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Abstract

The ability to predict collision-free future trajectories from
egocentric observations is crucial in applications such as
humanoid robotics, VR / AR, and assistive navigation. In
this work, we introduce the challenging problem of predict-
ing a sequence of future 6D head poses from an egocentric
video. In particular, we predict both head translations and
rotations to learn the active information-gathering behav-
ior expressed through head-turning events. To solve this
task, we propose a framework that reasons over temporally
aggregated 3D latent features, which models the geometric
and semantic constraints for both the static and dynamic
parts of the environment. Motivated by the lack of train-
ing data in this space, we further contribute a data collec-
tion pipeline using the Project Aria glasses, and present
a dataset collected through this approach. Our dataset,
dubbed Aria Navigation Dataset (AND), consists of 4 hours
of recording of users navigating in real-world scenarios. It
includes diverse situations and navigation behaviors, pro-
viding a valuable resource for learning real-world egocen-
tric navigation policies. Extensive experiments show that
our model learns human-like navigation behaviors such as
waiting / slowing down, rerouting, and looking around for
traffic while generalizing to unseen environments. Check
out our project webpage at https://sites.google.
com/stanford.edu/lookout.

1. Introduction
Navigating safely in the real world from egocentric obser-
vations is an ability that we humans possess, yet extremely
difficult for machines to learn. This is largely due to the di-
verse and complex situations that exist in practical scenar-
ios. Such capabilities are crucial for various applications
including humanoid robotics [42], VR / AR [8], and assis-
tive navigation [63].

Many works have approached this problem from differ-
ent angles. Vision-Language Navigation (VLN) [18, 21, 25,
39, 66] focuses on localizing goals and planning long-term
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goal-directed paths, typically in simulated static environ-
ments. Robotic social navigation [14, 17, 36, 41, 56] learns
socially compliant navigation policies in dynamic environ-
ments. These works generally target wheeled or legged nav-
igation robots, whose action and observation distributions
are vastly different from the human form factor. Recently,
several works investigate egocentric navigation that predicts
trajectories [63] or full-body poses [8] for humans. They
however assume static environments.

Despite these advances, a real-world deployable hu-
manoid egocentric navigation policy remains challenging.
First, a method for humanoid navigation in dynamic envi-
ronments is lacking. Second, existing methods ignore an
important aspect of human-like navigation, which is the ac-
tive information gathering via head turning. Humans often
rotate their heads and look for useful information. For ex-
ample, we look to the side before crossing roads to check
any passing vehicles, look downward when stepping off /
onto curbs, etc. This ability is helpful for real-world de-
ployment, partly due to the limited FoV of cameras. Lastly,
we do not have a way to collect multi-modal labeled train-
ing data at scale due to the difficulty of deploying humanoid
robots in the real world.

In this work, we make steps towards a real-world de-
ployable humanoid navigation policy from all three of these
fronts. To tackle the challenge of 3D dynamic scene
awareness, we propose a model that unprojects per-frame
DINO [2, 38] features to 3D, and aggregates the 3D fea-
ture volumes across time to gain a holistic understanding of
the geometric constraints posed by the environment. More-
over, through training on our collected dataset that contains
extensive dynamic obstacles (i.e. pedestrians and vehicles),
our model effectively learns the ability to navigate around
both static and dynamic objects. To model active informa-
tion gathering, we design our framework to predict 3D head
rotations in addition to translations (i.e. 6D head pose pre-
diction), which can be used to calculate velocity commands
normally input to humanoid robots [4, 46, 47]. Addition-
ally, in our data collection process, we ask our human sub-
jects to follow a careful information-gathering strategy, e.g.
always looking for passing cars before crossing roads. To
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Figure 1. Problem formulation. Given a posed egocentric video (black-outlined frustums, with frames shown in detail on the right), our
model predicts a sequence of 6D head poses in the future (green-outlined frustums). We design a data collection pipeline with the Project
Aria glasses and train our model on a dataset collected this way. This problem features real-world navigation challenges including collision
avoidance with static and dynamic obstacles, and human-like information-gathering behaviors (e.g. looking to the sides when crossing
roads in this example). The point cloud is shown for visualization but is not an input to the model.

solve the challenge of collecting useful data at scale, we
propose a data collection pipeline that uses a pair of Project
Aria glasses [7] as the data collection tool. This pipeline
enables naturalistic human navigation demonstration col-
lection without drawing attention [42]. Unlike traditional
collection pipelines that require carefully mounting various
sensors [42] or teleoperating robots [17], our pipeline is ex-
tremely easy to set up, taking only a few seconds at the
beginning of each recording session, while providing vari-
ous data modalities including RGB videos, audio, eye gaze,
SLAM reconstructed head poses and point cloud. It thus
provides a way to scale up the data collection process with
minimal effort. With this pipeline, we collected a dataset
that consists of 4 hours of real-world navigation sessions,
covering 18 densely populated places.

In summary, we make the following contributions: (1)
we introduce the challenging task of 6D head pose trajec-
tory prediction from posed egocentric observations, under
the presence of static and dynamic obstacles. (2) We pro-
pose a model dubbed LookOut that aggregates unprojected
3D DINO features over time for semantic and geometric
understanding, which proves effective in solving the task.
(3) We contribute a data collection pipeline that leverages a

pair of Project Aria glasses and requires minimal effort, pro-
viding a way to scale up the data collection effort at ease.
(4) We collected a dataset with this pipeline, which consists
of 4 hours of real-world navigation sessions and covers 18
places with dense and diverse traffic.

2. Related Work
Vision-language navigation. Studies on the task of
Vision-Language Navigation (VLN) are arguably the most
prevalent in the vision community around embodied navi-
gation. This task is defined roughly as navigating to a spec-
ified goal location. Depending on the goal specification, the
task has several variants as Point-Goal Navigation (Point-
Nav) [68], Object-Goal Navigation (ObjectNav) [9, 21, 66],
Image-Goal Navigation (ImageNav) [20], Language-Goal
Navigation (LangNav) [39, 45], and Audio-Visual Naviga-
tion [3]. Some works also propose frameworks that unify
several specifications [18, 25]. These works are generally
developed in simulated environments, and focus on long-
term path planning where no or simple [25] dynamic obsta-
cles exist. In this work, we focus on short-term navigation
whose main objective is collision-free locomotion.
Robotic social navigation. Classical methods have
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extensively studied goal-conditioned path planning for
robots [52] that develop mathematical solutions given al-
most perfect knowledge on the environment. More rele-
vant to our work are works that study egocentric naviga-
tion for robots. Robotic social navigation aims to predict
a collision-free path [34, 44, 56] or higher-level instruc-
tions [32, 41] for robots, given egocentric sensing input
such as RGB, LiDAR, and odometry. Common datasets for
this task are collected by teleoperating robots [17] or hu-
man collectors wearing a sensor suite [36]. These works
generally target wheeled or legged navigation robots. The
actions and observations of such robots are drastically dif-
ferent from those of humanoids, due to their smaller scale,
faster speed, and different morphologies. On the other hand,
studies for humanoid robots [22, 23, 31, 37, 51] generally
design classical methods with laser and stereo vision input
for simplified environments.

Egocentric navigation for humans. Significant progress
has been made in egocentric human motion estimation [11,
16, 26, 35, 50, 59, 65, 67], while forecasting future mo-
tion or trajectories that takes environment constraints into
account is much less explored. COPILOT [40] predicts
human-environment collision from multi-view egocentric
videos in the form of collision labels and heatmaps. Eg-
oNav [63] uses a diffusion model to forecast future trajecto-
ries from a chest-mounted RGBD camera input and past tra-
jectories. EgoCast [8] predicts future full-body poses from
a head-mounted RGB camera input and past head trajecto-
ries. Notably, EgoNav focuses on navigation while EgoCast
studies diverse social and skilled human activities. How-
ever, all three works assume static environments, and do
not learn the active information-gathering behavior critical
in real-world scenarios. Moreover, we contribute a data
pipeline that can be easily deployed at scale.

Egocentric datasets for humans. To study this task, we
need a dataset that records real-world human navigation
scenarios with significant presence of both static and dy-
namic obstacles, and provides data modalities on egocentric
RGB videos, 6D head poses, and preferably also scene point
cloud for collision checking. Traditional egocentric video
datasets [6, 10, 27, 53] are generally captured in the monoc-
ular setting, and thus do not have camera pose annotations.
The activities in these datasets are also diverse and do not
focus on navigation. Some works [24, 40] propose synthetic
data generation pipelines to simulate virtual humans walk-
ing in synthetic scenes. However, the generated motions are
simple and unnatural due to the limitation of human motion
generation methods. Autonomous driving dataset such as
Waymo Open [58] comprehensively covers real-world traf-
fic scenarios and provide dense 3D tracking for pedestri-
ans and vehicles, but they do not record egocentric data for
pedestrians. Recently, the Project Aria glasses [7] emerged
as a convenient and natural way to record egocentric data.

In particular, the Aria Machine Perception Service (MPS)
provides an easy and highly optimized method to obtain
accurate 6D camera (head) pose trajectories, environment
point clouds, eye gazes, and more. Meta released several
datasets collected with the Project Aria, and among them
Aria Everyday Activities (AEA) [29] and Nymeria [30]
record diverse indoor and outdoor activities. However, they
either feature only single-human activities [29] or have mul-
tiple actors only in collaborative activities [30], so real-
world navigation scenarios with potentially colliding agents
are not captured.

3. Method
3.1. Problem Formulation
We illustrate our problem formulation in Fig. 1. Given a
posed egocentric video X ∈ RT1×H×W×3 and H1:T1 =
{h1,h2, · · · ,hT1} ∈ RT1×9, our goal is to predict the 6D
head pose sequence for a short period in the future, i.e.
HT1+1:T1+T2

= {ĥT1+1, ĥT1+2, · · · , ĥT1+T2
} ∈ RT2×9.

The head poses, which are also the camera poses, are pa-
rameterized as ht = [tt|rt], where the rotation component
rt adopts the 6D continuous rotation representation [69].
Throughout our experiments, T1 = T2 = 8. The head
poses are defined in a head-centered canonical frame speci-
fied in Sec. 3.3.

3.2. Model
The core functionality our model needs to have is extract-
ing semantic and geometric information for the surround-
ing environment from a single monocular video stream.
This prompts us to consider the following questions: (1)
a strong visual encoder for semantic modeling, and (2) a
way to aggregate information and reason in the 3D space.
These motivate our key design choices of the model. For
(1), we use the pre-trained DINO [2, 38] encoder to extract
per-frame feature maps, due to its strong open-vocabulary
semantic encoding capabilities [19, 60, 61, 64]. For (2),
we adopt a strategy used in a number of object and scene
representation models named “Parameter-Free Unprojec-
tion” [5, 12, 13, 54, 62]. Specifically, we bilinearly sam-
ple a subpixel 2D DINO features for each 3D coordinate
defined in the canonical frame to obtain a 3D DINO fea-
ture volume. We then temporally aggregate the volumes for
all time steps. These design choices endow our model with
strong semantic and geometric reasoning capability while
not having to rely on explicit geometric sensing input, such
as depth and LiDAR. We illustrate our model in Fig. 2 and
describe each component in detail next.
DINO feature encoding. We use the pre-trained
DINO2 [38] variant dinov2 vits14 reg *, and apply
it to each input frame (down-sampled to 224 × 224 spatial

*https://github.com/facebookresearch/dinov2
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Figure 2. LookOut architecture. Given a posed egocentric video, we obtain frame-wise DINO features with the pre-trained encoder, and
unproject them to 3D for temporal aggregation. The aggregated features are then projected to BEV for further processing and eventually
used to predict future head poses.

resolution). This gives us a temporal sequence of 2D DINO
features F2D ∈ RT1×16×16×384.
Parameter-free unprojection. Following [12, 13], we first
define a voxel grid of 3D points in the canonical frame, and
project these points to each input frame’s pixel space. The
feature encoding for each point is then obtained by bilin-
early interpolating the 2D DINO feature map. This yields
a sequence of 3D DINO feature volumes, which are subse-
quently aggregated across time for a single 3D feature vol-
ume F3D ∈ RZ×Y×X×384, where Z = X = 96, Y = 32
are the spatial resolutions of the voxel in our Y-up canon-
ical frame. We simply use average pooling across time as
the temporal aggregation method.
BEV projection. Directly reasoning in the 3D feature
space is expensive and in many cases sub-optimal (as ab-
lated later). We hence project the 3D feature volume ob-
tained above to the “Bird’s Eye View” (BEV) by “squeez-
ing” the up-axis (Y axis), following [12, 13]. The squeezing
is done with an MLP that projects the flattened up-channel
dimension (384 × Y ) to the same-sized channel dimension
(384). After this step, we end up with a BEV feature map
FBEV ∈ RZ×X×384.
BEV Net. FBEV is the condensed feature embedding on
which we perform the bulk of the computation. Following
previous designs [12, 13, 43], our BEV Net consists of 11
sequential BEV modules, where each module applies a 2D
convolution, a LayerNorm, and an MLP with a GELU ac-
tivation. The hidden dimension starts at 384 and doubles
twice in the middle, reaching the final feature dimension of
1540 while reducing the spatial dimension to 3× 3.
Trajectory prediction. We first perform a spatial average
pooling on the features from the BEV Net, and then use a
3-layer MLP with LayerNorm and GELU activation to get
the predicted future head pose sequence ĤT1+1:T1+T2

.

Loss function. We supervise the model with combined L1
losses on the translations and rotations, following [26]:

L =
1

T2
·
T1+T2∑
t=T1+1

λtrans · ||tt− t̂t||1+λrot · ||RtR̂t−I||1 (1)

where R is the rotation matrix converted from the 6D ro-
tation representation, and I is the identity matrix. In our
experiments we use λtrans = λrot = 1.

3.3. Implementation Details
Head-centered canonical frame. Because we do not input
the past head poses to the model (they are only used in the
unprojection process), we need to define a canonical frame
relative to the current head pose hT1 . Such canonical frames
have been widely adopted in prior works [11, 26, 33, 49,
65]. Following [33], we also define our frame to be parallel
to the ground plane and facing forward, but centered on the
head instead. This lets the model operate in a space facing
the current heading direction and predict future head poses
in a relative sense.
Training details. We use the AdamW [28] optimizer, and
apply a weight decay of 0.05 to all model parameters ex-
cept biases. We train our model for 700k steps, and use
the OneCycle learning rate scheduler [55] with the linear
annealing strategy and pct start set to 0.05. We use a
batch size of 4. The training concludes in about 4 days on a
single NVIDIA RTX A6000 GPU.

4. Aria Navigation Dataset (AND)
As discussed in Sec. 2, there are no suitable datasets for
our task to the best of our knowledge. We hence design a
data collection pipeline to collect our own dataset, which
we name as the Aria Navigation Dataset (AND). We next
present key data collection steps and dataset statistics.
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4.1. Data Collection Pipeline

Hardware. Our data collection hardware consists of only
a pair of the Project Aria glasses [7], which has several key
advantages of being lightweight, non-intrusive, cheap, and
easy-to-set-up compared to prior works that deploy self-
built sensor suites [36, 63] or teleoperate robots [17].
Recording process. Project Aria comes with a mobile app
named Aria Studio that allows easy data recording by inter-
acting with the mobile app once prior to each recording ses-
sion. The app provides selections on recorded data modali-
ties, and in our pipeline, we activate the RGB, SLAM (two
monochrome cameras), and eye-tracking cameras, as well
as IMU sensor, barometer, and GPS. The cameras all oper-
ate at 20fps. Before each recording session, the human sub-
ject selects this saved recording profile and starts recording
while walking around, without pre-defined instructions or
scripts. To capture consistent information-gathering behav-
ior, we instruct the subjects to follow a careful navigation
behavior, e.g. always checking for passing vehicles before
crossing roads.
Data processing. The raw recorded data comes in a com-
pressed format called VRS †. We run the Aria Machine Per-
ception Services ‡ to get processed data modalities includ-
ing 6D head pose trajectories and scene point clouds. The
raw RGB frames are distorted due to the fisheye camera, so
we undistort them to use as input to our model. The original
sequences are further segmented into (T1+T2)-long clips in
a sliding window fashion, with a stride and dilation factor of
6 frames. At 20fps, each clip covers (8+8−1)×6/20 = 4.5
seconds. During SLAM, points on the dynamic objects are
filtered. We apply another filtering process on the recon-
structed point cloud to remove noisy points.
Privacy. We have taken measures to follow Project Aria
research guidelines. We also use the SOTA de-identification
algorithm [48] to blur faces in all videos.

4.2. Dataset Statistics

Locations. Since we want to capture real-world navigation
scenarios where humans need to avoid collision with both
static and dynamic obstacles, we selected diverse locations
with dense traffic both indoors and outdoors. We picked
18 densely populated places from university campuses, city
downtowns, parks, and so on. Many of these locations are
expansive, providing great diversity on captured data. We
specifically chose times when dense traffic usually happens
for data recording, e.g. after classes. We also diversified the
time-of-the-day distribution.
Data scale. We recorded about 4 hours of data, resulting in
274k RGB frames and 36k clips after processing.

†https://facebookresearch.github.io/vrs/docs/Overview/
‡https://facebookresearch.github.io/projectaria tools/docs/ARK/mps

5. Experimental Results
We compare LookOut to baselines quantitatively
in Sec. 5.1.1. In Sec. 5.1.2, we ablate our key design
choices. We then present qualitative evaluation results
in Sec. 5.2, which showcase the diverse behaviors our
model learns in real-world navigation scenarios. Finally,
we investigate failure cases from our model and discuss
limitations in Sec. 5.3. All results are obtained on a
held-out set with environments unseen during training. We
encourage readers to check our project webpage, which
contains video versions of Fig. 3 obtained by continuously
rolling out our model given each incoming frame, similar
to how it would operate in practice.

5.1. Quantitative Evaluation
Metrics. We first evaluate head pose prediction accu-
racy through the same error function we used for train-
ing, i.e. the L1 losses on translation (L1 trans) and rota-
tion (L1 rot). In order to measure collision with the en-
vironment, we define a non-collision score for the static
(Col stt k) and dynamic (Col dyn k) obstacles, re-
spectively. The score measures the percentage of predic-
tions that are at least k centimeters away from the clos-
est obstacle. For static obstacles, we measure the closest
distance from the predicted head translation to the SLAM
reconstructed point cloud. While for dynamic obstacles,
we first use a monocular metric depth estimation method
Depth Pro [1] to estimate a depth map for each frame in
our dataset, and subsequently use DINOv2 + Mask2Former
segmentation head [38] to get per-frame semantic segmen-
tation masks. We then take the minimum estimated met-
ric depth values among all pixels labeled “person” as the
closest distance. Col ∗ avg is the average value over all
k ∈ {15, 25, 35}. Note that the non-collision score is a
rough proxy for collision avoidance, and we also report the
values for ground-truth sequences (GT) for reference.

5.1.1. Comparison with Baselines
Baselines. Since we study a novel problem, there is no
directly comparable prior work. As mentioned, the closest
prior works to ours are EgoNav [63] and EgoCast [8]. Ego-
Nav is an Arxiv preprint that did not release code. We hence
adapt EgoCast to our setting. The core part of EgoCast is
a transformer-based forecasting module that predicts future
3D full-body poses given past full-body poses and option-
ally the past egocentric video. To deal with the issue that
full-body poses are often not available in practice, it further
implements an estimation module to estimate the current
frame’s full-body pose from past 6D head poses and ego-
centric video. Both stages are supervised with 3D full-body
poses, which our dataset does not have. We hence repurpose
the forecasting module to take past head poses (instead of
full-body poses) and the egocentric video, and predict future
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Method L1 trans ↓ L1 rot ↓ Col stt 15 ↑ Col dyn 15 ↑ Col stt 25 ↑ Col dyn 25 ↑ Col stt 35 ↑ Col dyn 35 ↑
Const Vel 0.41 0.77 85.5 91.2 80.0 81.3 74.1 73.1
Lin Ext 0.45 1.21 86.5 92.3 77.6 82.1 73.3 72.9
EgoCast [8] 0.34 0.63 90.5 94.6 84.6 86.2 77.4 77.8
Ours 0.17 0.16 91.3 97.2 85.6 90.3 79.9 83.1
GT 0 0 92.7 97.7 88.9 93.0 83.6 85.1

A∗+Lin Ext 0.24 1.21 98.8 82.4 100.0 76.5 100.0 61.9
Ours (+goal) 0.11 0.15 91.7 97.2 86.3 91.4 82.0 84.6

Table 1. Comparison with baselines. Our model outperforms comparable methods on both trajectory prediction and collision avoidance.

head poses too. We then remove the estimation module. We
train it on the same training split as our model.

We additionally implement the following baselines
that operate on past head poses: (1) Constant Velocity
(Const Vel) that uses the linear and angular velocity cal-
culated from the last two input steps to extrapolate future
head translations and rotations, (2) Linear Extrapolation
(Lin Ext) that fits a linear regression model for the past
translation and rotation sequences and predicts into the fu-
ture, and (3) A∗+Linear Extrapolation (A∗+Lin Ext) that
uses linear extrapolation for rotations, but implements an
A∗ algorithm for translations. Specifically, we discretize
the space by turning the SLAM reconstructed point cloud
into an occupancy grid, using the same spatial resolution as
our model. We then take the ground-truth head translation
from the last step in the future T1 + T2 as the goal. We also
define a maximum velocity that roughly matches the human
movement capacity. We use a variant of our model that also
takes such goal position as input (directly concatenated to
the final MLP) for a fair comparison with this baseline.
Analyses. The comparison results are reported in Tab. 1. In
the no-goal setting (top), our model achieves the best per-
formance across all metrics, predicting accurate head poses
while avoiding collision with both static and dynamic obsta-
cles reliably. When provided with the goal, A∗+Lin Ext
achieves near-perfect non-collision scores for static obsta-
cles, because they are explicitly modeled with the scene oc-
cupancy (where each voxel grid represents about 600cm3

of space) and the search algorithm basically guarantees a
path around occupied regions. However, this baseline does
poorly in avoiding dynamic obstacles since they are not rep-
resented in the point cloud.

5.1.2. Ablation Study
We ablate input data modalities and key model designs and
summarize the results in Tab. 2.
Multi-modal support. Our model can be easily extended
to incorporate additional sensor modalities, e.g. depth and
point cloud. Specifically, we first convert depth to a point
cloud, and then turn it into an occupancy voxel and concate-
nate with the 3D DINO volume F3D. As expected, incorpo-

Method L1 trans ↓ L1 rot ↓ Col stt avg ↑ Col dyn avg ↑
PCD only 0.40 0.88 83.2 84.6
RGB+PCD 0.17 0.14 87.8 90.1
Depth only 0.22 0.23 87.0 91.6
RGB+Depth 0.15 0.13 87.4 91.4

w/o DINO 0.35 0.67 84.5 85.3
2D Only 0.26 0.44 84.9 86.2
3D Conv 0.17 0.19 85.6 89.9
Ours 0.17 0.16 85.6 90.2
GT 0 0 88.4 91.9

Table 2. Ablation study. Each design choice helps performance.

rating these modalities directly relevant to obstacle proxim-
ity improves non-collision metrics, which aligns with the
findings in previous works [40]. Using depth especially
helps with avoiding dynamic obstacles because the SLAM
reconstructed point cloud only contains static objects.
Model design. We first validate the effectiveness of the
DINO feature encoding by ablating a variant that unpro-
jects raw RGB frames without passing through DINO (w/o
DINO). As shown, DINO features contribute significantly to
our model’s performance due to its strong semantic feature
encoding capabilities. We next inspect the impact of hav-
ing the intermediate 3D feature space, for which we ablate
a variant that temporally pools over 2D DINO features F2D
instead (2D Only). We can see that the 3D feature space
improves performance by granting an explicit geometric no-
tion to the features. Finally, we investigate whether the BEV
projection is beneficial by comparing against directly ap-
plying 3D convolutions on F3D (3D Conv). This variant
performs on par to our model, but is more computationally
expensive due to 3D convolutions.

5.2. Qualitative Evaluation
Diverse model behaviors. We evaluate if our trained
model demonstrates desirable behaviors through visual in-
spection. Specifically, we are interested in seeing (1) if
our model predicts trajectories that are free from collision
with static and dynamic obstacles, (2) if our model learns
human-like information-gathering behaviors, and (3) where
our model fails. For this purpose, we visualize our model’s

24982



Figure 3. Visualizations of model behaviors. We provide five examples from the held-out set with model predictions (red) and ground-
truths (green). For each example, we show five frames and a text describing the model behavior below. The translation visualizations
(curves) are obtained by projecting the values to the ground and then to the image plane. The rotations (squares) are visualized by
projecting the viewing frustums to the image plane. We show the full future sequences for translations while only the next step for rotations
for clarity.
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Figure 4. BEV visualizations. We show four examples, each with
a sampled RGB frame on the left and the BEV visualization of
trajectories on the right. The white curve denotes the past, blue-
green denotes the ground-truth future, and pink-orange represents
the predicted future. Color coding depicts the order of time pro-
gression. The trajectories are overlaid on a BEV representation of
the scene point cloud for visualization. Note that only the transla-
tion components of the trajectories are shown here.

predictions and ground-truths in 2D, and overlay them over
the image observations. We show such visualizations for
a few samples in Fig. 3 and more on the project web-
page. It can be seen that our model forecasts collision-
free paths both around static and dynamic obstacles. Our
model also learns the information-gathering behavior that
humans demonstrate in the training data, such that it pre-
dicts head rotations that check potentially useful informa-
tion (e.g. road conditions) for navigation. We also observe
other interesting behaviors from the model. In the first and
fifth examples, the model learns to wait when there is no
easily traversable path available. In the third example, the
model adapts its predictions based on new visual cues it ob-
serves (the predicted path shifts from the center to the right
after the person appears).
BEV visualizations. We additionally show translation vi-
sualizations from the BEV in Fig. 4. We overlay the trajec-
tories on top of a BEV representation of the static environ-
ment, which is obtained by converting the scene point cloud
to an occupancy grid and then to a height map. The height
map stores for each pixel, the maximum height of all occu-
pied grids along the up-axis. As seen again from these visu-
alizations, the predicted trajectories from our model satisfy
environmental constraints in diverse scenarios.

5.3. Failure Cases and Limitations
We identify failure cases of our model and provide the vi-
sualizations in Fig. 5. A major limitation of our model is
its lack of generative modeling capabilities and hence may
struggle when a multi-modal future is possible. In the first
example of Fig. 5, it is possible to go either left or right
to avoid collisions with the incoming pedestrians, in which
case our model shall regress to the mean of these multi-
ple possibilities. Only when the human subject in this case

Figure 5. Failure cases. We show two examples from the held-out
set with a description of the failure below each.

clearly walks to their right side, our model is able to regress
to a plausible future. A next step is thus to leverage gen-
erative models to learn such multimodal distributions, such
as diffusion models [15, 57]. In the second case, the hu-
man subject looks down to check the position of the rail in
the middle time step to avoid tripping. However, our model
does not make such predictions because rails have never ap-
peared in our training set. Expanding our training set to in-
clude more diverse scenarios would be a promising solution
to this problem.

6. Conclusion

In this paper, we make steps towards a real-world deploy-
able humanoid navigation policy by making a number of
contributions. First, we introduce a novel task of predict-
ing the future 6D head pose trajectory from the past posed
egocentric video, under the presence of both static and dy-
namic obstacles. This task formulation allows the model
to learn to not only plan collision-free paths but also learn
human-like information-gathering behaviors. Second, we
propose a model that leverages pre-trained DINO feature
encoders and a parameter-free unprojection strategy to ef-
fectively solve this task. Next, we design a data collection
pipeline that uses only a pair of Project Aria glasses as the
data capture device. This pipeline is easily scalable and al-
lows us to collect a 4-hour real-world navigation dataset
with ease. Our dataset spans 18 places with diverse and
dense traffic, providing the community with a valuable re-
source. Through extensive experiments, we demonstrate
that our model learns diverse behaviors that are useful for
real-world navigation tasks, and surpasses baselines across
all metrics. Finally, we discuss the failure cases and limita-
tions of our model as well as directions for future work.
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