Signal Ablation. Depth-only conditioning pro-
duces the most realistic images but poorest alignment with ground-
truth poses. Canny-edge-only control shows the opposite effect.
We employ both to balance visual realism with pose accuracy.
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Figure 9. Data Efficiency. We evaluate data efficiency of our
model and observe consistent log-linear trends as data is scaled.

4.5. Data Efficiency

We evaluate our model trained with varying amounts of
data. While we observe a positive quantitative trend as the
amount of training data increases, the returns appear dimin-
ishing. This further suggests that there may be an upper
bound on Animal3D performance. See Fig. 9 for a plot.

5. Discussion and Limitations

While our GenZoo-trained model demonstrates fairly robust
generalization to real-world images, several limitations war-
rant discussion: 1) Our model struggles under strong oc-
clusions, such as mistaking a human in the foreground as
the regression target. See Fig. 11 for examples. See also
https://genzoo.is.tue.mpg.de for a compre-
hensive set of reconstruction visualizations and Fig. 2 in
the Supp. Mat. for reconstructions beyond Animal3D im-
ages. See also Supp. Mat. Sec. E, for an ablation study on
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Figure 10. GenZoo-Felidae Dataset Samples. We show the input image (top), GT mesh (middle), and our model’s prediction (bottom).
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Figure 11. Prediction Failures. Our model can struggle when
faced with strong occlusion or uncommon species-specific poses.

augmenting with occlusions during training to improve the
model’s robustness. 2) While our pose-sampling distribu-
tion, built from dog pseudo poses, appears sufficient for
a broad coverage of animal poses, the model can struggle
with species-specific poses not typically observed in dogs,
such as feline grooming positions. Future work should ex-
plore more-comprehensive pose-sampling strategies. 3) Al-
though the SMAL model is capable of representing well a
broad swathe of shapes and species, it is constrained by its
fixed skeletal topology and cannot represent large morpho-
logical differences between species such as the trunk of an
elephant. Future work should focus on developing or uti-
lizing more-expressive parametric representations that can
accommodate greater anatomical diversity, or finer-grained
species-specific representations such as VAREN [67]. 4)
We observe that FLUX has limited understanding relating to
lesser-known species, often instead producing a more com-
mon, taxonomically similar species, but sometimes mistak-
ing the name for a tropical bird (Fig. 12). Future work
should explore the adaptation of image-generation mod-
els to better represent rare and unusual species. 5) While
there is a lack of training data for 3D animal pose-and-
shape estimation, there is also a need for strong benchmarks
with precise ground-truth annotations. GenZoo – as well as
GenZoo-Felidae – while comparable, do not offer the de-
gree of precision of traditional synthetic data. This includes
ambiguity in control, such as relative-depth conditioning.

(a) Ambiguous Control (b) Rare Species

(c) Image-Generation Failure (d) Shape-Sampling Failure

Figure 12. Generation Failures. Generation failure cases most
often arise from: (a) ambiguous control signals; (b) uncommon
species names mistaken for exotic birds (Formosan serow); (c)
image-generation model failure; and (d) shape-sampling errors.
Such failures might be automatically filtered through 2D and 3D
consistency checks between generated images and ground truth.

6. Conclusion

Motivated by the shortcomings of existing approaches for
the acquisition of 3D animal pose and shape estimation
training data, we proposed a scalable pipeline that lever-
ages conditional image-generation models. Our pipeline
enables the generation of realistic images with a degree of
control comparable to that of traditional synthetic-data gen-
erators. Showcasing the scalability of our approach, we pre-
sented GenZoo, a dataset of one million images of unique
animals. Training solely on GenZoo, without the use of
any real-world training data, we demonstrated state-of-the-
art performance on a real-world multi-species animal pose
and shape estimation benchmark. We additionally intro-
duced GenZoo-Felidae, a high-fidelity synthetic test dataset
that complements existing pseudo-labeled real-world eval-
uations. Beyond immediate technical achievements, our
work opens new possibilities for automated animal behavior
analysis, wildlife monitoring, and veterinary applications.
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