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Abstract

Understanding and structuring outdoor environments in 3D
is critical for numerous applications, including robotics, ur-
ban planning, and autonomous navigation. In this work,
we propose a pipeline to construct hierarchical 3D scene
graphs from outdoor data, consisting of posed images and
3D reconstructions. Our approach systematically extracts
and organizes objects and their subcomponents, enabling
representations that span from entire buildings to their fa-
cades and individual windows. By leveraging geometric
and semantic relationships, our method efficiently groups
objects into meaningful hierarchies while ensuring robust
spatial consistency. We integrate efficient feature extrac-
tion, hierarchical object merging, and relationship infer-
ence to generate structured scene graphs that capture both
global and local dependencies. Our approach scales to
large outdoor environments while maintaining efficiency,
and we demonstrate its effectiveness on real-world datasets.
We also demonstrate that these constructed outdoor scene
graphs are beneficial for downstream applications, such as
3D scene alignment. The code is available on GitHub.

1. Introduction
Understanding outdoor 3D environments is a fundamental
challenge in computer vision, with applications in robotics,
urban planning, and autonomous navigation. Despite its
significance, general outdoor 3D scene understanding re-
mains underdeveloped compared to its indoor counter-
part [29]. While indoor environments are often well-
structured and constrained, outdoor scenes exhibit greater
variability, occlusions, and large-scale complexities, mak-
ing robust 3D scene reconstruction and interpretation con-
siderably more challenging.

3D scene graphs are particularly valuable for various
downstream applications [13, 21, 22] due to their com-
pact and structured representation of environments. How-
ever, existing scene graph construction methods primarily
focus on indoor settings [10] or autonomous driving sce-
narios [8]. Indoor scene graph approaches leverage struc-

Figure 1. Point Cloud of Scene LIN from the LaMAR
dataset [23]. Large object instances (e.g., houses) are distinctly
colored, with their components (e.g., windows) shaded in a darker
variant of the same color to indicate hierarchical relationships.

tured environments to establish hierarchical relationships
between objects and regions [2, 10, 18]. In contrast, au-
tonomous driving methods rely on LiDAR-based object de-
tection and tracking in urban environments, where prede-
fined object categories such as vehicles, pedestrians, and
road structures dominate [4, 9]. These approaches are often
unsuitable for general outdoor scene graph generation, as
they struggle to capture unstructured environments beyond
road networks and traffic-related elements. Moreover, many
state-of-the-art 3D object detection models fail to general-
ize to diverse outdoor settings where object categories ex-
tend beyond those found in urban datasets.

A gap exists in research regarding scene graph gener-
ation for general outdoor environments. Existing methods
either focus on object-level scene understanding without hi-
erarchical relationships or cannot generalize beyond struc-
tured urban domains. A framework capable of capturing
multi-scale relationships – ranging from entire buildings to
facades and individual windows – while maintaining spatial
and semantic consistency is essential to bridging this gap.

This work proposes a pipeline for hierarchical 3D scene
graph construction from outdoor data, leveraging posed
images and 3D reconstruction. Unlike existing hierarchi-
cal approaches, e.g., [18, 28], which are often tailored for
structured indoor environments or rely on predefined tax-
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onomies, our method dynamically constructs hierarchies by
identifying multi-scale object relationships within unstruc-
tured outdoor scenes. To our knowledge, this is among
the first approaches to demonstrate that hierarchical 3D
scene graphs can be feasibly and effectively generated in
complex outdoor settings using only posed images and re-
constructions. Our method extracts objects and their sub-
components, constructing a structured representation that
spans multiple abstraction levels. By combining geometric
and semantic relationships, our approach enables efficient
hierarchical grouping. We demonstrate the effectiveness of
our method on real-world outdoor datasets and validate its
utility in downstream applications such as 3D scene align-
ment. Our key contributions are:
• We introduce a hierarchical 3D scene graph represen-

tation for outdoor environments, capturing relationships
from large-scale structures to fine-grained components.

• We propose an efficient pipeline for generating these
scene graphs using posed images and 3D reconstructions,
incorporating geometric and semantic constraints.

• We evaluate our approach on real-world outdoor datasets
and demonstrate its benefits for downstream applications
such as 3D scene alignment.

2. Related Work
3D Scene Graph Generation. Early work on 3D scene
graphs primarily focused on indoor environments. Armeni
et al. [2] introduced one of the first 3D scene graph frame-
works, constructing a graph that spans entire buildings, with
nodes representing objects, rooms, and cameras. Their
semi-automatic pipeline combined 2D object detectors with
multi-view geometric consistency to populate the graph.

Rosinol et al. [18] extended this to dynamic and large-
scale settings by building a 3D dynamic scene graph from
visual-inertial SLAM data. Their system integrates object
detection and human pose estimation into SLAM, produc-
ing a layered representation of objects, places, and rooms.

Recent efforts have explored outdoor scene graphs, in-
troducing challenges such as complex semantics and sparse
labeled data. Strader et al. [25] propose a method that uses a
language-driven spatial ontology to structure outdoor scene
graphs. By leveraging large language models, their ap-
proach reduces reliance on labeled training data while en-
abling predictions for unseen concepts.

Parallel research explores learning-based 3D scene graph
prediction, particularly in point cloud data. Some methods
integrate commonsense knowledge graphs [7] to improve
relationship prediction. Overall, scaling scene graph meth-
ods from structured indoor environments to unstructured
outdoor scenes remains a challenge.
Outdoor Scene Understanding requires semantic interpre-
tation and large-scale geometric reconstruction. Datasets
such as KITTI [9], Cityscapes [6], and nuScenes [4] have

driven advancements in multi-modal perception and au-
tonomous driving. SemanticKITTI [3] further provides
point-wise semantic labels for LiDAR sequences, aiding in
point cloud segmentation research.

Traditional methods relied on geometric reasoning, such
as removing ground planes from LiDAR data and cluster-
ing objects before classification. More recent deep learn-
ing models predict semantic labels directly from sensor
data, improving segmentation accuracy. CNNs process
panoramic images for road and object segmentation, while
3D deep learning models handle volumetric data. These ad-
vancements form the foundation for scene graph construc-
tion, where nodes represent objects or regions and edges
encode their relationships.
Object Detection and Segmentation in 3D is essential for
building scene graphs. Traditional methods used geometric
reasoning, such as clustering point clouds and fitting mod-
els [19], but these struggled with fine semantic distinctions.

Deep learning has significantly improved 3D object de-
tection. PointNet [15] introduced direct learning on point
clouds, with PointNet++ refining local feature learning.
Frustum PointNet [16] combined 2D and 3D data, while
voxel-based methods like PointPillars [12] introduced ef-
ficient encoding techniques. Hybrid approaches integrate
deep networks with geometric constraints to refine predic-
tions. Deep learning now dominates 3D object detection,
but geometric reasoning remains useful for improving gen-
eralization to unseen scenarios.
Semantic and Spatial Relationship Inference. Modeling
relationships of objects is central to 3D scene graph con-
struction. Spatial proximity can infer adjacency or contain-
ment, e.g., a car on a road or a tree next to a car. Some
frameworks, such as Rosinol et al. [18], construct hierarchi-
cal scene graphs by clustering environments into places and
rooms. Semantic reasoning further refines relationships.
Certain objects have canonical relations, such as a person
inside a vehicle. Recent 3D scene graph models incorporate
relational labels [10], using training data or external knowl-
edge sources, like large language models. Strader et al.[25]
integrated logical rules to enrich scene graphs, improving
structured relationship inference.

By combining spatial clustering, semantic understand-
ing, and external knowledge, modern scene graph methods
better capture real-world relationships. These techniques
support applications such as robotic planning, scene under-
standing, and question answering.

3. Hierarchical Scene Graph Construction
Our method constructs hierarchical 3D scene graphs from
outdoor scenes, leveraging posed images and a 3D mesh re-
construction. The pipeline consists of four main stages: (i)
mesh preprocessing, (ii) per-image object proposal and hi-
erarchical merging, (iii) tree pruning and refinement, and
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(iv) label/description generation and hyperedge construc-
tion. Figure 2 provides an overview of our approach.

3.1. Mesh Preprocessing
The input 3D mesh often requires preprocessing to improve
the accuracy and efficiency of subsequent steps. This may
involve downsampling the mesh to reduce computational
cost, and removing potential artifacts that can occur, e.g.,
due to noise or the reconstruction method. The specific pre-
processing steps can be tailored to the characteristics of the
input data, but the goal is to ensure a consistent and clean
representation for downstream processing. Let M denote
the preprocessed 3D mesh that we will segment to objects.

3.2. Per-Image Object Proposal and Merging
This step forms the core of our approach. For each image Ii
with associated camera pose Pi, we perform the following
steps to extract object instances.

2D Object Proposal. We employ a segmentation model
(e.g., SAM [11]) to generate a set of 2D mask proposals,
denoted as {Mi,j}Ni

j=1, where Ni is the number of masks for
image Ii. For each image, we sort these masks in descend-
ing order of their area, prioritizing larger objects, which are
often more likely to represent significant scene structures.
Other sorting criteria, such as confidence scores, could also
be incorporated if the segmentation network outputs them.

Feature Extraction. For each mask Mi,j , we extract a fea-
ture vector fi,j ∈ Rd using a pre-trained visual encoder
(e.g., DINOv2 [14]). To enhance robustness and account
for potential inaccuracies in the mask boundaries, we gen-
erate multiple crops [26] of the image region defined by the
bounding box of Mi,j , with variations in padding or mask-
ing, and then aggregate (e.g., average) the features extracted
from these crops to obtain fi,j , i.e., the segment feature.

3D Projection and Refinement. We project each 2D mask
Mi,j into 3D by casting rays from the camera center through
each pixel within the mask and intersecting them with the
preprocessed mesh M. This yields an initial point cloud
Ci,j . We downsample Ci,j using a standard technique like
voxel downsampling with a voxel size v. To remove noise
and isolate the dominant object, we use a density-based
clustering algorithm (DBSCAN [24]) and retain only the
largest cluster, resulting in a refined point cloud C′i,j .

Object Initialization and Merging. We process the point
clouds {C′i,j}, refined in the previous step, sequentially,
based on the sorted mask order. For each C′i,j , we deter-
mine whether to initialize this object as a new one or to
merge it with an existing object instance in the graph. Let
O = {Ok}Kk=1 be the set of existing object instances in
the graph, where each object Ok is represented by its point
cloud Pk, semantic feature vector fk from DINOv2, and the
set of image indices Vk from which it was observed.

We first identify candidate objects for merging by com-
puting a measure of spatial overlap (e.g., 3D bounding box
intersection) between C′i,j and each existing object Ok. To
accelerate this process, we utilize the camera frustum de-
fined by Pi to pre-filter objects that are entirely outside the
field of view. This step is crucial, as it allows for quasi
linear time in scene size, otherwise looking through all ob-
jects would scale quadratically. For each candidate object
Ok deemed sufficiently close to C′i,j , we compute the point
cloud intersection Ij,k = C′i,j ∩ Pk and build the set Ōj of
all existing objects with non-zero overlap. We calculate a
percentage of intersection pj,k as follows:

pj,k = max

(
|Ij,k|
|C′i,j |

,
|Ij,k|
|Pk|

)
. (1)

We then compute similarity score sj,k of C′i,j and Ok:

σj,k = cosine similarity(fi,j , fk)
sj,k = α1pj,k1{pj,k>τ̃1} + α2σj,k1{σj,k>τ̃2}.

(2)

where σj,k can be interpreted as a semantic similarity. αi

are weights to influence the importance of geometric or se-
mantic similarity and 1 is the indicator function ensuring a
minimum value.

We select object Ok∗ with the highest similarity, such
that k∗ = argmaxk sj,k. If sj,k∗ > τ1, where τ1 is a merg-
ing threshold, we merge C′i,j into Ok∗ . The merged object
point cloud, feature vector, and view set are updated as:

Pk∗ ← Pk∗ ∪ C′i,j , (3)

fk∗ ← |Vk
∗ | · fk∗ + fi,j
|Vk∗ |+ 1

, (4)

Vk∗ ← Vk∗ ∪ {i}. (5)

We iteratively merge Ok∗ with other candidate objects
from Ōj as long as the similarity score exceeds τ1, recom-
puting the similarity score after each merge. If sj,k∗ ≤
τ1, we initialize a new object OK+1 with PK+1 = C′i,j ,
fK+1 = fi,j , and VK+1 = {i}, and increment K.
Hierarchical Tree Construction. After initializing or
merging an object, we integrate it into a hierarchical ob-
ject tree. Each object is initially considered a tree of height
zero. We define the root of a tree as its highest-level node.
Let Onew denote the newly initialized or merged object.

We first construct a list of candidate tree levels, L, by
including all objects left in Ōj that weren’t already merged
to Onew, along with all their parent nodes up to the root. In
Fig. 3 the levels L are colored orange.

Next, we compute similarity scores between the root
of Onew and each node Lm in L. This similarity score,
s′new,m, uses a modified intersection percentage as:

p′new,m = mean
(
|Inew,m|
|Pnew|

,
|Inew,m|
|Pm|

)
, (6)
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Figure 2. Overview of the Proposed Method. Given input images and a mesh, object masks are detected using Segment Anything [11]
and projected onto the mesh to obtain object instance segmentation. Images of each object instance are then processed by an LVLM model,
which generates labels, descriptions, and attributes. The detected objects are subsequently aggregated into a hierarchical 3D scene graph,
enabling a structured and high-level understanding of the scene. The scene graphs are useful in various tasks, e.g., scene alignment [21]

σnew,m = cosine similarity(froot(new), fm)

s′new,m = β1p
′
new,m1{p′

new,m>γ̃1} + β2σnew,m1{σnew,m>γ̃2},

(7)
where Pnew and Pm are point clouds of Onew and Lm,
Inew,m is the intersection between those two and βi, γi
are new parameters that allow for a different type of merg-
ing. We select the node Lm∗ with the highest similarity:
m∗ = argmaxm s′new,m. If s′new,m∗ > τ2, where τ2 is the
tree merging threshold, we perform one of the following ac-
tions based on a set of merging rules:

1. If both Onew and Lm∗ are trees of height zero: Create a
new parent Oparent, merging the point clouds of Onew

and Lm∗ . Onew and Lm∗ become children of Oparent.
2. If either Onew or Lm∗ is a tree of height zero: Append

the height-zero tree as a child of the other node, merging
their respective point clouds.

3. If both Onew and Lm∗ are roots: Append the smaller tree
(in terms of point cloud size) as a child of the larger tree.

4. Otherwise: Append Onew as a child of Lm∗ .

Every time two point clouds are merged, we also merge the
feature vectors by taking a weighted average according to
|Vnew| and |Vm∗| and concatenate Vnew and Vm∗ to form
the merged V . We iteratively repeat this process, taking the
root of the updated tree and recomputing similarity scores
with respect to L, until all similarity scores are below τ2.
The merging rules are visualized in Fig. 3.

Figure 3. Merging Rules in Hierarchical Tree Construction.
Nodes with point cloud intersections with the initial object (Ōj)
are represented with stripes, while those involved in similarity
score calculations (L) are highlighted in orange. In case A, if the
new object is a tree of height zero, it is either appended as a child
to the best-matching level of an existing tree or merged with an-
other height-zero tree to form a new tree. In case B, the root of
the new object is considered in all tree merging operations and is
either appended as a child to another root or has a child appended
to it, depending on point cloud size in cases 3 and 4, respectively.
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Figure 4. Tree Pruning and Refinement. Illustration of node re-
moval and the reassignment of children to their respective parents
during the pruning process.

3.3. Tree Pruning and Refinement
After processing all images, we perform a post-processing
step to refine the object trees. First, we can remove objects
observed by fewer than a minimum number of views (e.g.,
|Vk| < 2). Then, for each tree, we apply a set of general
pruning/simplification rules as follows:
1. Dominant Child Removal: Remove leaf nodes that are

excessively large relative to their parent (e.g., exceed-
ing a point cloud size ratio threshold). The parent point
cloud remains unchanged.

2. Single Child Parent Removal: Remove any parent
node that has only one child.

3. Dominant Parent Removal: Remove any parent node
that is excessively large or disproportionately small rela-
tive to its parent (e.g., exceeding a point cloud size ratio
threshold). The children of the removed node are di-
rectly attached to its parent.

Visualization for this step is shown in Fig. 4.

3.4. Label, Attributes and Hyperedge Construction
Finally, we traverse the object trees to extract a complete set
of nodes representing objects at different levels of granular-
ity. We generate descriptive labels and attributes for each
node and establish hyperedges to capture relationships.
Labeling and Description. For each object Oi, we select
a subset of images I∗ = {Ik}k∈K∗ ⊂ Vi (e.g., |K∗| =
3) for label and description generation. Image selection is
based on a score that combines the number of object points
that project in front of the camera view (favoring views that
capture as much of the object as possible), the projected 2D
mask area, and the mask compactness (i.e., the ratio of the
mask area and the area of its bounding box). More formally,
we can express such a visibility score as:

score(Oi, I) = num visible points(Oi, I) ∗ mask area(Oi, I) ∗
mask compactness(Oi, I).

We select argmax{score(Oi, I)} as Ik0
. We sort I accord-

ing to score(Oi, I) and iteratively select additional images,
by going through the sorted list and picking image Ik if its
pose Pk is sufficiently different from all poses of selected
images {Pki

}i. We consider pose Pi sufficiently different

from pose Pj if either the distance of their camera centers
or the angle between their orientations exceed thresholds.
This ensures a rich selection of different views on the ob-
ject, enhancing the description generation.

For each selected image, we visually highlight the object
(by drawing a bounding box around the projected object
mask) and prompt a vision-language model (VLM) (e.g.,
GPT-4V [1], though any capable VLM can be used) to gen-
erate a label, a description, a list of attributes, and option-
ally, a confidence score for its prediction. To synthesize the
information, the resulting textual outputs are distilled into
a single, coherent label, description, and attribute list by a
large language model GPT-4 [1]).

Hyperedge Construction. We construct several types of
hyperedges to capture different relationships:
1. Root-to-Root Edges: We compute a measure of spa-

tial proximity or overlap (e.g., 3D bounding box IoU)
between all pairs of root nodes. We then construct a
minimum spanning tree based on these values to prune
redundant edges, resulting in a set of edges connecting
spatially related root nodes.

2. Parent-Child Edges: Every object is connected to its
parent in the tree (if a parent exists). This directly en-
codes the hierarchical structure.

3. Description-Based Hyperedges (Root Nodes Only):
We encode the generated descriptions of all root nodes
using a sentence embedding model (SBERT [27]). We
then perform DBSCAN-based clustering on these em-
beddings using cosine similarity, creating hyperedges
that group semantically similar objects.

4. Spatial Hyperedges (Root Nodes Only): We perform
DBSCAN clustering on the 3D centroids of all root
nodes. Each cluster forms a hyperedge, grouping spa-
tially proximate objects.

The final output of our method is a hierarchical 3D scene
graph, where nodes represent objects at multiple levels of
granularity, and edges/hyperedges represent spatial, seman-
tic, and hierarchical relationships.

4. Experiments
In this section, we provide details on the dataset used for
scene graph construction together with analysis on the ex-
tracted object classes and scene graph structure.

4.1. Dataset and Scene Graph Generation
To evaluate our method, we construct large-scale 3D out-
door scene graphs using the LaMAR dataset [23]. LaMAR
is a benchmark dataset designed for augmented reality (AR)
localization and mapping, featuring diverse large-scale in-
door and outdoor environments captured using AR devices
such as HoloLens 2 and iPhones/iPads. The dataset pro-
vides multi-sensor data streams, including RGB images,
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(a) Processed mesh (b) Large objects (c) Small objects.

Figure 5. Hierarchical Levels of an Object Tree. From left to right, we visualize (a) the processed mesh, (b) a root object instance,
and (c) its child objects. The hierarchical structure enables representation of both large-scale objects (e.g., entire buildings) and smaller
components (e.g., windows, doors) within the same scene graph structure.

Figure 6. Analysis of the Generated Scene Graphs. From left to right, the histograms illustrate (i) the count of the three most common
object labels in each scene, (ii) the mean point cloud size for the three largest object labels per scene, and (iii) the distribution of tree heights
across scenes. Additionally, we report the mean tree height for each scene.

depth maps, IMU readings, and 3D laser scans, covering
over 45,000 square meters of real-world urban and natu-
ral environments. The ground-truth alignment pipeline ro-
bustly handles heterogeneous device data by aligning AR
trajectories to high-precision laser scans, ensuring accurate
localization and mapping.

For our experiments, we focus on the three large scenes
from LaMAR (LIN, CAB, and HGE). Using these scenes,
we generate hierarchical 3D scene graphs, as discussed pre-
viously, that capture the relationships between large-scale
objects and their subcomponents (e.g., buildings, facades,
and windows). Our scene graphs encode both geometric
and semantic relationships, allowing for structured reason-
ing over large-scale environments.

Fig. 5 presents a sample section of the generated 3D
scene graph. The left plot highlights a building within the
processed mesh. The middle plot visualizes a root scene
graph node, with the corresponding building emphasized by
coloring its point cloud. The right plot illustrates a lower hi-
erarchical level, showcasing the child nodes of the building,
such as windows and doors. Another example is shown in
Fig. 1 with large objects denoted by color and smaller parts
of each large object with a darker shade of the base color.

Figure 6 presents an analysis of the constructed scene
graphs. The left plot shows the most frequently occurring
objects in each dataset (i.e., windows). The middle plot re-

ports the average point cloud sizes of the largest objects.
Additionally, we provide the distribution of tree heights in
the generated scene graphs.

4.2. Scene Alignment using SGAligner
Since no existing outdoor 3D scene graphs are available, we
lack a direct baseline for comparison. Instead, we aim to
demonstrate the utility of our 3D scene graphs by applying
them to the task of scene alignment using SGAligner [21],
a cross-modal scene alignment method. SGAligner con-
structs node embeddings from various modalities of a 3D
scene graph, encoding information about objects, relation-
ships, and attributes. Specifically, it learns to represent in-
dividual object instances as high-dimensional embedding
vectors. Given two scene graphs with overlapping spatial
regions, SGAligner optimizes these embeddings so that cor-
responding nodes are placed close together, enabling accu-
rate object-to-object matching between scenes.

This matching allows for scene alignment by identifying
multiple object correspondences and applying point cloud
registration to their respective point clouds while ignoring
the rest of the scene. Assuming that most objects remain
unchanged between the two scans, the rigid transformation
that aligns the majority of matched objects in a shared coor-
dinate system is considered the final scene transformation.

We adapt SGAligner for large-scale outdoor settings by
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modifying its node embeddings. Specifically, we:
• Increase the PointNet-based downsampling from 512 to

1024 points per object.
• Replace standard graph attention network (GAT) node

embeddings with sentence encodings of object descrip-
tions using SBERT.

• Introduce Hypergraph Attention Network (HGN) embed-
dings, where each hyperedge embedding is computed as
the mean of its associated node embeddings.

We perform node alignment on the root nodes only, due to
the large number of nodes. An example of object match-
ing between two scenes can be seen in the supplementary
material. While we focus on alignment in this work, the
same object-level embeddings can support a broader range
of downstream tasks, including visual and text-based local-
ization (e.g. SceneGraphLoc [13] or ”Where Am I?” [5]).

Generating Sub-Scenes for Alignment. Note that while
our method for scene graph generation is entirely training-
free, SGAligner requires supervised training on pairs of
scenes with spatial overlap. We synthetically create sub-
scenes from the large LaMAR scenes (i.e. our generated
scene graphs) to generate training data. We sample a point
uniformly at random from a sphere in the center of the scene
and construct a plane going through that point of origin. The
orientation of the plane is also randomly sampled, whilst
ensuring, keeping the vertical anlge of the plane within a
threshold. All objects on one side of the plane are dis-
carded. If an object is intersected by the plane, only the
portion on one side is retained. Edges between objects are
preserved only if both objects remain in the sub-scene, and
hyperedges are retained if at least one of their objects is in-
cluded. The process is repeated twice to generate a pair of
sub-scenes with certain overlap, where overlap percentage
refers to the ratio of shared points between two sub-scene
point clouds relative to the total number of points in their
union. A histogram on overlap can be seen in Fig. 7.

To evaluate generalization, we train on one scene (e.g.,
LIN) and test node alignment on the other two (HGE and
CAB). Each dataset split consists of 1000 training pairs, 200
validation pairs, and 250 test pairs per scene. We also ana-
lyze the impact of different modalities during training.

Following the evaluation protocol of SGAligner, we
measure object retrieval recall to assess whether objects can
be correctly matched to their corresponding pairs among
all objects in the environment. We report recall at K ∈
{1, 2, 3, 4, 5}, where, for example, K = 5 measures how
often the correct object appears among the top five predic-
tions of the SGAligner model trained on our scenes.

Evaluation Results. Table 1a presents the retrieval recall
when training on scene LIN and testing on CAB and HGE.
The first column specifies the modalities used during train-
ing: point cloud (P), structure (S), hyperedge (H), and at-
tributes (A). Across all modality combinations, the recall

Modalities
Mean
RR ↑ Hits @↑

K = 1 K = 2 K = 3 K = 4 K = 5
P 0.963 0.955 0.961 0.967 0.969 0.972
P + S 0.939 0.931 0.936 0.942 0.945 0.948
P +H 0.967 0.959 0.966 0.971 0.973 0.975
P + S +H 0.943 0.932 0.941 0.949 0.952 0.956
H+A 0.996 0.994 0.997 0.998 0.998 0.998

(a) Trained on LIN.

Modalities
Mean
RR ↑ Hits @↑

K = 1 K = 2 K = 3 K = 4 K = 5
P 0.944 0.931 0.941 0.95 0.954 0.959
P + S 0.865 0.845 0.862 0.873 0.88 0.885
P +H 0.938 0.92 0.94 0.951 0.957 0.962
P + S +H 0.855 0.832 0.849 0.863 0.873 0.882
H+A 0.941 0.929 0.939 0.947 0.951 0.954

(b) Trained on CAB.

Modalities
Mean
RR ↑ Hits @↑

K = 1 K = 2 K = 3 K = 4 K = 5
P 0.942 0.93 0.94 0.948 0.953 0.958
P + S 0.892 0.879 0.887 0.896 0.9 0.904
P +H 0.944 0.933 0.942 0.95 0.955 0.959
P + S +H 0.896 0.884 0.892 0.9 0.904 0.908
H+A 0.971 0.963 0.97 0.976 0.979 0.982

(c) Trained on HGE.

Table 1. Evaluation of Node Matching Across Different Train-
ing Scenes. Each subtable shows the performance when trained
on a specific scene and evaluated on the two remaining ones. The
reported scores represent the average retrieval performance across
both testing scenes.

rate approaches 100%, demonstrating the informativeness
of the constructed 3D scene graphs. In all cases, the mean
retrieval recall (RR) exceeds 93%, highlighting the robust-
ness of our method.

Similar trends are observed in Tables 1b and 1c, con-
firming the consistency of the generated scene graphs across
different environments. These results demonstrate the suit-
ability of our hierarchical scene graph representation for ac-
curate object retrieval and scene alignment.

We also present a summary of the mean reciprocal ranks
over all model types when the model is trained on one

Train \ Test CAB HGE LIN
CAB — 0.933 0.884
HGE 0.951 — 0.907
LIN 0.961 0.962 —

Table 2. Mean Reciprocal Rank. Comparison of matching per-
formance across different training and testing scene combinations,
averaged over all models.
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LIN CAB HGE
Method RRE↓ RTE↓ Time (s) RRE↓ RTE↓ Time (s) RRE↓ RTE↓ Time (s)
Baseline 32.049 20.727 41.995 31.283 14.453 14.794 30.037 14.14 2.644

SGAligner + FPFH 0.279 2.241 8.283 0.075 1.552 9.384 0.879 2.516 5.981
SGAligner + GeoTr.* 7.448e-05 5.864e-05 85.245 5.196e-05 2.712e-05 57.989 9.414e-05 4.636e-05 30.683

Table 3. Results of point cloud registration. Mean relative rotation error (RRE; in degrees), mean relative translation error (RTE; in
meters), and average runtime (in seconds) for the baseline method (FPFH features [20] on the entire scene) and SGAligner [21] (using
FPFH and GeoTransformer [17] matches) trained on the proposed outdoor 3D scene graphs of the three test scenes. * Out of the 1500
scenes, the official code of GeoTransformer crashed on 53.

dataset and tested on another in Table 2. While minor varia-
tions exist, all training and testing combinations yield stable
results, demonstrating the robustness of our method across
a diverse range of scenes.

4.3. Point Cloud Matching for Scene Alignment
We perform 3D point cloud matching using a baseline
method as well as our prefiltering strategy, which leverages
object-to-object matching to refine alignment. We evaluate
the following three approaches:
• Direct point cloud matching and registration using

Open3D’s fast global registration algorithm [30], based
on FPFH features [20].

• Independent point cloud registration applied to retrieved
object-to-object matches using the same FPFH-based
method [20]. The final transformation is estimated from
all these object point correspondences by RANSAC.

• Independent point cloud registration on the retrieved
object-to-object matches using GeoTransformer [17].
The final transformation is estimated from all these ob-
ject point correspondences by RANSAC.

For the direct point cloud method we downsample each sub-
scene to 30,000 points using a voxel size of 0.6 meters to
ensure computational efficiency, given the large scene sizes.
We do not apply GeoTransformer to match the entire scene
directly, as done in SGAligner, since it fails entirely on these
large outdoor environments due to scalability issues.

Metrics. We evaluate alignment accuracy using the mean
relative rotation error (RRE, in degrees) and mean relative
translation error (RTE, in meters). Additionally, we report
the average runtime in seconds for each method.

Results. Table 3 presents the results of point cloud registra-
tion for each method and each scene. We train the model on
each scene and test on the two others. For each test scene,
we average the results we achieved when training on the
other two scenes and report it in the table. The baseline
method, which applies FPFH features to the entire scene,
performs significantly worse than the other approaches, re-
sulting in orders-of-magnitude higher RRE and RTE.

In contrast, integrating SGAligner with the proposed
scene graphs leads to substantial improvements, even when
using standard FPFH features on object-to-object matches.

When leveraging object matches estimated by SGAligner
with GeoTransformer, we achieve near-perfect alignment,
with both translation and rotation errors in the 10−5 range.
These results highlight the effectiveness of scene graphs
for improving outdoor scene alignment. Across all cases,
the baseline method struggles to achieve accurate align-
ment, whereas SGAligner, when combined with the pro-
posed scene graphs, consistently improves performance us-
ing both FPFH and GeoTransformer correspondences.

Additionally, Fig. 7 shows that SGAligner with FPFH
achieves low RTE at minimal overlap, with error dropping
quickly, unlike the slower decline seen in traditional FPFH.

Figure 7. Sub-Scene Overlap Analysis. Distribution of sub-scene
overlap percentage and according test scores for LIN.

5. Conclusion
We presented a method for generating hierarchical 3D scene
graphs from large-scale outdoor environments using posed
images and 3D reconstructions. Our approach systemati-
cally extracts and organizes objects into structured hierar-
chies, capturing relationships from entire buildings to their
subcomponents, such as facades and windows. By lever-
aging geometric and semantic relationships, we ensure spa-
tial consistency and meaningful scene representation. Ex-
perimental results on the LaMAR dataset demonstrate the
robustness and informativeness of our scene graphs in the
downstream application of cross-modal 3D scene align-
ment. Our method provides a scalable framework for struc-
tured outdoor 3D scene understanding, with applications in
robotic navigation, AR localization, and large-scale map-
ping. The code and scene graphs are available at GitHub.
Acknowledgement. The work has been supported by the ETH Zurich
Career Seed Award.
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